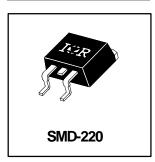

IRGBC40M-S

INSULATED GATE BIPOLAR TRANSISTOR

Short Circuit Rated Fast IGBT

Features

- Short circuit rated 10µs @ 125°C, V GE = 15V
- Switching-loss rating includes all "tail" losses
- Optimized for medium operating frequency (1 to 10kHz)



$$V_{CES} = 600V$$
 $V_{CE(sat)} \le 3.0V$
 $@V_{GE} = 15V, I_C = 24A$

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.

These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	40	
I _C @ T _C = 100°C	Continuous Collector Current	24	Α
I _{CM}	Pulsed Collector Current ①	80	
I _{LM}	Clamped Inductive Load Current ②	80	
t _{sc}	Short Circuit Withstand Time	10	μs
V_{GE}	Gate-to-Emitter Voltage	±20	V
E _{ARV}	Reverse Voltage Avalanche Energy 3	15	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	160	W
P _D @ T _C = 100°C	Maximum Power Dissipation	65	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case	_	_	0.77	
$R_{\theta JA}$	Junction-to-Ambient, (PCB mount)**	_	_	40	°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	80	
Wt	Weight	_	2 (0.07)		g (oz)

^{**} When mounted on 1" square PCB (FR-4 or G-10 Material)

For recommended footprint and soldering techniques refer to application note #AN-994.

Electrical Characteristics @ T _ J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)CES}$	Collector-to-Emitter Breakdown Voltage	600		-	V	$V_{GE} = 0V, I_{C} = 250\mu A$
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage @	20		-	V	$V_{GE} = 0V, I_{C} = 1.0A$
$\Delta V_{(BR)CES}/\Delta T_J$	Temp. Coeff. of Breakdown Voltage	_	0.70	-	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.0	3.0		$I_C = 24A$ $V_{GE} = 15V$
		_	2.6		V	I _C = 40A
		_	2.4			I _C = 24A, T _J = 150°C
V _{GE(th)}	Gate Threshold Voltage	3.0		5.5		$V_{CE} = V_{GE}$, $I_C = 250\mu A$
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-12	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$
g fe	Forward Transconductance §	9.2	12		S	$V_{CE} = 100V, I_{C} = 24A$
I _{CES}	Zero Gate Voltage Collector Current	_		250	μΑ	$V_{GE} = 0V, V_{CE} = 600V$
		_	_	1000		V _{GE} = 0V, V _{CE} = 600V, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V _{GE} = ±20V

Switching Characteristics @ T $_J$ = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	-	59	80		I _C = 24A
Q_{ge}	Gate - Emitter Charge (turn-on)	1	8.6	10	nC	$V_{CC} = 400V$
Q_{gc}	Gate - Collector Charge (turn-on)	_	25	42		$V_{GE} = 15V$
t _{d(on)}	Turn-On Delay Time	1	26	_		$T_J = 25^{\circ}C$
t _r	Rise Time	ı	37	_	ns	$I_C = 24A$, $V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time	1	240	410		$V_{GE} = 15V$, $R_G = 10\Omega$
t _f	Fall Time	1	230	420		Energy losses include "tail"
Eon	Turn-On Switching Loss	_	0.75	_		
E _{off}	Turn-Off Switching Loss	1	1.65		mJ	
E _{ts}	Total Switching Loss	-	2.4	3.6		
t _{sc}	Short Circuit Withstand Time	10			μs	$V_{CC} = 360V, T_J = 125^{\circ}C$
						V_{GE} = 15V, R_G = 10 Ω , V_{CPK} < 500V
t _{d(on)}	Turn-On Delay Time		28	_		$T_{J} = 150^{\circ}C,$
t _r	Rise Time	1	37		ns	$I_C = 24A$, $V_{CC} = 480V$
t _{d(off)}	Turn-Off Delay Time	ı	380	_		$V_{GE} = 15V$, $R_G = 10\Omega$
t _f	Fall Time	1	460			Energy losses include "tail"
E _{ts}	Total Switching Loss	1	4.5		mJ	
LE	Internal Emitter Inductance	_	7.5	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	_	1500			$V_{GE} = 0V$
Coes	Output Capacitance		190	_	pF	$V_{CC} = 30V$
C _{res}	Reverse Transfer Capacitance	_	20		Ţ	f = 1.0MHz

Notes:

- ① Repetitive rating; V $_{\rm GE}$ =20V, pulse width limited by max. junction temperature.
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- S Pulse width 5.0µs, single shot.

- @ $V_{CC}\!\!=\!\!80\%(V_{CES}),~V_{GE}\!\!=\!\!20V,~L\!\!=\!\!10\mu H,$ $R_{G}\!\!=\!10\Omega$
- 4 Pulse width \leq 80 μ s; duty factor \leq 0.1%.

Refer to Section D for the following:

Package Outline 2 - SMD-220 Section D - page D-12