Ultra-High Current Pin Driver

élantec.

The EL7158 high performance pin driver with three-state is suited to many ATE and level-shifting applications. The 12A peak drive capability makes this part an excellent choice when driving high capacitance loads.

The output pin OUT is connected to input pins V_{H} or V_{L} respectively, depending on the status of the IN pin. When the OE pin is active low, the output is placed in the three-state mode. The isolation of the output FETs from the power supplies enables V_{H} and V_{L} to be set independently, enabling level-shifting to be implemented. Related to the EL7155, the EL7158 adds a lower supply pin $V_{S^{-}}$and makes V_{L} an isolated and independent input. This feature adds applications flexibility and improves switching response due to the increased enhancement of the output FETs.

This pin driver has improved performance over existing pin drivers. It is specifically designed to operate at voltages down to 0 V across the switch elements while maintaining good speed and on-resistance characteristics.

Available in the 8-pin SO package, the EL7158 is specified for operation over the full $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Pinout

Features

- Clocking speeds up to 40 MHz
- $12 n s t_{R} / t_{F}$ at 2000pF CLOAD
- 0.2 ns rise and fall times mismatch
- $0.5 \mathrm{~ns} \mathrm{~T}_{\mathrm{ON}}{ }^{-}$O OFF prop delay mismatch
- 3.5 pF typical input capacitance
- 12A peak drive
- Low on resistance of 0.5Ω
- High capacitive drive capability
- Operates from 4.5 V to 12 V
- Pb-free available

Applications

- ATE/burn-in testers
- Level shifting
- IGBT drivers
- CCD drivers

Ordering Information

PART NUMBER	PACKAGE	TAPE \& REEL	PKG. DWG. \#
EL7158IS	8-Pin SO	-	MDP0027
EL7158IS-T7	8-Pin SO	$7 \prime$	MDP0027
EL7158IS-T13	8-Pin SO	13 "	MDP0027
EL7158ISZ (See Note)	8-Pin SO (Pb-free)	-	MDP0027
EL7158ISZ-T7 (See Note)	8-Pin SO (Pb-free)	$7 "$	MDP0027
EL7158ISZ-T13 (See Note)	8-Pin SO (Pb-free)	$13 "$	MDP0027

NOTE: Intersil Pb-free products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which is compatible with both SnPb and Pb -free soldering operations. Intersil Pb -free products are MSL classified at Pb -free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J Std-020B.

```
Absolute Maximum Ratings \(\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)\)
```

Supply Voltage ($\mathrm{V}_{\mathrm{S}^{+}}$to $\mathrm{V}_{\mathrm{S}^{-}}$) . +18 V Input Voltage . $\mathrm{V}_{\mathrm{S}^{-}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}+0.3 \mathrm{~V}$
Continuous Output Current . 500 mA

Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Ambient operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Operating Junction Temperature . $125^{\circ} \mathrm{C}$ Power Dissipation . see curves

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
INPUT						
V_{IH}	Logic '1' Input Voltage		2.4			V
IIH	Logic '1' Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{S}^{+}}$		0.1	10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	Logic '0' Input Voltage				0.8	V
IIL	Logic '0' Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			3.5		pF
$\mathrm{R}_{\text {IN }}$	Input Resistance			50		$\mathrm{M} \Omega$
OUTPUT						
Rove	ON Resistance V_{H} to OUT	l OUT $=-500 \mathrm{~mA}$		0.5	1	Ω
ROVL	ON Resistance V_{L} to OUT	$\mathrm{I}_{\text {OUT }}=+500 \mathrm{~mA}$		0.5	1	Ω
lout	Output Leakage Current	$\mathrm{OE}=0 \mathrm{~V}, \mathrm{OUT}=\mathrm{V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{L}}$		0.1	10	$\mu \mathrm{A}$
IPK	Peak Output Current (linear resistive operation)	Source		12		A
		Sink		12		A
ldC	Continuous Output Current	Source/Sink	500			mA
POWER SUPPLY						
Is	Power Supply Current	Inputs $=\mathrm{V}_{\mathrm{S}^{+}}$		1.3	3	mA
I_{VH}	Off Leakage at V_{H} and V_{L}	$\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$		4	10	$\mu \mathrm{A}$
SWITCHING CHARACTERISTICS						
t_{R}	Rise Time	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$		12.0		ns
t_{F}	Fall Time	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$		12.2		ns
trF Δ	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ Mismatch	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$		0.2		ns
$\mathrm{t}_{\mathrm{D}-1}$	Turn-Off Delay Time	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$		22.5		ns
$\mathrm{t}_{\mathrm{D}-2}$	Turn-On Delay Time	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$		22.0		ns
$\mathrm{t}_{\mathrm{D}}{ }^{\text {d }}$	$\mathrm{t}_{\mathrm{D}-1-\mathrm{t}} \mathrm{D}-2$ Mismatch	$C_{L}=2000 \mathrm{pF}$		0.5		ns
$\mathrm{t}_{\mathrm{D}-3}$	Three-State Delay Enable			22		ns
$\mathrm{t}_{\mathrm{D}-4}$	Three-State Delay Disable			22		ns
SR+	$\mathrm{V}_{\text {OUT }}+$ Slew Rate	$\mathrm{R}_{\text {LOAD }}=6 \Omega$		800		V/us
SR-	$\mathrm{V}_{\text {OUT }}$ Slew Rate	$\mathrm{R}_{\text {LOAD }}=6 \Omega$		800		V/us

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=+12 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=+1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

PARAMETER	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
INPUT						
V_{IH}	Logic '1' Input Voltage		2.0			V
IIH	Logic '1' Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{S}^{+}}$		0.1	10	$\mu \mathrm{A}$
V_{IL}	Logic '0' Input Voltage				0.8	V
IIL	Logic '0' Input Current	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$		0.1	10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			3.5		pF
$\mathrm{R}_{\text {IN }}$	Input Resistance			50		$\mathrm{M} \Omega$
OUTPUT						
Rovi	ON Resistance V_{H} to OUT	lout $=-500 \mathrm{~mA}$		0.5	1	Ω
RovL	ON Resistance V_{L} to OUT	$\mathrm{I}_{\text {OUT }}=+500 \mathrm{~mA}$		0.5	1	Ω
Iout	Output Leakage Current	$\mathrm{OE}=0 \mathrm{~V}, \mathrm{OUT}=\mathrm{V}_{\mathrm{H}} / \mathrm{V}_{\mathrm{L}}$		0.1	10	$\mu \mathrm{A}$
IPK	Peak Output Current (linear resistive operation)	Source		1.2		A
		Sink		1.2		A
I_{DC}	Continuous Output Current	Source/Sink	500			mA

POWER SUPPLY

I_{S}	Power Supply Current	Inputs $=\mathrm{V}_{\mathrm{S}^{+}}$	1	2.5	mA	
$\mathrm{~V}_{\mathrm{H}}$	Off Leakage at V_{H} and V_{L}	$\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}=0 \mathrm{~V}$		4	10	$\mu \mathrm{~A}$

SWITCHING CHARACTERISTICS

t_{R}	Rise Time	$C_{L}=2000 \mathrm{pF}$	11	ns
t_{F}	Fall Time	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$	11	ns
trFs	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$ Mismatch	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$	0	ns
$\mathrm{t}_{\mathrm{D}-1}$	Turn-Off Delay Time	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$	20.5	ns
$\mathrm{t}_{\mathrm{D}-2}$	Turn-On Delay Time	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$	20.0	ns
$\mathrm{t}_{\mathrm{D}}{ }^{\text {d }}$	$\mathrm{t}_{\mathrm{D}-1-\mathrm{t}}^{\mathrm{D}-2}$ Mismatch	$\mathrm{C}_{\mathrm{L}}=2000 \mathrm{pF}$	0.5	ns
$\mathrm{t}_{\mathrm{D}-3}$	Three-State Delay Enable		20	ns
$\mathrm{t}_{\mathrm{D}-4}$	Three-State Delay Disable		20	ns
SR+	$\mathrm{V}_{\text {OUT }}+$ Slew Rate	$\mathrm{R}_{\text {LOAD }}=6 \Omega$	80	V/ $/ \mathrm{s}$
SR-	$V_{\text {OUT }}$ Slew Rate	$\mathrm{R}_{\text {LOAD }}=6 \Omega$	80	V/ $/ \mathrm{s}$

Typical Performance Curves

FIGURE 1. INPUT THRESHOLD vs SUPPLY VOLTAGE

FIGURE 3. "ON" RESISTANCE vs SUPPLY VOLTAGE ($\mathbf{V}_{\mathbf{S}^{+}}$)

FIGURE 5. RISE/FALL TIME vs TEMPERATURE

FIGURE 2. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 4. RISE/FALL TIME vs SUPPLY VOLTAGE

FIGURE 6. PROPAGATION DELAY vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 7. PROPAGATION DELAY vs TEMPERATURE

FIGURE 9. SUPPLY CURRENT vs LOAD CAPACITANCE

FIGURE 11. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

FIGURE 8. RISE/FALL TIME vs LOAD CAPACITANCE

FIGURE 10. SUPPLY CURRENT vs FREQUENCY

FIGURE 12. PACKAGE POWER DISSIPATION vs AMBIENT TEMPERATURE

TABLE 1. TRUTH TABLE

$\mathbf{O E}$	IN	OUT
0	0	Three-State
0	1	Three-State
1	0	$\mathrm{~V}_{\mathrm{H}}$
1	1	$\mathrm{~V}_{\mathrm{L}}$

table 2. operating voltage range

PIN	MIN	MAX
GND $-\mathrm{V}_{\mathrm{S}^{-}}$	-5	0
$\mathrm{~V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{S}^{-}}$	5	18
$\mathrm{~V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}$	0	12
$\mathrm{~V}_{\mathrm{S}^{+}}-\mathrm{V}_{\mathrm{H}}$	0	12
$\mathrm{~V}_{\mathrm{S}^{+}}-\mathrm{GND}$	5	12
$\mathrm{~V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{S}^{-}}$	0	12
Three-State Output	V_{L}	V_{H}

FIGURE 13. TIMING DIAGRAM

FIGURE 14. STANDARD TEST CONFIGURATION

Pin Descriptions

PIN	NAME	FUNCTION	EQUIVALENT CIRCUIT
1	VS+	Positive Supply Voltage	
2	OE	Output Enable	
3	IN	Input	Reference Circuit 1
4	GND	Ground	
5	VS-	Negative Supply Voltage	
6	VL	Lower Output Voltage	
7	OUT	Output	Circuit 2
8	VH	High Output Voltage	

FIGURE 15. BLOCK DIAGRAM

Applications Information

Product Description

The EL7158 is a high performance 40 MHz pin driver. It contains two analog switches connecting V_{H} and V_{L} to OUT. Depending on the value of the IN pin, one of the two switches will be closed and the other switch open. An output enable (OE) is also supplied which opens both switches simultaneously.
Due to the topology of the EL7158, both the V_{H} and V_{L} pins can be connected to any voltage between the $\mathrm{V}_{\mathrm{S}^{+}}$and $\mathrm{V}_{\mathrm{S}^{-}}$ pins, but V_{H} must be greater than V_{L} in order to prevent turning on the body diode at the output stage.

Three-State Operation

When the OE pin is low, the output is three-state (floating.) The output voltage is the parasitic capacitance's voltage. It can be any voltage between V_{H} and V_{L}, depending on the previous state. At three-state, the output voltage can be pushed to any voltage between V_{H} and V_{L}. The output voltage can't be pushed higher than V_{H} or lower than V_{L} since the body diode at the output stage will turn on.

Supply Voltage Range and Input Compatibility

The EL7158 is designed for operation on supplies from 5 V to 18 V (4.5 V to 18 V maximum). Table 2 shows the specifications for the relationship between the $\mathrm{V}_{\mathrm{S}^{+}}, \mathrm{V}_{\mathrm{S}^{-}}, \mathrm{V}_{\mathrm{H}}$, V_{L}, and GND pins.

All input pins are compatible with both 3 V and 5 V CMOS signals. With a positive supply $\left(\mathrm{V}_{\mathrm{S}^{+}}\right)$of 5 V , the EL7158 is also compatible with TTL inputs.

Power Supply Bypassing

When using the EL7158, it is very important to use adequate power supply bypassing. The high switching currents developed by the EL7158 necessitate the use of a bypass capacitor between the supplies $\left(\mathrm{V}_{\mathrm{S}^{+}} \& \mathrm{~V}_{\mathrm{S}^{-}}\right)$and GND pins. It is recommended that a $2.2 \mu \mathrm{~F}$ tantalum capacitor be used in parallel with a $0.1 \mu \mathrm{~F}$ low-inductance ceramic MLC capacitor. These should be placed as close to the supply pins as possible. It is also recommended that the V_{H} and V_{L} pins have some level of bypassing, especially if the EL7158 is driving highly capacitive loads.

Power Dissipation Calculation

When switching at high speeds, or driving heavy loads, the EL7158 drive capability is limited by the rise in die temperature brought about by internal power dissipation. For reliable operation die temperature must be kept below $\mathrm{T}_{\mathrm{JMAX}}\left(125^{\circ} \mathrm{C}\right)$. It is necessary to calculate the power dissipation for a given application prior to selecting the package type.

Power dissipation may be calculated:

$$
P D=\left(V_{S} \times I_{S}\right)+\left(C_{I N T} \times V_{S}^{2} \times f\right)+\left(C_{L} \times V_{O U T}{ }^{2} \times f\right)
$$

where:
V_{S} is the total power supply to the EL7158 (from $\mathrm{V}_{\mathrm{S}^{+}}$to GND)
$\mathrm{V}_{\text {OUT }}$ is the swing on the output $\left(\mathrm{V}_{\mathrm{H}}-\mathrm{V}_{\mathrm{L}}\right)$
C_{L} is the load capacitance
$\mathrm{C}_{\text {INT }}$ is the internal load capacitance (100pF max)
I_{S} is the quiescent supply current (3mA max)
f is frequency
Having obtained the application's power dissipation, a maximum package thermal coefficient may be determined, to maintain the internal die temperature below $T_{J M A X}$:
$\theta_{J A}=\frac{T_{J M A X}-T_{\text {MAX }}}{P D}$
where:
$\mathrm{T}_{\mathrm{JMAX}}$ is the maximum junction temperature $\left(125^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{\text {MAX }}$ is the maximum operating temperature
PD is the power dissipation calculated above
θ_{JA} thermal resistance on junction to ambient
θ_{JA} is $160^{\circ} \mathrm{C} / \mathrm{W}$ for the SO8 package when using a standard JEDEC JESD51-3 single-layer test board. If TJMAX is greater than $125^{\circ} \mathrm{C}$ when calculated using the equation above, then one of the following actions must be taken:

Reduce θ_{JA} the system by designing more heat-sinking into the PCB (as compared to the standard JEDEC JESD51-3)

De-rate the application either by reducing the switching frequency, the capacitive load, or the maximum operating (ambient) temperature ($\mathrm{T}_{\mathrm{MAX}}$)

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

