FOUR-BIT UP/DOWN COUNTER WITH THREE-STATE OUTPUTS

The SN54/74LS569A is designed as programmable up/down BCD and Binary counters respectively. These devices have 3-state outputs for use in bus organized systems. With the exception of output enable (OE) and asynchronous clear (ACLR), all functions occur on the positive edge of the clock pulse (CP).

When the LOAD input is LOW, the outputs will be programmed by the parallel data inputs ($\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$) on the next clock edge. Enabling of the counters occurs only when CEP and CET are LOW and LOAD is HIGH. Direction of the count is controlled by the up-down input (U/D), HIGH counts up and LOW counts down. High-speed counting and cascading is implemented by internal look-ahead carry logic and an active LOW ripple carry output (RCO). On the LS569A, the RCO is LOW at binary 15 during up-count and during down-count it is also LOW at binary 0 . During normal cascading operation RCO connected to the succeeding block at CET is the only requisite. When counting and when RCO is LOW, the clocked carry output (CCO) provides a HIGH-LOW-HIGH pulse for a duration equal to the LOW time of the clock pulse. Two active LOW reset lines are provided, a master reset asynchronous clear (ACLR) and a synchronous clear (SCLR). When in a HIGH state, the output control (OE) input forces the counter output into a HIGH impedance state and when LOW, the counter outputs are enabled.

- ESD > 3500 Volts

CONNECTION DIAGRAM (TOP VIEW)

$V_{C C}=\operatorname{PIN} 20$
GND $=$ PIN 10

Note: Pin 1 is marked for orientation.

SN54/74LS569A

FOUR-BIT UP/DOWN COUNTER WITH THREE-STATE OUTPUTS

LOW POWER SCHOTTKY

GUARANTEED OPERATING RANGES

Symbol	Parameter		Min	Typ	Max	Unit
V_{CC}	Supply Voltage	54	4.5	5.0	5.5	V
		74	4.75	5.0	5.25	
$\mathrm{~T}_{\mathrm{A}}$	Operating Ambient Temperature Range	54	-55	25	125	${ }^{\circ} \mathrm{C}$
		74	0	25	70	
IOH	Output Current - High Except RCO, CCO	54			-1.0	mA
		74			-2.6	
IOH	Output Current - High RCO, CCO	54,74			-0.44	mA
IOL	Output Current - Low Except RCO, CCO	54			12	mA
		74			24	
IOL	Output Current — Low, RCO, CCO	54			4.0	mA
		74			8.0	

SN54/74LS569A

FUNCTION TABLE

INPUTS												OUTPUTS						
CP	D	C	B	A	LOAD	CET	CEP	U/D	ACLR	SCLR	OE	RCO	CCO	Y_{D}	Y_{C}	Y_{B}	Y_{A}	
\uparrow	X	X	X	X	H	L	L	H	H	H	L	A/R	A/R		Q_{T} -	P) +1		Count Up
\uparrow	X	X	x	x	H	L	L	L	H	H	L	A/R	A/R		QT	P) -1		Count Down
\uparrow	X	X	X	x	H	H	X	X	H	H	L	H	H	NC	NC	NC	NC	Count Inhibit
\uparrow	X	x	X	X	H	L	H	X	H	H	L	A/R	H	NC	NC	NC	NC	Count Inhibit
Ω	X	X	X	X	X	L	L	H	H	H	L	L	r	H	H	H	H	Overflow
\uparrow	X	X	X	X	X	L	H	H	H	H	L	L	H	H	H	H	H	Overflow
\uparrow	X	X	x	X	X	H	X	H	H	H	L	H	H	H	H	H	H	Overflow Inhibit
\square	X	X	X	X	X	L	L	L	H	H	L	L	r	L	L	L	L	Underflow
\uparrow	X	X	X	X	X	L	H	L	H	H	L	L	H	L	L	L	L	Underflow
\uparrow	X	X	X	X	X	H	X	L	H	H	L	H	H	L	L	L	L	Underflow Inhibit
\uparrow	L	H	L	H	L	X	X	X	H	H	L	H	H	L	H	L	H	Load Example
\uparrow	X	X	X	X	X	H	X	H	H	L	L	H	H	L	L	L	L	Clear (Synchronous)
\square	X	x	X	X	X	L	L	L	H	L	L	L	r	L	L	L	L	Clear (Synchronous)
\uparrow	X	X	X	X	X	L	H	L	H	L	L	L	H	L	L	L	L	Clear (Synchronous)
\uparrow	X	X	X	x	X	H	X	L	H	L	L	H	H	L	L	L	L	Clear (Synchronous)
X	X	X	X	X	X	X	X	H	L	X	L	H	H	L	L	L	L	Asynchronous Clear
п	X	X	x	x	X	L	L	L	L	X	L	L	r	L	L	L	L	Asynchronous Clear
X	X	X	X	X	X	L	H	L	L	X	L	L	H	L	L	L	L	Asynchronous Clear
X	X	X	X	x	X	H	X	L	L	X	L	H	H	L	L	L	L	Asynchronous Clear
X	X	X	X	X	X	X	X	X	X	X	H	X	X					Output Disabled

$\left(Q_{\top}-C P\right)=$ Output state prior to clock edge
NC = No change
$\mathrm{A} / \mathrm{R}=$ Assumes required output state; $\quad \mathrm{X}=$ Don't care High except during Overflow and Underflow

DEFINITION OF FUNCTIONAL TERMS

$\overline{\text { A, B, C, D }}$	The four programmable data inputs. Count Enable Parallel. Can be used to enable and inhibit counting in high speed cascaded operation. CEP must be LOW to count.
$\overline{\text { CET }}$	Count Enable Trickle. Enables the ripple carry output for cascaded operation. Must be LOW to count.
$\overline{\text { CP }}$	Clock Pulse. All synchronous functions occur on the LOW-to-HIGH transition of the clock.
$\overline{\text { LOAD }} \quad$Enables parallel load of counter outputs from data inputs on the next clock edge. Must be HIGH to count.	
	Up/Down Count Control. HIGH counts up and LOW counts down.

$\overline{\text { ACLR }}$	Asynchronous Clear. Master res of re counters to zero when ACLR is LOW, independent of the clock.
$\overline{\mathrm{SCLR}}$	Synchronous clear of counters to zero on the next clock edge when SCLR is LOW.
$\overline{\mathrm{OE}}$	A HIGH on the output control sets the four counter outputs in the high impedance, and a LOW, enables the output.
$\overline{\mathrm{RCO}} \mathrm{Y}, \mathrm{Y}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{C}}, \mathrm{Y}_{\mathrm{D}}$	The four counter outputs.
CCO	Ripple Carry Output. Output will be LOW on the maximum count on up-count. Upon down-count, RCO is LOW at 0000.
	Clock Carry Output. While counting and RCO is LOW, CCO will follow the clock HIGH-LOW-HIGH transition.

LOW-POWER SCHOTTKY INPUT/OUTPUT
CURRENT INTERFACE CONDITIONS CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown

SN54/74LS569A
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Symbol	Parameter			Limits			Unit	Test Conditions		
				Min	Typ	Max				
V_{IH}	Input HIGH Voltage			2.0			V	Guaranteed Inp All Inputs	HIGH Voltage for	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		54			0.7	V	Guaranteed Input LOW Voltage for All Inputs		
			74			0.8				
V_{IK}	Input Clamp Diode Voltage				-0.65	-1.5	V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{IN}}$	$-18 \mathrm{~mA}$	
VOH	Output HIGH Voltage	$\begin{array}{\|l} \text { YA- } \\ \text { YD } \end{array}$	54	2.4	3.4		V	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{IOH}_{\mathrm{O}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or VIL per Truth Table		
			74	2.4	3.1		V			
		$\begin{aligned} & \text { RCO, } \\ & \text { CCO } \end{aligned}$	54	2.5	3.5		V			
			74	2.7	3.5		V			
V_{OL}	Output LOW Voltage		54, 74		0.25	0.4	V	$\mathrm{IOL}=\mathrm{IOL}$ MAX	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CC}} \text { MIN, } \\ & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL or or }} \mathrm{V}_{\text {IH }} \\ & \text { per Truth Table } \end{aligned}$	
			74		0.35	0.5	V			
IOZH	Output Off Current HIGH					20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		
IOZL	Output Off Current LOW					-20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$		
$\mathrm{IIH}^{\text {I }}$	Input HIGH Current					20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$		
						0.1	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$		
IIL	Input LOW Current	Others				-0.4	mA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V} \mathrm{IN}=0.4 \mathrm{~V}$		
		$\overline{C E T}$				-0.8	mA			
Ios	Short Circuit Current (Note 1)	RCO, CCO		-20		-100	mA	$V_{C C}=$ MAX		
		Others		-30		-130	mA			
ICC	Power Supply Current, 3-State					43	mA	$V_{C C}=$ MAX		

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.
AC CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Limits				
	Min	Typ	Max	Test Conditions		

fmax	Maximum Toggle Frequency	35		MHz	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=45 \mathrm{pF} \\ \mathrm{R}_{\mathrm{L}}=667 \Omega \end{gathered}$
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Clock to Q		$\begin{aligned} & 15 \\ & 20 \end{aligned}$	ns	
$\begin{array}{\|l\|l} \text { tpLH } \\ \text { tPHL } \end{array}$	Propagation Delay CET to RCO		$\begin{aligned} & \hline 14 \\ & 15 \end{aligned}$	ns	
$\begin{array}{\|l\|l} \text { tpLH } \\ \text { tpHL } \end{array}$	Propagation Delay U/D to RCO		$\begin{aligned} & 20 \\ & 24 \end{aligned}$	ns	
$\begin{aligned} & \text { tpLH } \\ & \text { tPHL } \end{aligned}$	Propagation Delay Clock to RCO		$\begin{aligned} & 20 \\ & 25 \end{aligned}$	ns	
$\begin{aligned} & \hline \begin{array}{l} \text { tPLH } \\ \text { tPHL } \end{array} \end{aligned}$	Propagation Delay CET to CCO		$\begin{aligned} & 16 \\ & 28 \end{aligned}$	ns	
tpLH tpHL	Propagation Delay CEP to CCO		$\begin{aligned} & 16 \\ & 26 \end{aligned}$	ns	
tpLH tPHL	Propagation Delay Clock to CCO		$\begin{aligned} & 15 \\ & 17 \end{aligned}$	ns	
$\begin{array}{\|l\|l} \text { tpLH } \\ \text { tPHL } \end{array}$	Propagation Delay ACLR to Q		$\begin{aligned} & 22 \\ & 32 \end{aligned}$	ns	
$\begin{array}{\|l\|l} \text { tpZH } \\ \text { tPZL } \end{array}$	Output Enable Time		15 20	ns	
$\left\lvert\, \begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}\right.$	Output Disable Time		20	ns	$\mathrm{CL}_{\mathrm{L}}=5.0 \mathrm{pF}$

AC SETUP REQUIREMENTS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$

Symbol	Parameter	Limits			Unit	Test Conditions
		Min	Typ	Max		
tw	Clock Pulse Width (Low)	20			ns	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{t}_{\text {s }}$	Setup Time, A, B, C, D	20			ns	
$\mathrm{t}_{\text {s }}$	Setup Time, SCLR	20			ns	
$\mathrm{t}_{\text {s }}$	Setup Time, LOAD	25			ns	
$\mathrm{t}_{\text {s }}$	Setup Time, U/D	30			ns	
$\mathrm{t}_{\text {s }}$	Setup Time, CET, CEP	20			ns	
th	Hold Time, Any Inputs	0			ns	
trec	ACLR	15			ns	

MICROPROGRAMMABLE DUAL-EVENT 8-BIT COUNTERS

Case 751D-03 DW Suffix
20-Pin Plastic SO-20 (WIDE)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. 751D-01, AND -02 OBSOLETE, NEW STANDARD 751D-03.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	12.65	12.95	0.499	0.510
B	7.40	7.60	0.292	0.299
C	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27 BSC		0.050 BSC	
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Case 732-03 J Suffix

20-Pin Ceramic Dual In-Line

NOTES:

1. LEADS WITHIN $0.25 \mathrm{~mm}(0.010)$ DIA., TRUE POSITION AT SEATING PLANE, AT MAXIMUM MATERIAL CONDITION.
2. DIM LTO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIM A AND B INCLUDES MENISCUS.

	MILLIMETERS		INCHES				
DIM	MIN	MAX	MIN	MAX			
A	23.88	25.15	0.940	0.990			
B	6.60	7.49	0.260	0.295			
C	3.81	5.08	0.150	0.200			
D	0.38	0.56	0.015	0.022			
F	1.40		1.65	0.055			
G	2.54 BSC		0.1005				
H	0.51		1.27	0.020			
JSC							
K	0.20	0.30	0.008	0.012			
K	3.18		4.06	0.125			
L	7.62 BSC		0.160				
M	0°		15°	0.300		0°	15°
N	0.25		1.02	0.010			

Case 738-03 N Suffix
20-Pin Plastic

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION "L" TO CENTER OF LEAD WHEN FORMED PARALLEL.
4. DIMENSION "B" DOES NOT INCLUDE MOLD FLASH.
5. 738-02 OBSOLETE, NEW STANDARD 738-03

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	25.66	27.17	1.010	1.070
B	6.10	6.60	0.240	0.260
C	3.81	4.57	0.150	0.180
D	0.39	0.55	0.015	0.022
E	1.27 BSC		0.050 BSC	
F	1.27	1.77	0.050	0.070
G	2.54 BSC		0.100 BSC	
J	0.21	0.38	0.008	0.015
K	2.80	3.55	0.110	0.140
L	7.62 BSC		0.300 BSC	
M	0°	15°	0°	15°
N	0.51	1.01	0.020	0.040

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and ' ${ }^{\text {dh }}$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
 USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
 EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
 ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, T

SYMBOL	SW1	SW2
tpze	Open	Closed
tPZL	Closed	Open
tPLZ	Closed	Cliosed

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

