FEATURES - Guaranteed AC performance over temperature and voltage: - DC-to > 2.0GHz throughput - <450ps propagation delay (IN-to-Q) - < 20ps within-device skew - < 225ps rise/fall time - Ultra-low jitter design: - < 1ps_{RMS} cycle-to-cycle jitter - < 1ps_{RMS} random jitter - < 10ps_{PP} deterministic jitter - < 10ps_{pp} total jitter (clock) - Unique patent-pending input termination and VT pin accepts DC- and AC-coupled differential inputs - 800mV, 100K LVPECL output swing - Power supply 2.5V ±5% or 3.3V ±10% - Industrial temperature range: -40°C to +85°C - Available in 16-pin (3mm ×3mm) MLF® package #### **APPLICATIONS** - Processor clock distribution - **SONET clock distribution** - **■** Fibre Channel clock distribution - Gigabit Ethernet clock distribution Precision Edge® #### **DESCRIPTION** The SY89831U is a high-speed, 2GHz differential LVPECL 1:4 fanout buffer optimized for ultra-low skew applications. Within device skew is guaranteed to be less than 20ps (5ps typ.) over supply voltage and temperature. The differential input buffer has a unique internal termination design that allows access to the termination network through a VT pin. This feature allows the device to easily interface to different logic standards. A VREF–AC reference output is included for AC-coupled applications. The SY89831U is a part of Micrel's high-speed clock synchronization family. For applications that require a different I/O combination, consult Micrel's website at www.micrel.com, and choose from a comprehensive product line of high-speed, low-skew fanout buffers, translators and clock generators. #### **FUNCTIONAL BLOCK DIAGRAM** # Precision Edge is a registered trademark of Micrel, Inc. *Micro*LeadFrame and MLF are trademarks of Amkor Technology, Inc. ### TYPICAL PERFORMANCE Rev.: D Amendment: /0 Issue Date: February 2007 ### **PACKAGE/ORDERING INFORMATION** 16-Pin MLF® (MLF-16) ## Ordering Information⁽¹⁾ | Part Number | Package
Type | Operating
Range | Package
Marking | Lead
Finish | |--------------------------------|-----------------|--------------------|--------------------------------------|-------------------| | SY89831UMI | MLF-16 | Industrial | 831U | Sn-Pb | | SY89831UMITR ⁽²⁾ | MLF-16 | Industrial | 831U | Sn-Pb | | SY89831UMG ⁽³⁾ | MLF-16 | Industrial | 831U with Pb-Free bar-line indicator | NiPdAu
Pb-Free | | SY89831UMGTR ^(2, 3) | MLF-16 | Industrial | 831U with Pb-Free bar-line indicator | NiPdAu
Pb-Free | #### Notes: - 1. Contact factory for die availability. Dice are guaranteed at T_A = 25°C, DC Electricals only. - 2. Tape and Reel. - 3. Pb-Free package is recommended for new designs. ### PIN DESCRIPTION | Pin Number | Pin Name | Pin Function | |----------------------------------|--|--| | 15, 16
1, 2,
3, 4,
5, 6 | Q0, /Q0
Q1, /Q1
Q2, /Q2
Q3, /Q3 | Differential 100K LVPECL Outputs: These LVPECL outputs are the precision, low skew copies of the inputs. Please refer to the "Truth Table" section for details. Unused output pairs may be left open. Terminate wtih 50Ω to V_{CC} –2V. See "Output Termination Recommendations" section for more details. | | 8 | EN | This single-ended TTL/CMOS-compatible input functions as a synchronous output enable. The synchronous enable ensures that enable/disable will only occur when the outputs are in a logic LOW state. Note that this input is internally connected to a $25k\Omega$ pull-up resistor and will default to logic HIGH state (enabled) if left open. | | 9, 12 | /IN, IN | Differential Inputs: These input pairs are the differential signal inputs to the device. Inputs accept AC- or DC-Coupled differential signs as small as 100mV. Each pin of a pair internally terminates to a VT pin through 50Ω. Note that these inputs will default to an intermediate state if left open. Pleae refer to the "Input Interface Applications" section for more details. | | 10 | VREF-AC | Reference Voltage: These outputs bias to V_{CC} –1.4V. They are used when AC coupling the inputs (IN, /IN). For AC-Coupled applications, connect VREF-AC to VT pin and bypass with 0.01 μ F low ESR capacitor to V_{CC} . See "Input Interface Applications" section for more details. Maximum sink/source current is ± 1.5 mA. Due to the limited drive capability, each VREF-AC pin is only intended to drive its respective VT pin. | | 11 | VT | Input Termination Center-Tap: Each side of the differential input pair terminates to a VT pin. The VT pins provide a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details. | | 13 | GND | Ground. GND pins and exposed pad must be connected to the most negative potential of the device ground. | | 7, 14 | VCC | Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors and place as close to each VCC pin as possible. | ### TRUTH TABLE | IN | /IN | EN | Q | /Q | |----|-----|----|------------------|------------------| | 0 | 1 | 1 | 0 | 1 | | 1 | 0 | 1 | 1 | 0 | | Х | Х | 0 | 0 ⁽¹⁾ | 1 ⁽¹⁾ | #### Note: 1. On next negative transition of the input signal (IN). ## Absolute Maximum Ratings⁽¹⁾ | Supply Voltage (V _{CC}) | . −0.5V to +4.0V | |---|----------------------| | Input Voltage (V _{IN})0. | 5V to V_{CC} +0.5V | | LVPECL Output Current (I _{OUT}) | | | Continuous | 50mA | | Surge | 100mA | | Input Current | | | Source or Sink Current on (IN, /IN) | ±50mA | | VREF-AC Current | | | Source or Sink Current on (IVT) | ±2mA | | Lead Temperature (soldering, 20sec.) | 260°C | | Storage Temperature (T _S) | -65°C to +150°C | | | | ## Operating Ratings⁽²⁾ | Supply Voltage Range | +2.375V to +2.625V | |---|--------------------| | | +3.0V to +3.6V | | Ambient Temperature (T _A) | 40°C to +85°C | | Package Thermal Resistance ⁽³⁾ | | | $MLF^{\operatorname{ar{ ext{B}}}}$ | | | (θ _{.IΔ}) Still-Air | 60°C/W | | (Ψ _{IB}) Junction-to-Board | 32°C/W | ### DC ELECTRICAL CHARACTERISTICS(4) $T_A = -40$ °C to +85°C, unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |----------------------|--|---------------------------------|------------------------|------------------------|------------------------|-------| | V _{CC} | Power Supply | | 2.375
3.0 | | 2.625
3.6 | V | | I _{CC} | Power Supply Current | No load, max. V _{CC} . | | 47 | 70 | mA | | R _{IN} | Input Resistance (IN-to-VT) | | 45 | 50 | 55 | Ω | | R _{DIFF-IN} | Differential Input Resistance (IN-to-/IN) | | 90 | 100 | 110 | Ω | | V_{IH} | Input HIGH Voltage (IN, /IN) | | V _{CC} -1.2 | | V _{CC} | V | | V_{IL} | Input LOW Voltage (IN, /IN) | | 0 | | V _{IH} -0.1 | V | | V_{IN} | Input Voltage Swing (IN, /IN) | see Figure 1a. | 0.1 | | 1.7 | V | | V _{DIFF_IN} | Differential Input Voltage Swing IN – /IN | see Figure 1b. | 0.2 | | | V | | V _{REF-AC} | Output Reference Voltage | | V _{CC} -1.525 | V _{CC} -1.425 | V _{CC} -1.325 | V | ## LVTTL/LVCMOS INPUT DC ELECTRICAL CHARACTERISTICS $V_{CC} = 2.375V$ to 3.60V; $V_{FF} = 0V$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$ | | LL A | | | | | | |-----------------|--------------------|-----------|------|-----|-----------------|-------| | Symbol | Parameter | Condition | Min | Тур | Max | Units | | V_{IH} | Input HIGH Voltage | | 2.0 | | V _{CC} | V | | V_{IL} | Input LOW Voltage | | 0 | | 0.8 | V | | I _{IH} | Input HIGH Current | | -125 | | 20 | μА | | | Input LOW Current | | -300 | | | μΑ | #### Notes: - 1. Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. - 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings. - 3. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB. ψ_{JB} and θ_{JA} values are determined for a 4-layer board in stil-air number, unless otherwise stated. - 4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. ## LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS(6) $V_{CC} = +2.5 V \pm 5\% \text{ or } +3.3 V \pm 10\%; \text{ R}_{L} = 50\Omega \text{ to } V_{CC} - 2V; \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C unless otherwise stated}.$ | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------------|---|----------------|------------------------|------|------------------------|-------| | V _{OH} | Output HIGH Voltage
(Q, /Q) | | V _{CC} -1.145 | | V _{CC} -0.895 | V | | V _{OL} | Output LOW Voltage (Q, /Q) | | V _{CC} -1.945 | | V _{CC} -1.695 | V | | V _{OUT} | Output Voltage Swing (Q, /Q) | See Figure 1a. | 550 | 800 | | mV | | V _{DIFF_OUT} | Differential Output Voltage Swing (Q, /Q) | See Figure 1b. | 1100 | 1600 | | mV | ### LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS(6) V_{CC} = +2.5V ±5% or +3.3V ±10%; T_A = -40°C to +85°C unless otherwise stated. | Symbol | Parameter | Condition | Min | Тур | Max | Units | |-----------------|--------------------|-----------|------|-----|-----------------|-------| | V_{IH} | Input HIGH Voltage | | 2.0 | | V _{CC} | V | | V _{IL} | Input LOW Voltage | | | | 0.8 | V | | I _{IH} | Input HIGH Voltage | | -125 | | 30 | μА | | I _{IL} | Input LOW Voltage | | -300 | | | μΑ | #### Notes: 6. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. ### AC ELECTRICAL CHARACTERISTICS(7) $V_{CC} = +2.5 V \pm 5\% \text{ or } +3.3 V \pm 10\%; \ R_L = 50 \Omega \text{ to } V_{CC} - 2V; \ T_A = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C unless otherwise stated}.$ | Symbol | Parameter | | Condition | Min | Тур | Max | Units | |---------------------------------|---|---------------|--------------------------|-----|-----|---------|---------------------------------------| | f _{MAX} | Maximum Frequency | | V _{OUT} ≥ 450mV | 2.0 | 2.5 | | GHz | | t _{pd} | Propagation Delay | IN-to-Q | $V_{IN} \ge 100 mV$ | | 390 | | ps | | | | IN-to-Q | $V_{IN} \ge 800 mV$ | 250 | 350 | 450 | ps | | t _{SKEW} | Within-Device Skew | | Note 8 | | 5 | 20 | ps | | | Part-to-Part Skew | | Note 9 | | | 150 | ps | | t _S | Set-Up Time | EN to IN, /IN | Note 10 | 300 | | | ps | | t _H | Hold Time | EN to IN, /IN | Note 10 | 300 | | | ps | | t _{JITTER} | Data
Random Jitter (RJ
Deterministic Jitte | , | Note 11
Note 12 | | | 1
10 | ps _{RMS}
ps _{PP} | | | Clock
Cycle-to-Cycle Jitt
Total Jitter (TJ) | er | Note 13
Note 14 | | | 1
10 | ps _{RMS} | | t _r , t _f | Output Rise/Fall Time
(20% to 80%) | es . | At full output swing. | 70 | 150 | 225 | ps | #### Notes: - 7. High-frequency AC parameters are guaranteed by design and characterization. - 8. Within device skew is measured between two different outputs under identical input transitions. - 9. Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and no skew at the edges at the respective inputs. - 10. Set-up and hold times apply to synchronous applications that intend to enable/disable before the next clock cycle. For asynchronous applications, set-up and hold times do not apply. - 11. Random jitter is measured with a K28.7 pattern, measured at $\leq f_{MAX}$. - 12. Deterministic jitter is measured at 2.5Gbps with both K28.5 and 2²³–1 PRBS pattern. - Cycle-to-cycle jitter definition: The variation period between adjacent cycles over a random sample of adjacent cycle pairs. t_{JITTER_CC} = T_n -T_{n+1}, where T is the time between rising edges of the output signal. - 14. Total jitter definition: with an ideal clock input frequency of ≤ f_{MAX} (device), no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value. #### TIMING DIAGRAM ### **TYPICAL OPERATING CHARACTERISTICS** $\rm V_{CC}$ = 3.3V, GND = 0V, $\rm R_L$ = 50Ω to $\rm V_{cc}$ –2V, $\rm T_A$ = 25°C, unless otherwise stated. ### **FUNCTIONAL CHARACTERISTICS** V_{CC} = 3.3V, GND = 0V, V_{IN} = 800mV, R_L = 50 Ω to V_{CC} =2V, T_A = 25°C, unless otherwise stated. ### 155MHz Output TIME (1ns/div.) #### **622MHz Output** TIME (200ps/div.) #### **1GHz Output** TIME (150ps/div.) ### **SINGLE-ENDED AND DIFFERENTIAL SWINGS** Figure 1a. Single-Ended Swing Figure 1b. Differential Swing ### **INPUT AND OUTPUT STAGES** Figure 2a. Simplified Differential Figure 2b. Simplified LVPECL Output Stage ### **INPUT INTERFACE APPLICATIONS** For 2.5V, $R_{pd} = 50\Omega$ For 3.3V, $R_{pd} = 100\Omega$ Figure 3a. DC-Coupled LVPECL Input Interface Figure 3b. AC-Coupled LVPECL Input Interface Figure 3c. DC-Coupled CML Input Interface Figure 3d. AC-Coupled CML Input Interface Figure 3e. LVDS Interface ### **OUTPUT TERMINATION RECOMMENDATIONS** Figure 4. Parallel Termination— Thevenin Equivalent #### Note: 1. For +2.5V systems: R1 = 250Ω , R2 = 62.5Ω . Figure 5. Three-Resistor "Y-Termination" #### Notes: - 1. Power-saving alternative to Thevenin termination. - 2. Place termination resistors as close to destination inputs as possible. - 3. R_b resistor sets the DC bias voltage, equal to V_t . For +2.5V systems R_b = 19 Ω . - 4. C1 is an optional bypass capacitor intended to compensate for any $t_{\rm r}/t_{\rm f}$ mismatches. ### **RELATED PRODUCT AND SUPPORT DOCUMENTATION** | Part Number | Function | Data Sheet Link | |---------------|--|--| | SY89830U | 1:4 LVPECL Fanout Buffer w/2:1 MUX Input | www.micrel.com/product-info/products/sy89830u.shtml | | SY89832U | 2.5V Ultra-Precision 1:4 LVDS Fanout Buffer/
Translator with Internal Termination | www.micrel.com/product-info/products/sy89832u.shtml | | SY89833U | 3.3V Ultra-Precision 1:4 LVDS Fanout Buffer/
Translator with Internal Termination | www.micrel.com/product-info/products/sy89833u.shtml | | SY89834U | 2.5/3.3V Two Input, 1GHz LVTTL/CMOS-to-LVPECL 1:4 Fanout Buffer/Translator | www.micrel.com/product-info/products/sy89833u.shtml | | HBW Solutions | New Products and Applications | www.micrel.com/product-info/products/solutions.shtml | | | 16-MLF® Manufacturing Guidelines
Exposed Pad Application Note | www.amkor.com/products/notes_papers/MLF_AppNote_0301.pdf | ### 16-PIN EPAD MicroLeadFrame® (MLF-16) PCB Thermal Consideration for 16-Pin MLF® Package (Always solder, or equivalent, the exposed pad to the PCB) #### **Package Notes:** Heat Dissipation Note 1. Package meets Level 2 moisture sensitivity classification, and are shipped in dry-pack form. CompSide Island Heat Dissipation Heavy Copper Plane Heavy Copper Plane Note 2. Exposed pads must be soldered to a ground for proper thermal management. #### MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2005 Micrel, Incorporated