Freescale Semiconductor, Inc.

ANALOG IGs
33395 EVALUATION
MOTOR BOARD
DESIGNER REFERENCE
MANUAL
DRM33395/D
Rev. 2
05/2003
intelligence everywhere digitaldna

EMBEDDED MOTION CONTROL

Freescale Semiconductor, Inc.

Freescale Semiconductor, Inc.

List of Sections

Section 1. Introduction and Setup 9
Section 2. Operational Description 15
Section 3. Pin Descriptions 17
Section 4. Schematics and Parts List 25
Section 5. Design Considerations 37

Freescale Semiconductor, Inc.

List of Sections

Table of Contents

Section 1. Introduction and Setup
1.1 Contents 9
1.2 SMOS EVM Motor Board Introduction 9
1.3 About This Manual 9
1.4 Warnings 12
1.5 Setup Guide 13
Section 2. Operational Description
2.1 Contents 15
2.2 Introduction 15
2.3 Electrical Characteristics 16
Section 3. Pin Descriptions
3.1 Contents 17
3.2 Introduction 17
3.3 Signal Descriptions 19
3.3.1 Power Connectors J3 and JP4 19
3.3.2 40-Pin Ribbon Connector J1 19
3.3.3 Output Connectors: J2, J4, FASTONS (J5, J7, J8) 22
3.3.4 Jumpers and Switch/Push Button: M0, M1, PWM, SW1 22
3.3.5 Test Points 24

Freescale Semiconductor, Inc.

Section 4. Schematics and Parts List
4.1 Contents 25
4.2 Overview 25
4.3 Schematics 25
4.4 Parts List 32
Section 5. Design Considerations
5.1 Contents 37
5.2 Overview 37
5.3 3-Phase H-Bridge 37
5.4 Bus Voltage and Current Feedback Signals 38
5.5 Back-EMF Signals 40
5.6 Brake Control 41
FigureTitle
Page
1-1 System Configurations 10
1-2 SMOS EVM Motor Board ver. 140A01 11
1-3 SMOS EVM Motor Board Setup 14
3-1 40-Pin Input Connector J1 18
4-1 SMOS EVM Motor Board ver. 140A01 Overview 26
4-1a SMOS EVM Motor Board ver. 140A02 Overview 27
4-2 3-Phase H-Bridge with Gate Driver 28
4-3 Current Feedback Circuits 29
4-4 Back-EMF Signals 30
4-5 Brake Control 31
4-6 Brushless DC Motor Connections - Schematic View 31
5-1 Phase Current and DC Bus Voltage Sensing 39
5-2 Reconstructed Bus Current 40
5-3 Phase C Back-EMF Feedback 40

Freescale Semiconductor, Inc.

List of Figures

List of Tables

TableTitlePage
2-1 Electrical Characteristics 16
3-1 Connector J1 Signal Descriptions 19
3-2 Connectors J2 and J4 Signal Descriptions 22
3-3 Driver Jumper Groups for Operating Mode 22
3-4 Gate Driver PWM Signal Selection 23
3-5 Test Points 24
4-1 Parts List 32

Freescale Semiconductor, Inc.

List of Tables

Section 1. Introduction and Setup

1.1 Contents

Abstract

1.2 SMOS EVM Motor Board Introduction 9 1.3 About This Manual 9 1.4 Warnings 12 1.5 Setup Guide 13 1.2 SMOS EVM Motor Board IntroductionMotorola's SMARTMOS ${ }^{\text {TM }} 33395$ evaluation motor board(SMOS EVM motor board) is a 12-volt, 8 -amp power stage that is anintegral part of Motorola's embedded motion control series ofdevelopment tools. It is also supplied as a kit. In combination with one ofthe embedded motion-control series control or evaluation boards, itprovides a ready-made development platform for brushless dc motors.The motor can be controlled using Hall sensors, an optical encoder orsensorless techniques. An illustration of system configurations is shownin Figure 1-1. Figure 1-2 depicts the board layout.

1.3 About This Manual

Key items can be found in the following locations in this manual:

- Setup instructions are found in chapter 1.5.
- Schematics are found in chapter 4.3.
- Pin assignments are shown in Figure 3-1, and a pin-by-pin description is contained in chapter 3.3.
- For those interested in the reference design aspects of the board's circuitry, a description is provided in Section 5.

Freescale Semiconductor, Inc.

Introduction and Setup

Figure 1-1 System Configurations

Freescale Semiconductor, Inc.
Introduction and Setup About This Manual

Figure 1-2 SMOS EVM Motor Board ver. 140A01

Freescale Semiconductor, Inc.

Introduction and Setup

1.4 Warnings

The SMOS EVM motor board kit includes a rotating machine and power transistors. Both can reach temperatures hot enough to cause burns! To facilitate safe operation, 12 -volt input power should come from a dc laboratory power supply that is current limited to no more than 10 amps .

The user should be aware that:

- Before moving scope probes, making connections, etc., it is generally advisable to power down the 12 -volt supply.
- Standalone operation of the board should be allowed only with use of an insulative pad or standoffs as shown in Figure 1-3.
- Wearing safety glasses, avoiding neckties and jewelry, using shields, and operation by personnel trained in power electronics lab techniques are also advisable.

1.5 Setup Guide

Setup and connections for the SMOS EVM motor board are straightforward. The SMOS EVM motor board connects to a Motorola embedded motion control series control board via a 40-pin ribbon cable. The motor's power leads plug into one of the output connectors J2 or J4 or FASTON type ($\mathrm{J} 5 \mathrm{J7} \mathrm{~J} 8$). Figure 1-3 depicts a completed setup with control board or module.

Follow these steps to set up the board:

1. Mount 4 standoffs to the SMOS EVM motor board at the locations indicated in Figure 1-3. Step 1 and step 3 are optional when making connections to DSP control boards such as the DSP56F8xxEVM that can be placed flat on a bench next to the SMOS EVM motor board.
2. Plug one end of the 40-pin ribbon cable that is supplied with Motorola embedded motion control series control boards into input connector J1, located on the right-hand side of the motor board, considering its 'default front view' position as in Figure 1-2. The other end of this cable links to the control board's 40-pin output connector.
3. Mount the control board on top of the standoffs with screws and washers. This step is optional with DSP control boards.
4. Connect a $12-\mathrm{Vdc}$ power supply either to connector J3 or power jack JP4, labeled "Power 12V". Either one, but not both, can be used. These connectors are located on the front left-hand corner of the board. The 12 -volt power supply should be rated to match the motor current.
5. Apply power to the SMOS EVM motor board. The green power-on LED lights when the voltage supply is present. Note that the SMOS EVM motor board powers the control board as well.
CAUTION: Since the control board is powered by the SMOS EVM motor board, it is imperative that only one power supply is used!
6. Temperature, under-voltage or over-voltage faults, or externally sensed bus current overflow disables the gate driver. Board reset is needed. Either switch the power supply off and on or provide a 'soft reset'. To provide the soft reset on the 140A01 board version, toggle the SW1 switch from position 3 to 2 ; on the 140A02 version, press the RESET button. Refer to chapter 3.3.4 to verify the jumper positions.

NOTE: Check if the trimmer tagged in Figure 1-2 is set to $<2.45 \mathrm{~V}$ (between bottom trimmer pin-2, R131 label, and GNDA) which thresholds the dc bus current to 10 amps . The closer its value is set to 1.65 V , the smaller the bridge current is that can flow.

Freescale Semiconductor, Inc.

Introduction and Setup

Figure 1-3 SMOS EVM Motor Board Setup

Section 2. Operational Description

2.1 Contents

Abstract

2.2 Introduction... 15 2.3 Electrical Characteristics ... 16

\subsection*{2.2 Introduction}

Motorola's embedded motion control series SMOS EVM motor board is a 12-volt, 8 -amp, surface-mount power stage with an analog SMOS driver. In combination with one of the embedded motion control series control boards, it provides a development platform that allows algorithms to be written and tested without the need to design and build a power stage. It supports algorithms that use Hall sensors, encoder feedback, and Back-EMF (electromotive force) signals for sensorless control.

The SMOS EVM motor board has an over-current protection that is independent of the control board, yet some care in its setup and use is required for board or motor protection. Current-measuring circuitry is set up for 8 amps full scale, according to trimmer position. A $25^{\circ} \mathrm{C}$ ambient temperature operation with output current up to 10 amps of continuous RMS value is within the board's thermal limits. Note that there is no thermal protection provided on the board.

Input connections are made via a 40 -pin ribbon cable connector J1. Pin assignments for the input connector are shown in Figure 3-1. Power connections to the motor are made on one of the output connectors J 2 or J4 or FASTON type (J5 J7 J8). Phase A (J8), phase B (J7), and phase $\mathrm{C}(\mathrm{J} 5)$ are labeled on the board, the phase pin order for all three connector types is identical. Power requirements are met by a single external 12-Vdc power supply. Two connectors, labeled J3 and JP4, are

Freescale Semiconductor, Inc.

Operational Description
provided for the 12-volt power supply; they are located on the front edge of the board. Power is supplied to one or the other, but not both.

A summary of the information needed to use the SMOS EVM motor board follows. For design information, see Section 5.

2.3 Electrical Characteristics

The electrical characteristics in Table 2-1 apply to operation at $25^{\circ} \mathrm{C}$ and a $12-\mathrm{Vdc}$ power supply voltage.

Table 2-1 Electrical Characteristics

Characteristic	Symbol	Min	Typ	Max	Units
Power Supply Voltage	Vdc	10.2	12	16	V
Quiescent Current	I_{CC}	-	70	-	mA
High State Logic 1 Input Voltage	V_{IH}	2.4	3.3 or 5	7	V
Low State Logic 0 Input Voltage	V_{IL}	-	<0.4	0.8	V
Input Resistance	R_{In}	-	10	-	$\mathrm{k} \Omega$
Analog Output Range	$\mathrm{V}_{\text {Out }}$	0	-	3.3	V
Phase Current Sense Voltage	$\mathrm{I}_{\text {Sense }}$	-	172	-	mV / A
Bus Voltage Sense Voltage	$\mathrm{V}_{\text {Bus }}$	-	206	-	mV / V
Power MOSFET On Resistance	$\mathrm{R}_{\mathrm{DS}(\mathrm{On})}$	-	10	16	$\mathrm{~m} \Omega$
RMS Output Current	I_{M}	-	-	10	A
Total Power Dissipation	$\mathrm{P}_{\text {diss }}$	-	-	18	W

Section 3. Pin Descriptions

3.1 Contents

3.2 Introduction 17
3.3 Signal Descriptions 19
3.3.1 Power Connectors J3 and JP4 19
3.3.2 40-Pin Ribbon Connector J1 19
3.3.3 Output Connectors: J2, J4, FASTONS (J5, J7, J8) 22
3.3.4 Jumpers and Switch/Push Button: M0, M1, PWM, SW1 22
3.3.5 Test Points 24

3.2 Introduction

Inputs and outputs are located on six board connectors depicted in Figure 1-2:

- There are three motor connectors conducting identical output signals, however only one motor can be connected at run time to one of these connectors.
- There are two power supply connectors which introduce identical input signals, however only one power supply can be plugged in at run time to one of these connectors.
- One connector (UNI-3) is associated with the controller board.

In addition, many test points are located on the SMOS EVM motor board.
Pin descriptions for each of these connectors and the test points are identified in the following information. Pin assignments for the input and

Freescale Semiconductor, Inc.

output connectors are shown in Figure 3-1 with their descriptions in Table 3-1 through Table 3-5.

Figure 3-1 40-Pin Input Connector J1

3.3 Signal Descriptions

Pin descriptions are identified in this subsection.

3.3.1 Power Connectors J3 and JP4

Two connectors, labeled J3 and JP4, are provided for the 12-volt power supply. They are located on the bottom left-hand corner of the board. Connector J 3 is a $2.5-\mathrm{mm}$ power jack for plug-in type 12 -volt power supply connections. Connector JP4 has screw terminal inputs labeled + (plus) and - (minus), for accepting wire inputs. Power is supplied to one or the other, but not both. The power supply required parameters depend on the motor type used. The default output current limit of the board is 10 amps .

3.3.2 40-Pin Ribbon Connector J1

Signal inputs are grouped together on 40-pin ribbon cable connector J1, located on the right side of the board. Pin assignments are shown in Figure 3-1. Pin descriptions are listed in Table 3-1.

Table 3-1 Connector J1 Signal Descriptions (Sheet 1 of 3)

Pin No.	Signal Name	
1	PWM_AT	PWM_AT is the gate drive signal for the top half-bridge of phase A. A logic high at input connector J1 turns on the phase A top switch.
2	Shielding_D	Pin 2 is connected to a shield wire in the ribbon cable and ground on the board.
3	PWM_AB	PWM_AB is the gate drive signal for the bottom half-bridge of phase A. A logic high at input connector J1 turns on the phase A bottom switch.
4	Shielding_D	Pin 4 is connected to a shield wire in the ribbon cable and ground on the board.
5	PWM_BT	PWM_BT is the gate drive signal for the top half-bridge of phase B. A logic high at input connector J1 turns on the phase B top switch.
6	Shielding_D	Pin 6 is connected to a shield wire in the ribbon cable and ground on the board.
7	PWM_BB	PWM_BB is the gate drive signal for the bottom half-bridge of phase B . A logic high at input connector J1 turns on the phase B bottom switch.
8	Shielding_D	Pin 8 is connected to a shield wire in the ribbon cable and ground on the board.

Freescale Semiconductor, Inc.

Table 3-1 Connector J1 Signal Descriptions (Sheet 2 of 3)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Signal Name	Description
9	PWM_CT	PWM_CT is the gate drive signal for the top half-bridge of phase C. A logic high at input connector J1 turns on the phase C top switch.
10	Shielding_D	Pin 10 is connected to a shield wire in the ribbon cable and ground on the board.
11	PWM_CB	PWM_CB is the gate drive signal for the bottom half-bridge of phase C . A logic high at input connector J1 turns on the phase C bottom switch.
12	GND	Digital power supply ground
13	GND	Digital power supply ground, redundant connection
14	+5V_D	Digital +5 -volt power supply
15	+5V_D	Digital +5 -volt power supply, redundant connection
16	+3.3V_A	Analog +3.3-volt power supply
17	GNDA	Analog power supply ground
18	GNDA	Analog power supply ground, redundant connection
19	+12V	+12-volt power supply
20	-	No connection
21	V_sense_DCB	V_sense_DCB is an analog sense signal that measures dc bus voltage. It is scaled at 0.206 volts per volt of dc bus voltage.
22	I_reconst_DCB	I_reconst_DCB is an analog sense signal that measures dc bus current. It is scaled at 0.172 volts per amp of dc bus current.
23	I_sense_A	I_sense_A is an analog sense signal that measures current in phase A. It is scaled at 0.172 volts per amp of dc bus current.
24	I_sense_B	I_sense_B is an analog sense signal that measures current in phase B. It is scaled at 0.172 volts per amp of dc bus current.
25	I_sense_C	I_sense_C is an analog sense signal that measures current in phase C. It is scaled at 0.172 volts per amp of dc bus current.
26	-	No connection
27	-	No connection
28	Shielding_A	Pin 28 is connected to a shield wire in the ribbon cable and ground on the board.
29	Brake_control	Brake_control is the gate drive digital signal for the brake MOSFET.
30	Identification	This is an identification signal that lets the controller know which power stage is present. It is nominally a 1.5 kHz square wave.

Table 3-1 Connector J1 Signal Descriptions (Sheet 3 of 3)
\(\left.$$
\begin{array}{|c|c|l|}\hline \begin{array}{c}\text { Pin } \\
\text { No. }\end{array} & \text { Signal Name } & \\
\hline 31 & \text { PWM_ctrl } & \begin{array}{l}\text { This is a gate drive digital signal that is used for power stage board control with use } \\
\text { of just one PWM input signal switching according to gate drive signals PWM_xx }\end{array}
$$

\hline 32 \& - \& No connection\end{array}\right]\)| _- |
| :--- |

Freescale Semiconductor, Inc.

3.3.3 Output Connectors: J2, J4, FASTONS (J5, J7, J8)

Power output to the motor is located on connectors $\mathrm{J} 2, \mathrm{~J} 4$ and FASTONS (J5, J7, J8). Pin assignments are described in Table 3-2. FASTON type connectors are labelled with PhA (connector J8) for phase A, PhB (J7) for phase B, and PhC (J5) for phase C. Phase order is identical for all three connectors. Note that wire color may vary with different motor types.

Table 3-2 Connectors J2 and J4 Signal Descriptions

Pin No.	Signal Name	FASTON Pin Name	Description
1	Phase_A	J8	Phase_A supplies power to motor phase A.
2	Phase_B	J7	Phase_B supplies power to motor phase B.
3	Phase_C	J5	Phase_C supplies power to motor phase C.

3.3.4 Jumpers and Switch/Push Button: M0, M1, PWM, SW1

The jumper groups M0 (JP2) and M1 (JP3) are used to select the operating mode of the SMOS gate driver (see Table 3-3). For the truth table of the driver, see its data sheet.

Table 3-3 Driver Jumper Groups for Operating Mode

MO (JP2)	M1 (JP3)	Comment
+ position	+ position	High state logic 1
- position	- position	Low state logic 0 (default)

For selection of the PWM signal brought to the gate driver, the 140A01 board version uses the SW1 rotary switch and the 140A02 version uses the PWM (JP5) jumper group and RESET (SW1) push button. Both solutions have the same behavior (see Table 3-4 for an explanation).

When one PWM signal is sent from the controller board to the motor board through the UNI-3 interface, the SMOS driver must multiplex it between the three phases according to the mode defined by M0 and M1. The mode selection is not needed when six PWM signals are generated.

Freescale Semiconductor, Inc.

Table 3-4 Gate Driver PWM Signal Selection

SW1 Rotary Switch on 140A01 board	Representation on 140A02 board	Comment
Position 1 (1PWM pin)	JP5 jumper uni position	Controller board gives 1 PWM signal
Position 2 (2+ pin)	JP5 jumper + position	High state logic 1 (6 PWM signals, default)
Position 3 (3- pin)	SW1 button press (RESET)	Resets drive off status (temporary)

NOTE: The gate driver 'soft reset' is necessary to leave the drive off status that is not entered by default. When a fault arises or a parallel cable that is connected between a computer and the controller board introduces an obscure voltage from this computer into the motor system, the reset assures correct driver re-initialization. The soft reset is activated either by toggling the SW1 rotary switch from position 3 to 2 (140A01 board version), or by resetting with the SW1 push button (140A02 version). Then the board generates a resetting pulse on the driver PWM_IN pin.

Freescale Semiconductor, Inc.

Pin Descriptions

3.3.5 Test Points

Ten test points provide easy access to the power supply, reference voltages and other circuits. They are listed in Table 3-5 with their descriptions and locations. Additional test points appearing left of the UNI-3 connector are numbered adequately to UNI-3 pin numbers and explained in Table 3-1.

Table 3-5 Test Points

Point No.	Signal Name	The Test/Measurement point is connected to:	Location
1	DCB_POS (MP1)	the +12 -volt motor bus	above green LED diode
2	GND (MP2)	the 12-volt power supply and motor bus ground	below J2 - motor connector
3	+5V_D (MP3)	the 5 -volt digital power supply voltage	above UNI-3 connector
4	+3.3V_A (MP4)	the 3.3-volt analog power supply voltage	on top right corner
5	GND (MP5)	the 12-volt power supply and motor bus ground	on top left side of UNI-3 connector
6	GNDA (MP6)	the analog ground	in the middle, above SMOS
7	1.65VREF	the 1.65 -volt analog reference voltage	above MP3, below MP4
8	DCB_HALF	Back-EMF zero crossing circuitry	right of MP1, below SMOS
9	BRAKE	the gate of the brake's transistor	above MP1
10	I_reconst (TP22)	pin 22 of UNI-3 connector, see Table 3-1	left of trimmer and MP3

Section 4. Schematics and Parts List

4.1 Contents

4.2 Overview 25
4.3 Schematics 25
4.4 Parts List 32

4.2 Overview

A set of schematics for the SMOS EVM motor board appears in Figure 4-1 up to Figure 4-5. An overview of the whole board is presented in Figure 4-1 (or Figure 4-1a). The 3-phase H-bridge, including gate driver, is depicted in Figure 4-2. Current feedbacks are presented in Figure 4-3. Back-EMF signals are shown in Figure 4-4. The brake control is illustrated in Figure 4-5. Brushless dc motor connections are shown in Figure 4-6.

Unless otherwise specified, resistor values are in ohms, resistors are specified as $1 / 8$ watt $\pm 5 \%$, and interrupted lines coded with the same letters are electrically connected.

4.3 Schematics

The schematics for the SMARTMOS evaluation motor board are rendered on the following pages.

Freescale Semiconductor, Inc.

Schematics and Parts List

Figure 4-1 SMOS EVM Motor Board ver. 140A01 Overview

Freescale Semiconductor, Inc.
Schematics and Parts List Schematics

Schematics and Parts List

Figure 4-2 3-Phase H-Bridge with Gate Driver

Freescale Semiconductor, Inc.

Figure 4-3 Current Feedback Circuits

Freescale Semiconductor, Inc.

Figure 4-4 Back-EMF Signals

Freescale Semiconductor, Inc.

Figure 4-5 Brake Control

Figure 4-6 Brushless DC Motor Connections - Schematic View

Freescale Semiconductor, Inc.

Schematics and Parts List

4.4 Parts List

The SMOS EVM motor board's list of parts is described in the following table.

Table 4-1 Parts List (Sheet 1 of 4)

Qty.	Reference	Part Value	Description	Mfg.	Mfg. Part No.
3	C1, C3, C9	$22 \mu \mathrm{~F} / 25 \mathrm{~V}$	$\begin{array}{l}\text { Tantalum capacitor, D, } \\ 22 \mu \mathrm{~F} / 20 \mathrm{~V}, \pm 10 \%, \\ \text { ESR 0.2 }\end{array}$	AVX	
1	C4	$10 \mu \mathrm{~F} / 6.3 \mathrm{~V}$	$\begin{array}{l}\text { Tantalum Capacitor, A, } \\ 10 \mu \mathrm{~F} / 6.3 \mathrm{~V}, \pm 10 \%\end{array}$	AVX, ELNA	
14	$\begin{array}{l}\text { C5, C6, C7, C8, C10, } \\ \text { C10, C12, C108, } \\ \text { C302, C303, C301, }\end{array}$	100 nF	$\begin{array}{l}\text { Capacitor, 0805, } \\ \text { Ceramic } 100 \mathrm{nF} / 25 \mathrm{~V}, \\ \text { Z5U, } \pm 20 \%\end{array}$	Vishay Vitramon	

Freescale Semiconductor, Inc.

Table 4-1 Parts List (Sheet 2 of 4)

Qty.	Reference	Part Value	Description	Mfg.	Mfg. Part No.
1	JP4	CON/2screws	2 screws PCB terminal, 5 mm pin spacing	WAGO	237-132
1	J1	CON/40	Header 40 pins breakaway connector	Fischer Elektronik	ASLG40G
1	J2	AMP 640387-3	Header 3 pins	AMP	640387-3
1	J3	Power Jack	Power Jack type connector 2.5 mm	CUI Stack	PJ-002
1	J4	CON/3screws	3 screws PCB terminal, 5 mm pin spacing	WAGO	237-133
3	J5, J7, J8	FASTON	Faston connector V90P vertical, 6.3 mm wide	AMP	
2	L1, L2	1 mH	Inductor $1 \mathrm{mH}, 0.2 \mathrm{~A}$	Epcos	
8	$\begin{aligned} & \text { Q101, Q102, Q103, } \\ & \text { Q104, Q105, Q106, } \\ & \text { Q107, Q401 } \end{aligned}$	MTD3302T4	Power N MOSFET Transistor, $30 \mathrm{~V}, 18 \mathrm{~A}$	ON Semiconductor	MTD3302T4
1	R1	680R	$\begin{aligned} & \text { Resistor } 680 \Omega, 5 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
1	R2	220k	$\begin{aligned} & \text { Resistor } 220 \mathrm{k} \Omega, 5 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
3	R3, R132, R133	100k	$\begin{aligned} & \text { Resistor } 100 \mathrm{k} \Omega, 5 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
1	R4	1.5k	$\begin{aligned} & \text { Resistor 1.5k } \Omega, 5 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
1	R5	3.3k	$\begin{aligned} & \text { Resistor 3.3k } \Omega, 5 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
3	R101, R102, R103	PMA-A-R030-1	Sensing resistor with Kelvin terminals, $30 \mathrm{~m} \Omega$, 1\%	Isabellenhuette	PMA-A-R030-1
4	$\begin{aligned} & \text { R104, R201, R208, } \\ & \text { R216 } \end{aligned}$	10k-1\%	$\begin{aligned} & \text { Resistor } 10 \mathrm{k} \Omega, 1 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
4	$\begin{aligned} & \text { R105, R203, R210, } \\ & \text { R217 } \end{aligned}$	2.7k-1\%	$\begin{aligned} & \text { Resistor } 2.7 \mathrm{k} \Omega, 1 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
1	R106	120-1\%	$\begin{aligned} & \text { Resistor } 120 \Omega, 1 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
1	R107	180-1\%	$\begin{aligned} & \text { Resistor } 180 \Omega, 1 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
1	R108	1k8-1\%	$\begin{aligned} & \text { Resistor } 1.8 \mathrm{k} \Omega, 1 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
1	R109	1k2-1\%	$\begin{aligned} & \text { Resistor } 1.2 \mathrm{k} \Omega, 1 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	

Freescale Semiconductor, Inc.

Table 4-1 Parts List (Sheet 3 of 4)

Qty.	Reference	Part Value	Description	Mfg.	Mfg. Part No.
18	R110, R111, R112, R113, R114, R115, R116, R117, R118, R204, R205, R211, R212, R218, R219, R222, R223, R401	10k	$\begin{aligned} & \text { Resistor } 10 \mathrm{k} \Omega, 5 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
12	R119, R120, R121, R122, R123, R124, R125, R126, R127, R128, R129, R130	51R	$\begin{aligned} & \text { Resistor } 51 \Omega, 5 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
1	R131	10k/TRIMMER	$\begin{aligned} & \text { Cermet-Trimmer } 10 \\ & \mathrm{k} \Omega, 0.15 \mathrm{~W}, 4315-\mathrm{SMD} \end{aligned}$	Hinkel-elektronik	
3	R202, R209, R215	1M	$\begin{aligned} & \text { Resistor } 1 \mathrm{M} \Omega, 5 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
3	R206, R213, R220	5.6k	$\begin{aligned} & \text { Resistor } 5.6 \mathrm{k} \Omega, 5 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
3	R207, R214, R221	3k3-1\%	$\begin{aligned} & \text { Resistor } 3.3 \mathrm{k} \Omega, 1 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
3	R224, R225, R226	33k	$\begin{aligned} & \text { Resistor } 33 \mathrm{k} \Omega, 5 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
6	$\begin{aligned} & \text { R301, R304, R308, } \\ & \text { R311, R312, R315 } \\ & \hline \end{aligned}$	39k-1\%	$\text { Resistor } 39 \text { k } \Omega, 1 \% \text {, }$ 0805	Vishay Dale	
2	$\begin{aligned} & \text { R302, R303, R309, } \\ & \text { R310, R313, R314 } \end{aligned}$	6k8-1\%	$\begin{aligned} & \text { Resistor } 6.8 \mathrm{k} \Omega, 1 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
1	R305	390R	$\begin{aligned} & \text { Resistor } 390 \Omega, 5 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
1	R306	100k-1\%	$\begin{aligned} & \text { Resistor } 100 \mathrm{k} \Omega, 1 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
5	$\begin{aligned} & \text { R307, R316, R317, } \\ & \text { R318, R319 } \end{aligned}$	33k-1\%	$\begin{aligned} & \text { Resistor } 33 \text { k } \Omega, 1 \% \text {, } \\ & 0805 \end{aligned}$	Vishay Dale	
2	R402, R404	100R	$\begin{aligned} & \text { Resistor } 100 \Omega, 5 \%, \\ & 0805 \end{aligned}$	Vishay Dale	
1	R403	1R	Resistor 1Ω, 1\%, SQM type, 5-7W	Meggit CGS	
1	SW1 (only in 140A01 board version)	Rotary Switch	Rotary Switch, RTE03 type, 3 positions	ITT Cannon	
1	SW1 (only in 140A02 board version)	pushbutton	Tactile SMD switch, B3S-1000 type, $6 \times 6 \mathrm{~mm}$	OMRON	RS\#183-701
1	U1	MC74HC14A	Hex Schmitt Inverter	ON Semiconductor	MC74HC14A
1	U2	MC78PC33NTR	Linear Voltage Regulator	ON Semiconductor	MC78PC33NTR

Freescale Semiconductor, Inc.

Table 4-1 Parts List (Sheet 4 of 4)

Qty.	Reference	Part Value	Description	Mfg.	Mfg. Part No.
1	U16	MC7805	Positive Voltage Regulator, 5V, 1A	ON Semiconductor	MC7805ACT
1	U103	MC33395	3-phase Gate Driver	Motorola	MC33395T
1	U104	LM339D	Quad Comparator	ON Semiconductor	LM339D
1	U201	MC33502D	Operational Amplifier, rail-to-rail	ON Semiconductor	MC33502D
2	U301, U302	LM285M	Adjustable Voltage Reference	ON Semiconductor	LM285M
1	U303	MC33152D	High-Speed Dual MOSFET Driver	ON Semiconductor	MC33152D
1	U401	Fairchild	DM74ALS1034M		

Freescale Semiconductor, Inc.

Schematics and Parts List

Section 5. Design Considerations

5.1 Contents

5.2 Overview 37
5.3 3-Phase H-Bridge 37
5.4 Bus Voltage and Current Feedback Signals 38
5.5 Back-EMF Signals 40
5.6 Brake Control 41

5.2 Overview

From a systems point of view, the SMOS EVM motor board kit fits into an architecture that is designed for application development. In addition to the hardware that is needed to run a motor, a variety of feedback signals that facilitate control algorithm development are provided.

The SMOS EVM motor board's power output stage is a complementary MOS field effect transistor (MOSFET) 3-phase bridge that is capable of supplying and sensing 8 amps of continuous current. Feedback signals include bus voltage, phase currents, reconstructed bus current, Back-EMF (electromotive force), and zero crossing. The following sections describe these features.

5.3 3-Phase H-Bridge

Use of the Motorola integrated 3-phase gate driver, MC33395, considerably simplifies control of the output stage which is configured as a 3-phase H-bridge with six complementary N-MOSFET output transistors. Together with external components this device provides
reverse battery protection, a high-side, MOSFET switch, PWM frequencies up to 28 kHz and built-in protective circuitry to prevent damage to the MOSFET bridge and the drive's IC, and includes: thermal (not used), over-current, over-voltage ($>27 \mathrm{~V}$) and under-voltage ($<4 \mathrm{~V}$) shutdown. A schematic is shown in Figure 4-2.

At the input, pulldown resistors R110 thru R118 set logic low in the absence of a signal. Open input pulldown is important, since it is desirable to keep the power transistors off in case of either a broken connection or absence of power on the control board. In order to accept 5 -volt MCUs and 3.3 -volt DSPs, a Fairchild non-inverting driver DM74ALS1034M unifies the level of the LSEx and HSEx input signals. This component has a minimum high-state logic 1 input voltage of 2.0 volts, and a maximum low-state logic 0 input voltage of 0.8 volts. The SMOS EVM motor board will thus enable the connection of large number of controller boards with various MCUs or DSPs, for example MC68HC908, HCS12, MPC555, DSP56F8XX(E), etc. Under-voltage lockout is not included in the gate drive. If this feature is desired, the control board's under-voltage detection comparator can be set for 0.85 volts.

5.4 Bus Voltage and Current Feedback Signals

Feedback signals proportional to bus voltage, phase currents and reconstructed bus current are provided in this section.

Bus voltage is scaled down by a voltage divider consisting of R104, R105, R106, R107, R108, and R19. The values are chosen such that a 16 -volt maximum bus voltage corresponds to a 3.3 -volt maximum analog-to-digital (A/D) input. Figure 5-1 depicts the dc bus voltage circuitry. Phase currents are sampled by resistors R101, R102 and R103 in Figure 4-2 and amplified by the circuit in Figure 5-1, which shows the circuitry for phase A. This circuit provides a voltage output suitable for sampling with A/D inputs. An MC33502 is used as a differential amplifier. The gain is given by:

$$
A=R 301 / R 302
$$

Freescale Semiconductor, Inc.

The output voltage is shifted up by 1.65 V into the middle of the converter range, to accommodate both positive and negative current swings. A $\pm 300-\mathrm{mV}$ voltage drop across the shunt resistor corresponds to a measured current range of $\pm 10 \mathrm{amps}$ (peak value), again with 3.3 V maximum on the output.

The SMOS EVM motor board measures and limits current according to a reconstructed bus current value that inverts swings of phase current signals and also shifts the output up by 1.65 V with gain $\mathrm{A}=1$. Its significance is adjustable with a trimmer, R 131 , used for setting an over-current comparator implemented in the SMOS driver. This comparator disables the driver outputs when the IS- (the driver pin) voltage rises above IS+, see Figure 5-2. This happens when the following is true:

$$
\text { IS- } \geq \text { IS }+\quad \cong \quad V_{\text {IS+off }} \approx 0.08 * I_{m a x}^{D C B} \text { + } 1.65 \quad[V ; A]
$$

CAUTION: The value, $V_{I S+}>2.45 \mathrm{~V}$, disables the over-current circuit protection functionality since the value on the $V_{\text {IS- }}$ pin is always smaller than 2.45 volts. Allowing a larger $V_{I S+}$ value can lead to permanent damage of the board if a current higher than 18 amps is applied!

For resetting board faults see step 6 in chapter 1.5.

Figure 5-1 Phase Current and DC Bus Voltage Sensing

Freescale Semiconductor, Inc.

Design Considerations

Figure 5-2 Reconstructed Bus Current

5.5 Back-EMF Signals

Back-EMF and zero crossing signals are included to support sensorless algorithms for brushless dc motors. Referring to Figure 5-3, which shows the circuitry for phase C, the raw phase voltage is scaled down by a voltage divider consisting of R216, R217, and R221. One output from this divider, BEMF_sense_C produces Back-EMF sense voltage. Resistor values are chosen such that a 16-volt maximum phase voltage corresponds to a 3.3 -volt maximum A/D input.

A zero crossing signal is obtained by comparing the motor phase voltage with $1 / 2$ the value of the motor bus voltage. Comparator U201A performs this function, producing a zero crossing signal, Zero_cross_C.

Figure 5-3 Phase C Back-EMF Feedback

Freescale Semiconductor, Inc.

5.6 Brake Control

Abstract

A brake circuit is included to dissipate re-generative motor energy during periods of active deceleration or rapid reversal. Under there conditions, motor Back-EMF adds to the dc bus voltage. Without a means to dissipate excess energy, an over-voltage condition could easily occur.

The circuit shown in Figure 4-5 connects R403 across the dc bus to dissipate energy. The transistor Q401 is turned on by software when the bus voltage sensing circuit in Figure 5-1 indicates that the bus voltage could exceed safe levels. On-board power resistor R403 will safely dissipate up to 5 watts continuously or up to 50 watts for 5 seconds.

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution
P.O. Box 5405

Denver, Colorado 80217
1-800-521-6274 or 480-768-2130

JAPAN:

Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573, Japan
81-3-3440-3569

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate

HOME PAGE:
http://motorola.com/semiconductors

M MOTOROLA

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
© Motorola Inc. 2003

DRM33395/D

Rev. 2
05/2003

