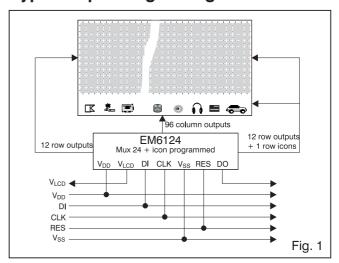


Digitally Programmable 8 to 25 Multiplex LCD Controller & Driver

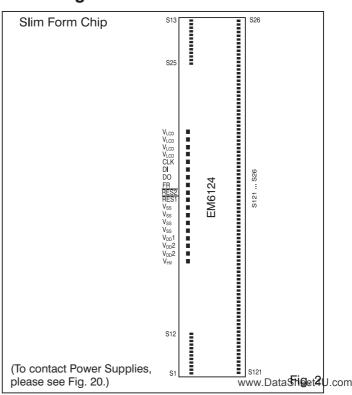
Features

- Slim IC for chip-on-board, with gold bumps for Chip-On-Glas and Chip-On-Flex technologies
- Very simple 2-wire interface
- Digitally programmable multiplex rates: 8 x 113, 9 x 112, 16 x 105, 17 x 104, 20 x 101, 21 x 100, 24 x 97, 25 x 96
- No lost pads while row driver from 8 up to 25
- On chip: Voltage multiplier, V_{LCD} up to 7 V (3 to 6 V at 25 °C), 64 V_{LCD} digitally programming steps, 4 V_{LCD} temperature compensation factors, bias generation, V_{ON} / V_{OFF} generation, frame frequency, display refresh RAM
- No busy state
- High noise immunity in inputs
- No external components needed, except a V_{LCD} capacitor
- Digitally reversing row data
- Digitally reversing column data
- Inverting data function
- Blank function
- Set function
- Checker and Inverted Checker functions
- Sleep modes
- Low LCD operating current consumption
- Wide V_{DD} voltage supply range, 2 to 5 V
- Wide temperature range: -40 to + 85 °C
- Direct display of RAM data through the display data

(To cascade ICs, please see Fig. 19 and contact EM-Marin.)


Description

The EM6124 is a low power CMOS LCD controller and driver. The 8, 16, 20 and 24 way multiplex are digitally programmable by the command byte. One additional line can be added for Icons or Inverted Video by programming 9, 17, 21 or 25 way multiplex. The display refresh is handled on chip by an internal RC oscillator via one selectable 25 x 116 RAM which holds the LCD content driven by the driver. LCD pixels (or segments) are addressed on a one to one basis with the 25 x 116 bit RAM (a set bit corresponds to an activated LCD pixel). The EM6124 has very low dynamic current consumption, typically 70 μ A at V_{DD} = 2 V, V_{ICD} = 7 V making it particularly attractive for portable and battery powered products. The wide operating range on supply voltages and temperature offers much application flexibility. The LCD voltage, bias generation and frame frequency are generated on chip. The clock signal can be used to shift and to latch the data into the RAM.


Applications

- Mobile phones (GSM, DECT)
- Smart cards
- Automotive displays
- Portable, battery operated products
- Balances and scales, utility meters

Typical Operating Configuration

Pad Assignment

Absolute Maximum Ratings

	_	
Parameter	Symbol	Conditions
Supply voltage range	$V_{DD1.2}$	-0.3 V to 6 V
Supply high voltage range	V_{HV}	-0.3 V to 6 V
Internal generated V _{LCD}	V_{LCD}	7 V
Voltage at DI, DO, CLK, FR, RES	V_{LOGIC}	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Voltage at S1 to S121	V_{DISP}	$-0.3 \text{ V to V}_{LCD} + 0.3 \text{ V}$
Storage temperature range	T _{STO}	-65 to +150 °C
Electrostatic discharge max.		
to MIL-STD-883C method 3015	V_{Smax}	1000 V
Maximum soldering conditions	T_{Smax}	250 °C x 10 s

Table 1

Stresses above these listed maximum ratings may cause permanent damage to the device. Exposure beyond specified operating conditions may affect device reliability or cause malfunction.

Handling Procedures

This device has built-in protection against high static voltages or electric fields; however, anti-static precautions must be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range. Unused inputs must always be tied to a defined logic voltage level.

Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating temperature	T _A	-40		+85	°C
Logic supply voltage	$V_{DD1,2}$	2	3	5.5	V
Supply high voltage	V_{HV}	2.5	3	5.5	V

Table 2

Electrical Characteristics

 $V_{DD1} = V_{DD2} = 3$ V, $V_{HV} = 2.5$ to 5 V, and $T_A = -40$ to +85 °C, unless otherwise specified

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units	
Standby supply current	I _{DD}	See note 1)		16	22	μΑ	
Standby supply current	I _{HV}	See note1), V _{LCD} step 30 (hexa)		65	170	μA	
Dynamic supply current	I _{DD}	See note 2)		57	75	μA	
Standby supply current	I _{HV}	See note 3), V _{ICD} step 00 (hexa)		35	140	μA	
Sleep mode supply current	I _{DD}			0.1		μA	
Sleep mode supply current	I _{HV}			0.1		μA	
Control Signals DI, CLK, FR,							
RES1,RES2							
Input leakage	I _{IN}	V _{DD1,2} or V _{SS}	-1		1	μΑ	
Input capacitance	C _{IN}	at $T_A = 25 ^{\circ}\text{C}$		8		pF	
Low level input voltage	V _{IL}		0		$0.3\ V_{DD1,2}$	V	
High level input voltage	V _{IH}		0.7 V _{DD1,2}		$V_{\mathrm{DD1,2}}$	V	
DC output component	± VDC	See table 4		30	100	mV	
V _{LCD} (internally generated)	V _{LCD}	See note 4)		6.15			
V_{LCD}	V _{LCD}	See note 5)		3.15 - 7.09		V	
	V _{LCD} step			62.5		mV	

 $^{^{1)}}$ All outputs open, DI and CLK at V_{SS} , mux ratio = 24, checker pattern.

DC Output Component

Output	Frame	Logic Data	Measured*	Guaranteed
Row Driver	n	OL	V _{LCD} - V ₁	$V_1 = 0.83 \times V_{LCD} \pm 100 \text{ mV}$
	n + 1	OL	V ₄ - V _{SS}	$V_2 = 0.66 \times V_{LCD} \pm 100 \text{ mV}$
Column Driver	n	OL	V _{LCD} - V ₂	$V_3 = 0.34 \times V_{LCD} \pm 100 \text{ mV}$
	n + 1	OL	V ₃ - V _{SS}	$V_4 = 0.17 \times V_{LCD} \pm 100 \text{ mV}$

*
$$V_X = V_X (load = +1 \mu A) + V_X (load = -1 \mu A)$$
, mux 24 or 25 programmed, $V_{LCD} = 6 \text{ V}$, $T_A = 25 \, ^{\circ}\text{C}$.

Table 4

Table 3

Test is performed for multiplex rate = 25. All multiplex rate \neq 25 are guaranteed by design. If multiplex rate \neq 25, test will be performed on request.

 $^{^{2)}}$ All outputs open, DI at V_{SS} , $f_{CLK}=1$ MHz, mux ratio = 24, checker pattern.

³⁾ DI and CLK at V_{SS}, checker pattern, mux ratio = 8.

 $^{^{4)}}$ Initialization bits 18 to 23 = 110000 and initialization bits 10, 11 = 00; laser trimming on request.

 $^{^{5)}}$ Initialization bits 18 to 23 = 000000/111111.

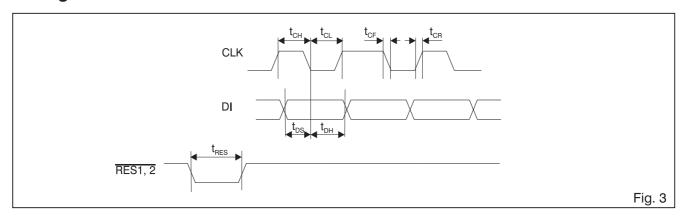
Timing Characteristics $V_{DD1} = V_{DD2} = 2 \ to \ 3 \ V, \ V_{HV} = 2.5 \ to \ 5 \ V, \ and \ T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Clock high pulse width	t _{CH}		70			ns
Clock low pulse width	t _{CL}		110			ns
Clock period	t _{per}		550			ns
Reset 1 pulse width	t _{RES1}		10			μs
Reset 2 pulse width	t _{RES2}		130			ns
Clock and FR rise time	t _{CR}				200	ns
Clock and FR fall time	t _{CF}				200	ns
Data input setup time	t _{DS}		20			ns
Data input hold time	t _{DH}		260			ns
FR (internal frame frequency)	f _{FR} 1)			75		Hz

¹⁾ EM6124 (n), FR = n times the desired LCD refresh rate where n is the EM6124 mux mode number; laser trimming on request.

Table 5a

See Fig. 17.01 and 17.02 for more details concerning the frame frequency


 $V_{DD1} = V_{DD2} = 3$ to 5 V, $V_{HV} = 2.5$ to 5 V, and $T_A =$ -40 °C to +85 °C

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Clock high pulse width	t _{CH}		50			ns
Clock low pulse width	t _{CL}		55			ns
Clock period	t _{per}		350			ns
Reset 1 pulse width	t _{RES1}		10			μs
Reset 2 pulse width	t _{RES2}		80			ns
Clock and FR rise time	t _{CR}				200	ns
Clock and FR fall time	t _{CF}				200	ns
Data input setup time	t _{DS}		20			ns
Data input hold time	t _{DH}		140			ns
FR (internal frame frequency)	f _{FR} ¹⁾			75		Hz

¹⁾ EM6124 (n), FR = n times the desired LCD refresh rate where n is the EM6124 mux mode number; laser trimming on request.

Table 5b

Timing Waveforms

1 Bit Interface Description

This 1 bit interface is very simple to use. There are three modes to load data into the EM6124.

Command byte only mode

To validate this mode, 8 bits must be shifted with bit 3 to bit 7 setted to 1L. This mode is used for blank, set or sleep mode functions.

Command byte and initialization mode

To validate this mode, 32 bits must be shifted with bit 0 and bit 1 setted to 1L. Bit 2 (sleep) can be active or inactive. Bit 3 to bit 7 (RAM address) can be in any state but it is important that they are not all simultaneously setted to 1L, otherwise the chip will be in command byte only mode.

Command byte and display information mode

To validate this mode, 128 bits must be shifted, eight first bits are for command byte, all the other are RAM data depending of col bit mode and multiplex ratio. There are also x bits don't care in each loading depending on the programmation of the chip (see Fig. 4 for more details). In each RAM's data loading, the command byte has to be introduced for the RAM address. Before loading any data into the RAM the chip has to be initialized.

Command Byte

	Commmand Bits 0 to 7											
0	0 1 2 3 4 5 6 7											
Blank	Set	Sleep	Sleep RAM address									

Table 6

Cmdbit 0: Blank bit forces all column outputs off.

Cmdbit 1: Set bit forces all column output on.

Note: If bit 0 and bit 1 are both to 1L, the chip will be in initialization mode. See remarks below.

 $\label{eq:condition} \textbf{Cmdbit 2: Sleep mode bit, \underline{sto} ps the voltage booster and the internal oscillator, active bit <math>\overline{col}$ forces all outputs to V_{ss} .

Cmdbits 3-7: RAM address bits. See table 6.

If Cmdbits 3-7 are set to 1L, EM6124 is in Cmd byte only mode.

Initialization Bits

	Initialization Bits 8 to 15															
8	9	10 1		1 12		2		13 14		15						
Mux M	lode	Tem	p. Coeff	f.	Chec	ker	Inv.	Checker	Col	Inv.Row						
Initialization Bits 16 to 23																
16	17	7	18		19	2	0	21	22	23						
M/LSB	Vid	eo :	Step 1	St	ep 2	Step 3		Step 3		Step 3		Step 3		Step 4	Step 5	Step 6
	Initialization Bits 24 to 31															
24	2	5	26		27	28		29	30	31						
Icon	Slee	p 2	Test 6	Te	est 5	Test 4		Test 4		Test 4		Test 3	Test 2	Test 1		

Table 7

Mu	Mux ratio (Init. bit 8, 9)									
8	9	mux mode								
0	0	8								
0	1	16								
1	0	20								
1	1	24								

Table 8

Init.bit 8-9: Mux mode bits. The multiplex ratio is selected by these two bits. Table 8 shows the corresponding values.

Init.bit 10-11: V_{LCD} temperature coefficient is selected by these two bits. Table 11 shows the corresponding values.

Init.bit 12: Checker bit gives the possibility to force all outputs segments in checked form (see Fig. 10 and Fig. 18.14).

Init.bit 13: Inverse Checker bit gives the possibility to force all outputs segments in inverse checked form (see Fig. 10 and Fig. 18.15).

Init.bit 14: Col bit configures the EM6124 on row and column driver or column driver only. In this mode the frame frequency must be external.

Init.bit 15: Row inversion, possibility to inverse the order of the row outputs (see Table 10 and Fig. 18.12).

Init.bit 16: M/LSB, possibility to inverse the order loading for RAM data (see Fig. 4).

Init.bit 17: Video bit, possibility to inverse the content of the RAM. All the 0L pass to 1L and all the 1L pass to 0L (see Fig. 18.11).

Init.bit 18-23: V_{LCD} 64 steps programmation bits. See Fig. 8. Bit 18 (step 1) for MSB and bit 23 (step 6) for LSB.

Init.bit 24: Icon bit adds one line more to the selected mux mode ratio for icon segments outputs.

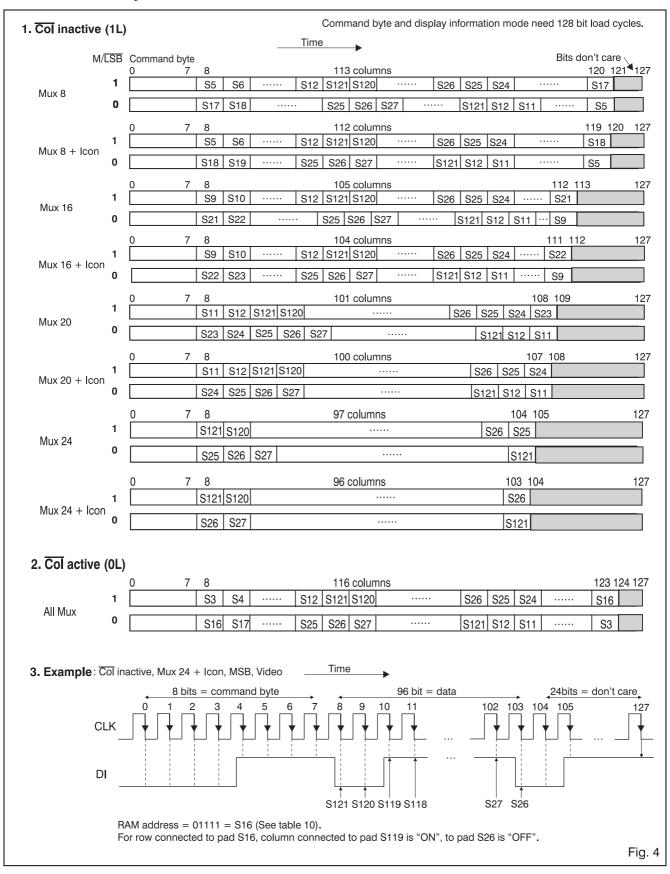
Init.bit 25: Sleep 2. Set all outputs at Vss.

Init.bit 26-31: Must be setted to 0L.

Reset 1

Power-up: Must be followed by a RESET cycle. After the reset 1 pulse the LCD controller driver is set to the following status:

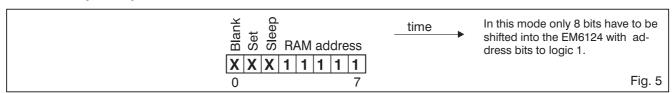
- All outputs at V_{ss}
- Blank & Set (cmdbits 0,1) = 0L
- Sleep mode (cmdbit 2) = 0L
- RAM address (cmdbits 3 to 7) = 0L
- Multiplex ratio (init.bits 8, 9) = 0L
- Temperature coefficient (init.bits 10,11) = 0L
- Checker & Inv.Checker (init.bits 12, 13) = 0L
- Col Mode (init.bit 14) = 1L
- Inv. Row (init.bit 15) = 0L
- M/\overline{LSB} (init.bit 16) = 1L
- Video (init.bit 17) = 1L
- V_{LCD} step (init.bits 18 to 23) = 0L
- Icon (init.bit 24) = 0L
- Sleep 2 (init.bit 25) = 1L
- The content of the RAM remains unchanged An initialization should take place after reset (32 bits sent).


Pin Assignment

Name	Function
S1S121	LCD outputs, see Fig.4
FR	AC I/O signal for LCD driver output
DI	Serial data input
DO	Serial data output
CLK	Data clock input
RES1	General reset
RES2	Reset the serial interface counter
V _{LCD}	Internal generated voltage output
V_{DD1}	Power supply for logic
V_{DD2}	Power supply for analogic
V_{HV}	Power supply for high voltage
V _{SS}	Supply GND

Table 9

Data Transfer Cycle



Output Row Assignments

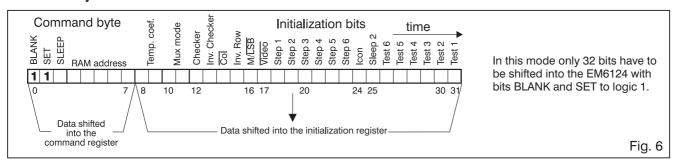
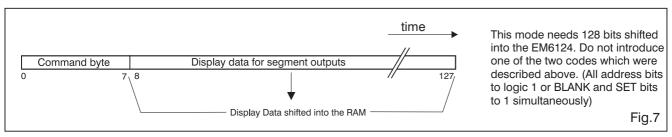
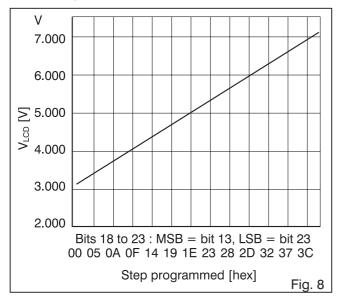

													Mux	Mode							
Row		RAM	Addr	ess		Mu	Mux 8 Mux 8		I I I			Mux 20			x 20	Mu	x 24	Mu			
						Inv	Row		con Row	Inv	Row		con Row	Inv	Row	+ Icon Inv. Row		Inv. Row		+ Icon Inv. Row	
											_							 			
		Bit 4				0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
1	0	0	0	0	0	S1 S2	S16	S1 S2	S17	S1 S2	S20	S1 S2	S21	S1 S2	S22	S1 S2	S23	S1 S2	S24	S1 S2	S25
2 3	0	0	0	0	0	S2 S3	S15 S14	S2 S3	S16 S15	S2 S3	S19 S18	S2 S3	S20 S19	S2 S3	S21 S20	S2 S3	S22 S21	S2 S3	S23 S22	S2 S3	S24 S23
4	0	0	0	1	1	S4	S14	S4	S14	S4	S17	S4	S19	S4	S20	S4	S21	S4	S22	S4	S23
5	0	0	1	0	0	S13	S4	S13	S14	S5	S17	S5	S17	S5	S18	S5	S19	S5	S21	S5	S21
6	0	0	1	0	1 1	S14	S3	S14	S4	S6	S15	S6	S16	S6	S17	S6	S18	S6	S19	S6	S20
7	0	0	1	1	انا	S15	S2	S15	S3	S7	S14	S7	S15	S7	S16	S7	S17	S7	S18	S7	S19
8	0	0	1	1	1 1	S16	S1	S16	S2	S8	S13	S8	S14	S8	S15	S8	S16	S8	S17	S8	S18
9	Ö	1	0	0	0	0.0		S17	S1	S13	S8	S13	S13	S9	S14	S9	S15	S9	S16	S9	S17
10	0	1	0	0	1					S14	S7	S14	S8	S10	S13	S10	S14	S10	S15	S10	S16
11	0	1	0	1	0					S15	S6	S15	S7	S13	S10	S13	S13	S11	S14	S11	S15
12	0	1	0	1	1					S16	S5	S16	S6	S14	S9	S14	S10	S12	S13	S12	S14
13	0	1	1	0	0					S17	S4	S17	S5	S15	S8	S15	S9	S13	S12	S13	S13
14	0	1	1	0	1					S18	S3	S18	S4	S16	S7	S16	S8	S14	S11	S14	S12
15	0	1	1	1	0					S19	S2	S19	S3	S17	S6	S17	S7	S15	S10	S15	S11
16	0	1	1	1	1					S20	S1	S20	S2	S18	S5	S18	S6	S16	S9	S16	S10
17	1	0	0	0	0							S21	S1	S19	S4	S19	S5	S17	S8	S17	S9
18	1	0	0	0	1									S20	S3	S20	S4	S18	S7	S18	S8
19	1	0	0	1	0									S21	S2	S21	S3	S19	S6	S19	S7
20	1	0	0	1	1									S22	S1	S22	S2	S20	S5	S20	S6
21	1	0	1	0	0											S23	S1	S21	S4	S21	S5
22]	0	1	0	1													S22	S3	S22	S4
23	1	0	1	1	0													S23	S2	S23	S3
24	1	0	1	1	1													S24	S1	S24	S2 S1
25			0	0	0															S25	১।

Table 10


Command Byte Only Mode

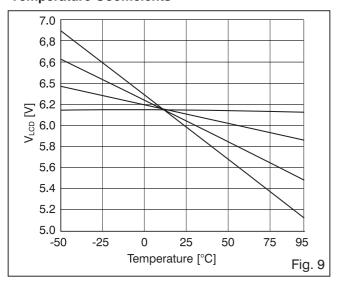
Command Byte and Initialization Mode



Command Byte and Display Information Mode

Typical V_{LCD} Programming

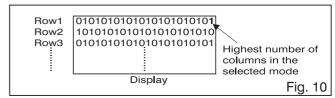
Temperature Control

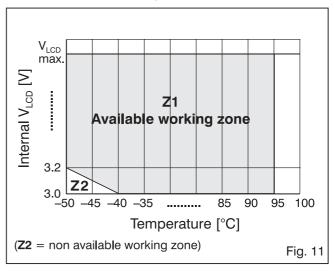

Due to the temperature dependency of liquid cristals viscosity the LCD controlling voltage V_{LCD} must be increased for lower temperatures to maintain optimal contrast. The EM6124 is available with 4 different temperature coefficients (see Fig. 9). The coefficient is selected by 2 bits in the initialization code TC bits 10 and 11. Table 11 shows the typical values of the different temperature coefficients. They are proportional to the programmed V_{LCD} .

Typical Values of the Temperature Coefficients

	<u> </u>				
Bit 10, Bit 11	Value	Unit			
0 0	- 0.02 x V _{LCD}	mV/°C			
0 1	- 0.52 x V _{LCD}	mV/°C			
1 0	- 1.16 x V _{LCD}	mV/°C			
11	- 1.82 x V _{LCD}	mV/°C			

Table 11

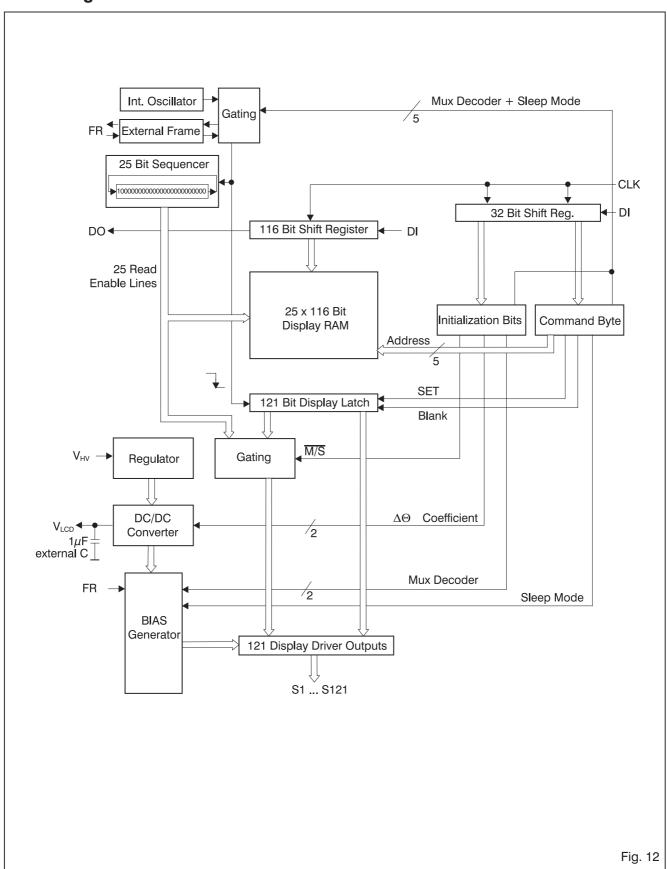

Temperature Coefficients


Checker and Checker Inverse

A fast check display can be easily created setting initialization bits 12 and 13 (called "Checker" and "Inv. Checker"). The display is completely checked with only 2 initialization sequences, one "Checker" and one "Inv. Checker". For Checker, the pattern fills the display with alternately ON and OFF pixels as shown in Fig. 10. For Inv. Checker, everything is inverted (see Fig.18.14 and 18.15).

Pattern of Checker Mode

Internally Generated V_{LCD} versus Temperature


Display Functions

Bit	State		
	Logic 0	Logic 1	
8 - 9: Mux Mode	See table 8		
10 -11:Temp.Coeff.	See table 11		
12: Checker	Inactive	Chess display	
13: Inv. Checker	Inactive	Inverse chess display	
14: Col	Colum driver only	Row and column driver	
15: Inv. Row	Increment rows Decrement rows		
	(example for mux 24:	(example for mux 24:	
	row 1, 2, 3,, 24, 1, 2,)	row 24, 23, 22,, 2, 1, 24, 23,)	
16: M/ LSB	Loading in LSB mode	Loading in MSB mode	
17: Video	Inverse content of RAM	Inactive	
18 - 23: V _{LCD} step	See Fig. 8		
24: Icon	Inactive	Add one line more to seledted mux mode	
25: Sleep	Inactive	All outputs at V _{ss}	
26 - 31:	Must be at 0L		

Table 12

Block Diagram

LCD Voltage Bias Levels

LCD Drive Type	LCD Bias Configuration	V _{OP} V _{OFF} (rms)	V _{ON} (rms) V _{OFF} (rms)
EM6124 (24) n=24 1:24 MUX	6 Levels	$\sqrt{\frac{\sqrt{n} (\sqrt{n} + 1)^2}{2(\sqrt{n} - 1)}} = 4.68$	$\sqrt{\frac{\sqrt{n}+1}{\sqrt{n}-1}} = 1.230$
EM6124 (20) n=20 1:20 MUX	6 Levels	$\sqrt{\frac{\sqrt{n}(\sqrt{n}+1)^2}{2(\sqrt{n}-1)}} = 4.39$	$\sqrt{\frac{\sqrt{n+1}}{\sqrt{n-1}}} = 1.255$
EM6124 (16) n=16 1:16 MUX	1/5 Bias 6 Levels	$\sqrt{\frac{\sqrt{n}(\sqrt{n}+1)^2}{2(\sqrt{n}-1)}^2} = 4.08$	$\sqrt{\frac{\sqrt{n+1}}{\sqrt{n-1}}} = 1.291$
EM6124 (8) n=8 1:8 MUX	1/4 Bias 5 Levels	$\frac{4}{\sqrt{1+\frac{3}{n}}}=3.4$	$\sqrt{\frac{n-15}{n+3}} = 1.446$

Table 13

Optimum LCD Bias Voltages

Multiplex Rate	V _{LCD}	V1	V2	V3	V4	V _{ss}
1:24	1	0.830	0.660	0.340	0.170	0
1:20	1	0.817	0.634	0.366	0.183	0
1:16	1	0.800	0.600	0.400	0.200	0
1:8	1	0.750	0.500	0.250	-	0

 $V_{LCD} > V1 > V2 > V3 > V4 > V_{SS}$

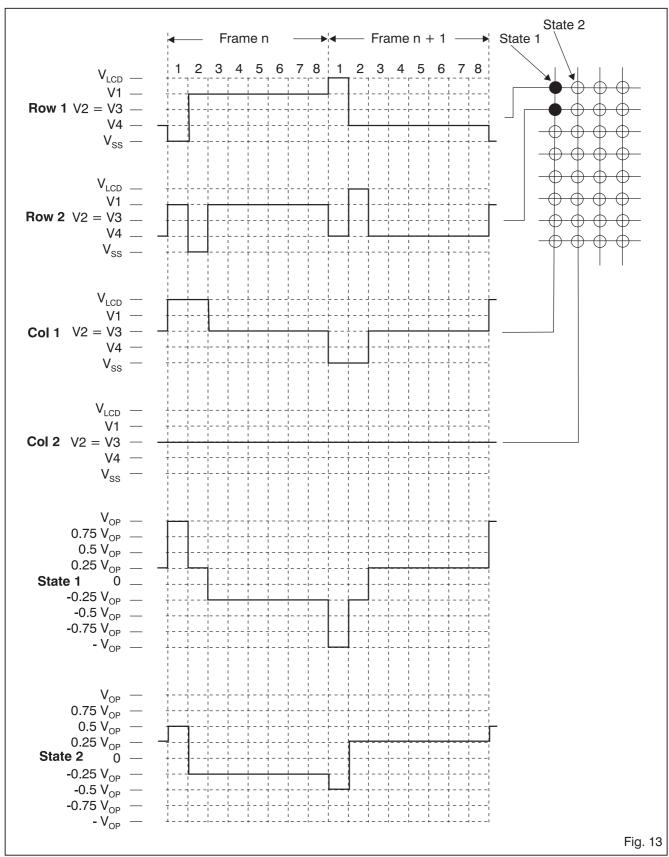
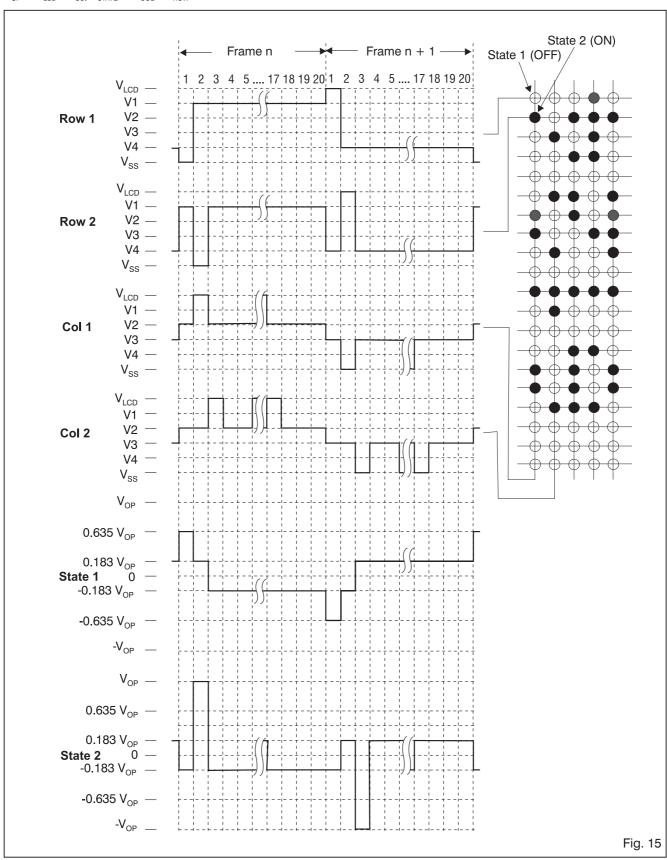

The values in the above table are given in reference to $V_{\text{\tiny LCD}}\,$ e.g. 0.5 means 0.5 x $V_{\text{\tiny LCD}}\,$

Table 14

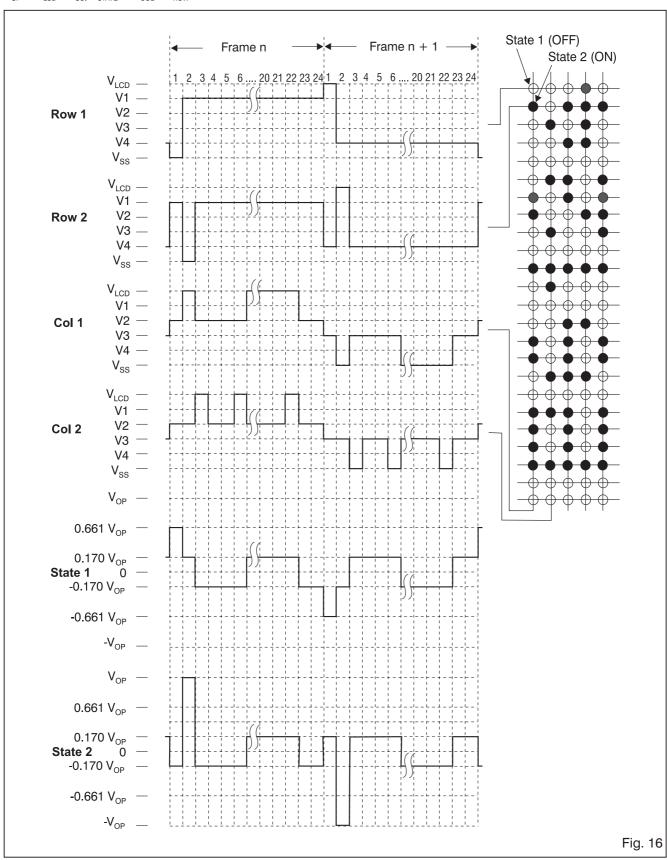
Row and Column Multiplexing Waveform EM6124 (8)

 $V_{\text{OP}} = V_{\text{LCD}} - V_{\text{SS}}, V_{\text{STATE}} = V_{\text{COL}} - V_{\text{ROW}}$

Row and Column Multiplexing Waveform EM6124 (16)


 $V_{OP} = V_{LCD} - V_{SS}, V_{STATE} = V_{COL} - V_{ROW}$

Row and Column Multiplexing Waveform EM6124 (20)


 $V_{\text{OP}} = V_{\text{LCD}} - V_{\text{SS}}, V_{\text{STATE}} = V_{\text{COL}} - V_{\text{ROW}}$

Row and Column Multiplexing Waveform EM6124 (24)

 $V_{OP} = V_{LCD} - V_{SS}, V_{STATE} = V_{COL} - V_{ROW}$

Functional Description

Supply Voltage V_{DD1} , V_{DD2} , VH_V , V_{LCD} , V_{SS} The voltage between V_{DD1} and V_{SS} is the supply voltage for the logic and the interface. The voltage between V_{DD2} and V_{SS} is the supply voltage for the analogic. V_{DD1} and V_{DD2} must be the same voltage and, in order to guarantee the best functioning, V_{DD1} and V_{DD2} have to be separately connected to the PCB (see Fig. 19). The voltage V_{LCD} is internally generated for the supply voltage of the LCD and is used for the generation of the internal LCD bias level. An external capacitor of 1 µF must be connected between V_{LCD} and V_{SS} . Table 15 shows the relationship between V1, V2, V3, V4 for a programmed multiplex rate. Note that V_{LCD} > V1 > V2 > V3 > V $_{\rm SS}$ for the EM6124 8 mux programmed, and for the EM6124 16, 20, 24 mux programmed $V_{LCD} > V1 > V2 > V3 > V4 > V_{SS}$. The voltage between V_{HV} and V_{SS} is the supply voltage for high voltage part of the EM6124. An external V_{LCD} may also be used by connecting a power supply and programming a lower V_{LCD} voltage during initialization.

Data Input

The data input pin, DI, is used to load serial data into the EM6124. The normal serial data word length is 128 bits. 32 and 8 bits are also available in a special mode (see 1 Bit Interface Description). The command byte is loaded first and then the segment data bits (see Fig. 4).

RES1 Input

Reset is accomplished by applying an external RES1 pulse (active low). When reset occurs within the specified time, all internal register are reset however the content of the RAM is still unchanged. The state after reset is described on page 4.

RES2 Input

Reset is accomplished by applying an external RES2 pulse (active low). When reset occurs within the specified time, the internal counter for serial interface is reset. The counter of the serial interface for data inputs is ready for a new loading of data. This reset 2 does not change the content of the RAM neither the content of the command and the initialization bits. To avoid trouble in case of software interrupt of the MPU during data loading, this function can be used.

Power-Up

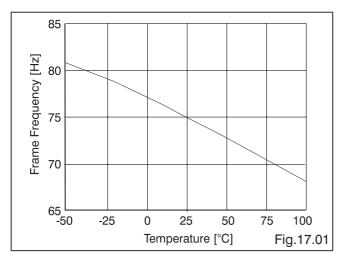
On power up the data in the shift registers, the display RAM, the sequencer driving the 8/16/20/24 rows and the 121 bit display latches are undefined.

CLK Input

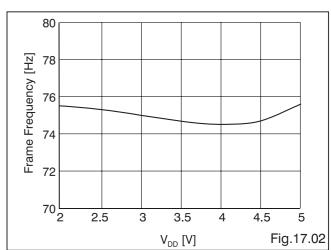
The clock input is used to clock the DI serial data into the EM6124.

FR Input / Output

The frame frequency is realized by an internal oscillator with a typical value of 75 Hz. The internal row frequency changes with the number of rows ($F_{row} = 75 x n$, where n = 8, 16, 20, 24). When bit 14 ($\overline{\text{Col}}$) is inactive (active low), the frame frequency is given by the internal oscillator. This frequency can be measured on the I/O FR. When bit 14 (Col) is active (active low), the frame frequency is external then the frequency is given directly by the FR input to the row and column driver (see Fig. 16 and 17 for more details concerning the frame frequency).


Driver Outputs S1 to S116

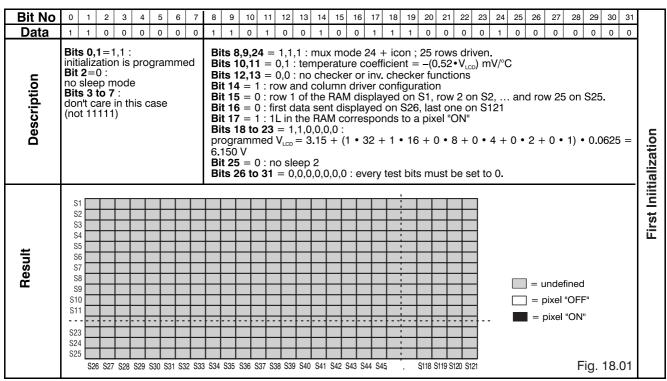
There are 121 LCD driver outputs on the EM6124. The output assignments depend on the chosen mux mode ratio (init. bits 8, 9) and the Col function (init. bit 14).


When init. bit 14 (Col) is active, all 116 outputs function as column drivers. Table "Output Row Assignments" and Fig. 4 describe exactly the correspondent data to the output of the chip. There is one to one relationship between the display RAM and the LCD driver outputs. Each pixel (segment) driven by the EM6124 on the LCD has a display RAM bit which corresponds to it. Setting the bit turns the pixel "on" and Clearing it turns "off".

For chip-on-glass better performances can be obtained by covering the backside of the chip.

Typical Frame Frequency at $V_{DD} = 3 \text{ V}$

Typical Frame Frequency at $T_A = 25$ °C



Application Example

These tables/figures show how to use the EM6124 with a given initialization. Rows "Data" show the logical value to affect pad DI for each falling edge of pad CLK. A reset cycle pad RES1 at OL is required before sending data.

Command byte	Initialization bits or display data
--------------	-------------------------------------

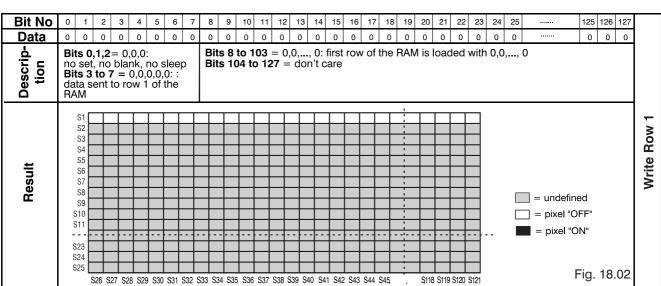
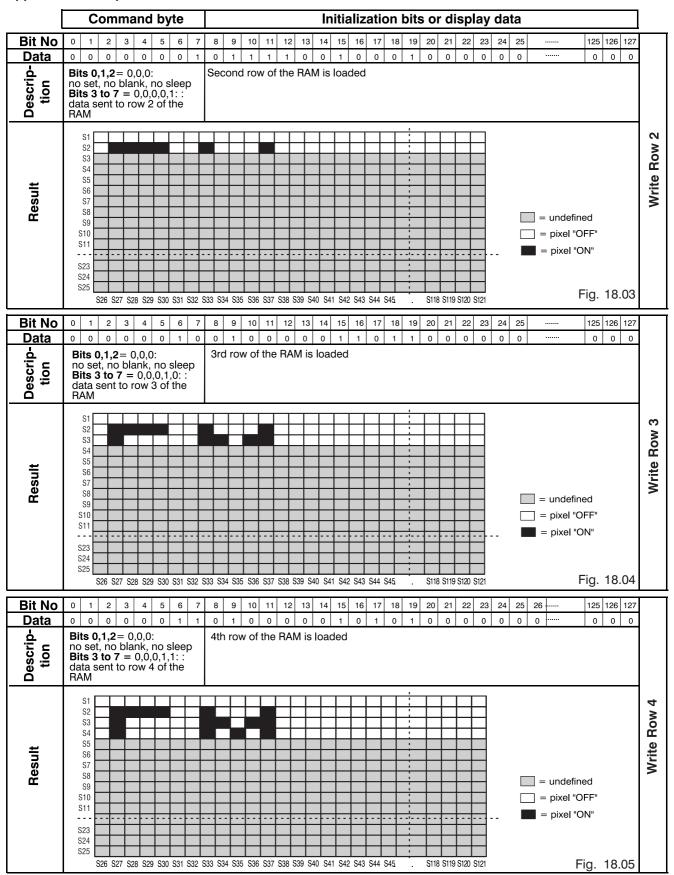
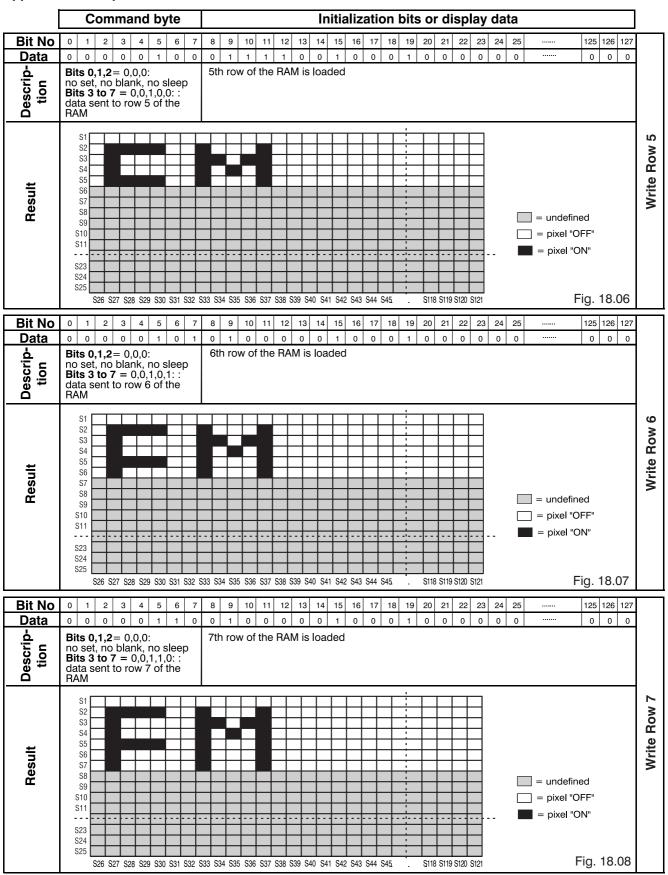
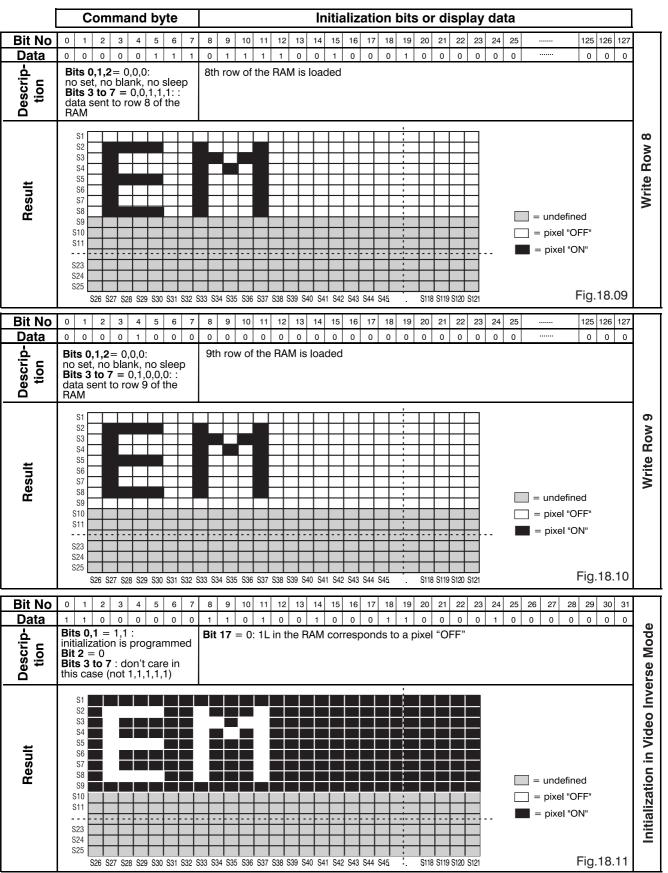
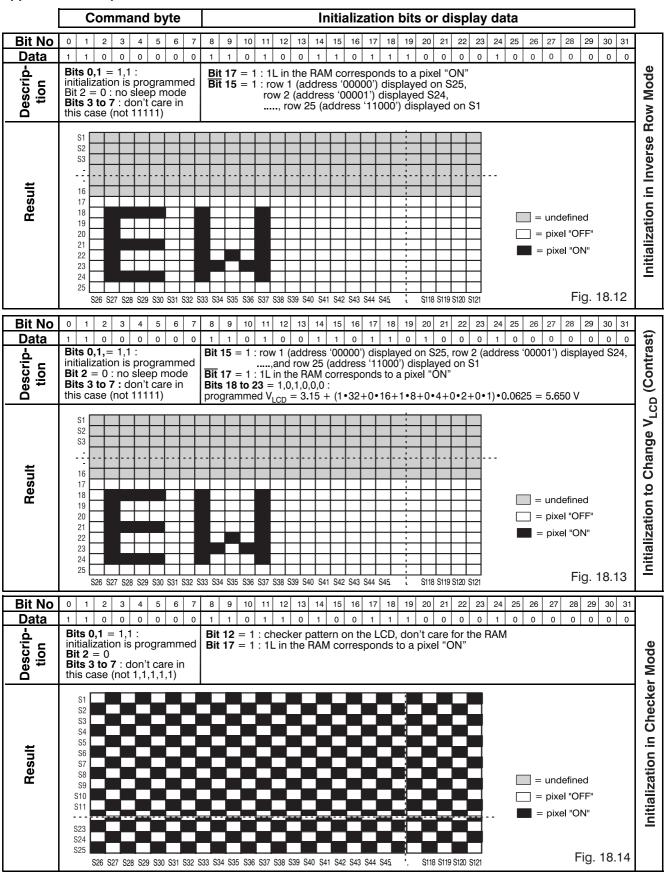
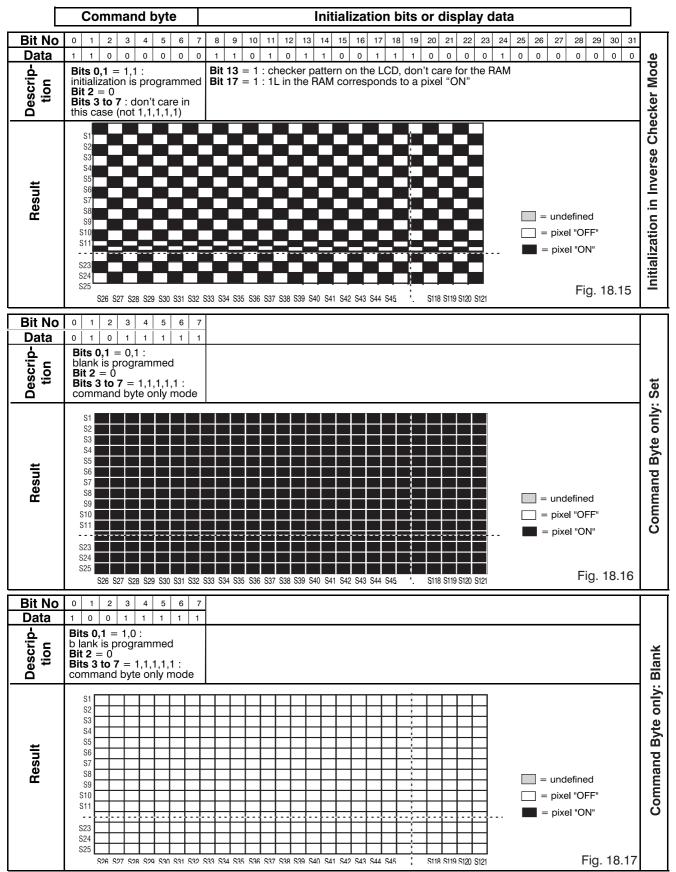
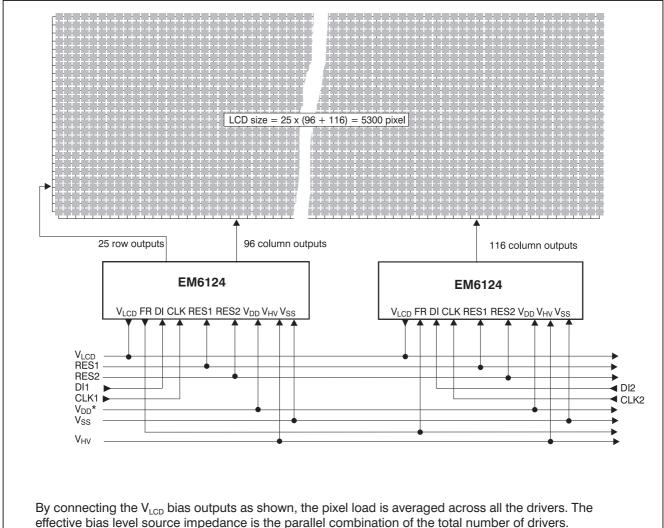




Table 15 (continued on next pages)

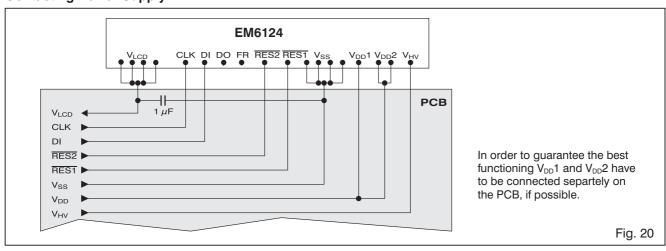




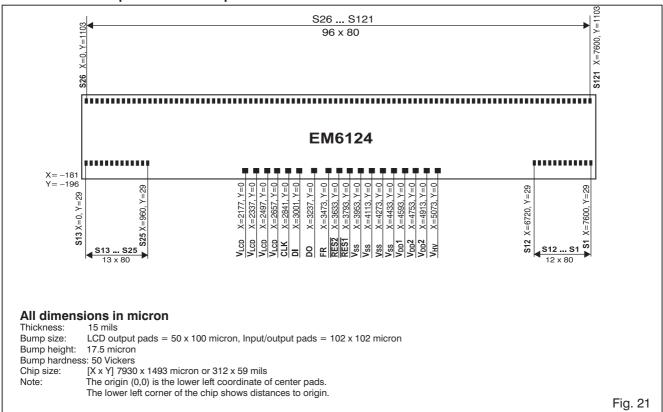




Applications


Two EM6124 work in parallel to drive up to 50 rows x 96 columns or 25 rows x 212 columns as below

effective bias level source impedance is the parallel combination of the total number of drivers. * V_{DD1} and V_{DD2} have been connected together.


Fig. 19

Contacting Power Supply

Dimensions of Chip Form and Bumped Die

Ordering Information

When ordering, please specify the complete Part Number

Part Number	Die Form	Bumping
EM6124WP15E	Die in waffle pack, 15 mils thickness	With gold bumps

For other delivery form in die (with or without bumps), please contact EM Microelectronic-Marin S.A. Minimum order quantity might apply.

EM Microelectronic-Marin SA cannot assume any responsibility for use of any circuitry described other than entirely embodied in an EM Microelectronic-Marin SA product. EM Microelectronic-Marin SA reserves the right to change the circuitry and specifications without notice at any time. You are strongly urged to ensure that the information given has not been superseded by a more up-to-date version.

E. & O.E. Printed in Switzerland, Th

© 2002 EM Microelectronic-Marin SA, 03/02, Vers. D/436