# RE46C120

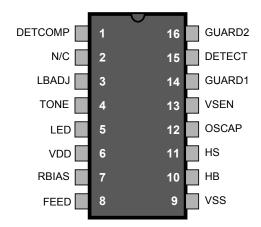
CMOS Ionization Smoke Detector ASIC

**Product Specification** 

# **General Description**

The RE46C120 is low power CMOS ionization type smoke detector IC. With a few external components this circuit will provide all the required features for an ionization type smoke detector.

An internal oscillator strobes power to the smoke detection circuitry for 10.5mS every 1.66 seconds to keep standby current to a minimum. A check for a low battery condition is performed every 40 seconds when in standby. The Tone input allows for selection of a temporal pattern or a 2/3 duty cycle continuous tone. The temporal horn pattern supports the NFPA 72 emergency evacuation signal.


Although this device was designed for smoke detection utilizing an ionization chamber it could be used in a variety of security applications.

Utilizing low power CMOS technology the RE46C120 was designed for use in smoke detectors that comply with Underwriters Laboratory Specification UL217 and UL268.

# <u>Features</u>

- Guard Outputs for Ion Detector Input
- +/-0.75pA Detect Input Current
- Internal Reverse Battery Protection
- Internal Low Battery Detection
- Pin Selectable Horn Pattern
- Low Quiescent Current Consumption (<6.5uA)</li>
- Available in 16L PDIP or 16L N SOIC
- ESD Protection on all Pins
- Compatible with MC145017, MC14467
- Available in Standard Packaging or RoHS Complaint Pb Free Packaging

# Pin Configuration



## ABSOLUTE MAXIMUM RATINGS

| PARAMETER                       | SYMBOL          | VALUE                | UNITS |
|---------------------------------|-----------------|----------------------|-------|
| Supply Voltage                  | $V_{DD}$        | 15                   | V     |
| Input Voltage Range Except FEED | $V_{in}$        | $3$ to $V_{dd} + .3$ | V     |
| FEED Input Voltage Range        | $V_{infd}$      | -10 to +22           | V     |
| Reverse Battery Time            | $T_RB$          | 5                    | S     |
| Input Current except FEED       | l <sub>in</sub> | 10                   | MA    |
| Operating Temperature           | $T_A$           | -10 to 60            | °C    |
| Storage Temperature             | $T_{STG}$       | -55 to 125           | °C    |
| Maximum Junction Temperature    | $T_J$           | 150                  | °C    |

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and operation at these conditions for extended periods may affect device reliability.

This product utilizes CMOS technology with static protection; however proper ESD prevention procedures should be used when handling this product. Damage can occur when exposed to extremely high static electrical charge



# DC Electrical Characteristics at TA = 25°C, VDD=9V, VSS=0V (unless otherwise noted)

|                                  |                    | Test  |                                      | Limits |      |                    |                  |
|----------------------------------|--------------------|-------|--------------------------------------|--------|------|--------------------|------------------|
| Parameter                        | Symbol             | Pin   | Test Conditions                      | Min    | Тур  | Max                | Units            |
| Supply Voltage                   | $V_{DD}$           | 6     | Operating                            | 6      |      | 12                 | V                |
| Supply Current                   | I <sub>DD1</sub>   | 6     | RBIAS=8.2MΩ, OSCAP=.1uF              |        | 4.5  | 6.5                | uA               |
|                                  | I <sub>DD2</sub>   | 6     | RBIAS=8.2MΩ, OSCAP=.1uF;Vdd=12V      |        |      | 9                  | uA               |
| Input Voltage High               | V <sub>IH</sub>    | 4,8   |                                      | 6.2    | 4.5  |                    | V                |
| Input Voltage Low                | V <sub>IL</sub>    | 4,8   |                                      |        | 4.5  | 2.7                | V                |
| Input Leakage Low                | IL <sub>DET1</sub> | 15    | VDD=9V, DETECT=VSS, 0-40% RH         |        |      | -0.75              | pА               |
|                                  | IL <sub>DET2</sub> | 15    | VDD=9V, DETECT=VSS, 85% RH<br>Note 1 |        |      | -1.50              | pА               |
|                                  | IL <sub>TONE</sub> | 4     | TONE=VSS, RBIAS=8.2MΩ,               | -100   |      | -450               | nA               |
|                                  | IL <sub>FD</sub>   | 8     | FEED=-10V                            |        |      | -50                | uA               |
| Input Leakage High               | IH <sub>DET1</sub> | 15    | VDD=9V, DETECT=VDD, 0-40% RH         |        |      | 0.75               | pА               |
|                                  | IH <sub>DET2</sub> | 15    | VDD=9V, DETECT=VDD, 85% RH<br>Note 1 |        |      | 1.50               | pА               |
|                                  | IH <sub>FD</sub>   | 8     | FEED=22V                             |        |      | 50                 | uA               |
| Output Off Leakage High          | I <sub>OHZ</sub>   | 5     | LED Off                              |        |      | 1                  | uA               |
| Output Voltage High              | V <sub>OH1</sub>   | 10,11 | IOH=-16mA, VDD=7.2V                  | 6.3    |      |                    | V                |
|                                  | V <sub>OH2</sub>   | 1     | IOH=-30ua                            | 8.5    |      |                    | V                |
| Output Voltage Low               | V <sub>OL1</sub>   | 10,11 | IOL=16mA, VDD=7.2V                   |        |      | .9                 | V                |
|                                  | $V_{OL2}$          | 1     | IOL=30ua                             |        |      | .5                 | V                |
|                                  | V <sub>OL3</sub>   | 5     | IOL=10mA, VDD=7.2V                   |        |      | 3                  | V                |
| Low Battery Voltage              | $V_{LB}$           | 6     | T <sub>A</sub> =-10 to 60°C, Note 3  | 7.2    | 7.5  | 7.8                | V                |
| Internal Sensitivity Set Voltage | V <sub>SET1</sub>  | 13    |                                      | 47     | 50   | 53                 | %V <sub>DD</sub> |
|                                  | $V_{SET2}$         | 3     |                                      |        | 65.5 |                    | %V <sub>DD</sub> |
| Offset Voltage                   | VG <sub>OS1</sub>  | 14,15 | Guard Amplifier                      | -50    |      | 50                 | mV               |
|                                  | VG <sub>OS2</sub>  | 15,16 | Guard Amplifier                      | -50    |      | 50                 | mV               |
|                                  | VG <sub>OS3</sub>  | 13,15 | Smoke Comparator                     | -50    |      | 50                 | mV               |
| Common Mode Voltage              | V <sub>CM1</sub>   | 14,15 | Guard Amplifier, Note 2              | 2      |      | V <sub>DD</sub> 5  | V                |
|                                  | V <sub>CM2</sub>   | 13,15 | Smoke Comparator, Note 2             | .5     |      | V <sub>DD</sub> -2 | V                |
| Output Impedance                 | Z <sub>OUT</sub>   | 14,16 | Guard Amplifier Outputs, Note 2      |        | 10   |                    | kΩ               |
| Hysteresis                       | V <sub>HYS</sub>   | 13    | No Alarm to Alarm Condition          | 90     | 130  | 170                | mV               |

Note 1: Sample test only

Note 2: Not 100% production tested

Note 3: Production test at room with temperature guardbanded limits.

# AC Electrical Characteristics at TA = 25°C, VDD=9V, OSCAP=.1uF, RBIAS=8.2M $\Omega$ , VSS=0V (unless otherwise noted)

|                        |                   | Test  |                                                       | Limits |      |      |       |
|------------------------|-------------------|-------|-------------------------------------------------------|--------|------|------|-------|
| Parameter              | Symbol            | Pin   | Test Conditions                                       | Min    | Тур  | Max  | Units |
| Oscillator Period      | T <sub>PER1</sub> | 12    | No Alarm Condition                                    | 1.34   | 1.67 | 2    | S     |
|                        | T <sub>PER2</sub> | 12    | Alarm Condition                                       | 37.5   | 41.5 | 45.8 | mS    |
| Oscillator Pulse Width | T <sub>PW</sub>   | 5     | Operating                                             | 9.1    | 10.5 | 12.9 | mS    |
| LED On Time            | T <sub>LON</sub>  | 5     | Operating                                             | 9.1    | 10.5 | 12.9 | mS    |
| LED Off Time           | T <sub>LOF1</sub> | 5     | Standby, No Alarm                                     | 32     | 40   | 48   | S     |
|                        | T <sub>LOF2</sub> | 5     | Alarm Condition                                       | .9     | 1    | 1.1  | S     |
| Horn On Time           | T <sub>HON1</sub> | 10,11 | Operating, Alarm Condition, Note 4, TONE=VDD or Float | 450    | 500  | 550  | mS    |
|                        | T <sub>HON2</sub> | 10,11 | Low Battery, No Alarm                                 | 9.1    | 10.5 | 12.9 | mS    |
|                        | T <sub>HON3</sub> | 10,11 | Operating, Alarm Condition, TONE=Low                  | 150    | 166  | 183  | mS    |
| Horn Off Time          | T <sub>HOF1</sub> | 10,11 | Operating, Alarm Condition, Note 4, TONE=VDD or Float | 450    | 500  | 550  | mS    |
|                        | T <sub>HOF2</sub> | 10,11 | Operating, Alarm Condition, Note 4, TONE=VDD or Float | 1.35   | 1.5  | 1.65 | S     |
|                        | T <sub>HOF3</sub> | 10,11 | Operating, Alarm Condition, TONE=Low                  | 75     | 83   | 92   | mS    |
|                        | T <sub>HOF4</sub> | 10,11 | Low Battery, No Alarm                                 | 32     | 40   | 48   | S     |

Note 4 : See timing diagram for Horn Temporal Pattern

# Functional Block Diagram

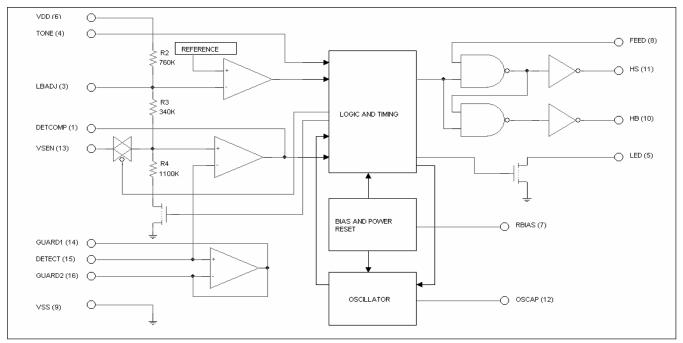



Figure 1



#### DEVICE DESCRIPTION and APPLICATION NOTES

Note: All timing references are nominal values. Refer to the electrical specifications for limits

Internal Timing – With external components as indicated on the application drawing the period of the oscillator is 1.67 seconds in standby. Every 1.66 seconds the detection circuitry is powered up for 10.5mS and the status of the smoke comparator is latched. In addition every 40 seconds the LED driver is turned on for 10.5mS and the status of the low battery comparator is latched. The smoke comparator status is not checked during the low battery test, during the low battery horn warning chirp, or when the horn is on due to an alarm condition.

If an alarm condition is detected the oscillator period increases to 41.5mS.

Due to the low currents used in the oscillator the capacitor on pin 12 should be a low leakage type. Oscillator accuracy will depend mainly on the tolerance of the RBIAS resistor and OSCAP capacitor.

Smoke Detection Circuit – The smoke comparator compares the ionization chamber voltage to a voltage derived from a resistor divider across VDD. This divider voltage is available externally on pin 13 (VSEN). When smoke is detected this voltage is internally increased by 130mV nominal to provide hysteresis and make the detector less sensitive to false triggering.

Pin 13 (VSEN) can be used to modify the internal set point for the smoke comparator by using external resistors to VDD or VSS. Nominal values for the internal resistor divider are indicated on the block diagram. These internal resistor values can vary by up to ±20% but the resistor matching will typically be <2% on any one device. A transmission switch on pin 13 isolates this pin during the low battery test so that the low battery set point will not be affected if external resistors are used to modify the smoke sensitivity set point.

The quard amplifier and outputs are always active and will be within 50mV of the DETECT input to reduce surface leakage. The guard outputs also allow for measurement of the DETECT input without loading the ionization chamber.

Low Battery Detection – An internal zener reference is compared to the voltage divided VDD supply. The battery can be checked under load via the LED low side driver output since low battery status is latched at the end of the 10mS LED pulse. Pin 3 (LBADJ) can be used to modify the low battery set point by placing a resistor to VDD or VSS. Note that the internal resistor string is common to both pin 3 and pin 13 so there will be some interaction between the two. Modification of the low battery set point may affect the smoke sensitivity setting.

LED Pulse – The LED is pulsed on for 10.5mS every 40S in standby. In alarm the LED is pulsed on for 10.5mS every 1S.

Testing – At power up all internal registers are reset. By holding pin 12 (OSCAP) low the internal power strobe is active. Functional testing can be accelerated by driving pin 12 with a 4kHZ square wave however the 10.5mS strobe period should be maintained for proper operation of the analog circuitry. Please refer to the timing diagrams.

Horn Tone – Pin 4 selects the NFPA72 horn tone (high or floating) or the 2/3 duty cycle continuous tone (low).

## **Typical Application**

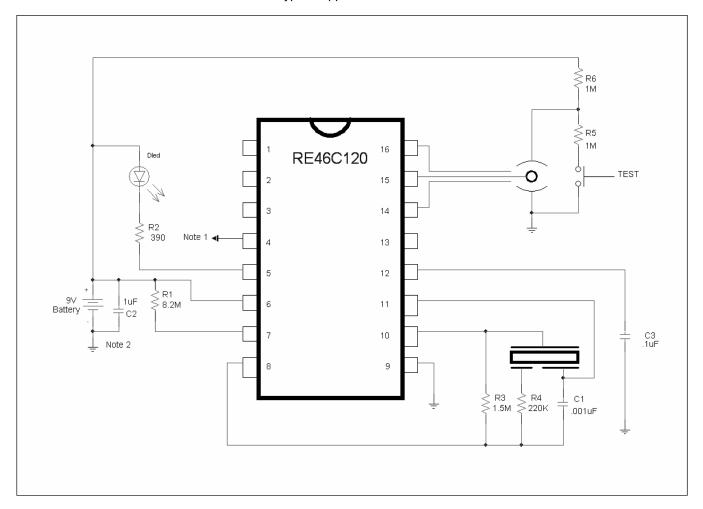
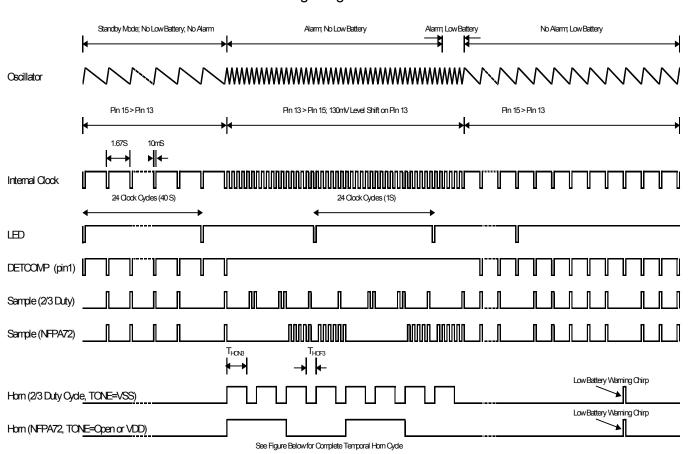
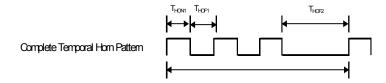




Figure 2

## Notes:


- 1. Float or connect pin 4 to VDD for NFPA72 horn pattern, connect to VSS for 2/3 duty cycle continuous tone
- 2. R3, R4 and C1 are typical values and may be adjusted to maximize sound pressure.
- 3. C2 should be located as close as possible to the device power pins.
- 4. Route the pin 8 PC board trace away from pin 7 to avoid coupling.

# **Timing Diagram**



#### Notes:

- 1. Smoke is not sampled when the hom is active so the hom cycle is self completing
- 2. Low battery warning chirp is suppressed in alarm



# RE46C120

## **CMOS Ionization Smoke Detector ASIC**

**Product Specification** 



**R&E INTERNATIONAL**, **Inc.** reserves the right to make changes without further notice to any products herein to improve reliability, function or design.

**R&E INTERNATIONAL**, **Inc.** does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others.

**R&E INTERNATIONAL, Inc.** products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of **R&E INTERNATIONAL, Inc.** Life support devices or systems are devices or systems which are intended for surgical implant into the body to support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.