

Preliminary

Overview

The LC651204N/F/L and LC651202N/F/L are small-scale application microcontroller products in Sanyo's LC6500 series of 4-bit single-chip CMOS microcontrollers, and as such they fully support the basic architecture and instruction set of that series. These microcontrollers are provided in a 30 -pin package and include 2 kilobytes (KB) and 4 KB of on-chip ROM. These products are appropriate for use in a wide range of applications, from applications that use a small number of controls and circuits that were previously implemented in standard logic to larger scale applications including audio equipment such as decks and players, office equipment, communications equipment, automotive equipment, and home appliances. Except for the lack of an A/D converter, these microcontrollers provide the same functionality as the LC651104, 02N/F/L.

Features

- Fabricated in a CMOS process for low power (An instruction-controlled standby function is provided.)
- ROM/RAM

LC651204N/F/L - ROM: $4 \mathrm{~K} \times 8$ bits, RAM: 256×4 bits LC651202N/F/L - ROM: $2 \mathrm{~K} \times 8$ bits, RAM: 256×4 bits

- Instruction set: The 80 -instruction set provided by all members of the LC6500 series.
- Wide operating power-supply voltage range of 2.5 to 5.5 volts (L version)
- Instruction cycle time: $0.92 \mu \mathrm{~s}$ (F version)
- On-chip serial I/O circuit
- Highly flexible I/O ports
- Number of ports: 6 ports with a total of 22 pins
- All ports: Can be used for both input and output I/O voltage: 15 V maximum (Only for C , D, E, and F ports with opendrain output specifications)
Output current: 20 mA maximum sink current (Capable of directly driving LEDs.)
- Options that allow specifications to be customized to match those of the application system.

Specification of open-drain output or built-in pullup resistor: can be specified for all ports in bit units.

Specification of the output level at reset: Can be specified to be high or low for ports C and D in port units.

- Interrupt functions
- Timer overflow vector interrupt (The interrupt state can be tested by the CPU.)
- Vector interrupts initiated by the $\overline{\mathrm{INT}}$ pin or full/empty states of the serial I/O circuit. (The interrupt state can be tested by the CPU.)
- Stack levels: 8 levels (shared with interrupts)
- Timers: 4 -bit prescaler plus 8 -bit programmable timers
- Clock oscillator options to match application system specifications.
— Oscillator circuit options: 2-pin ceramic oscillator (N, F , and L versions)
- Divider circuit option: No divider, built-in divide-bythree circuit, built-in divide-by-four circuit (N and L versions)
- Supports continuous output of a square wave signal (with a period 64 times the cycle time)
- Watchdog timer
- RC time constant scheme
- A watchdog timer function can be allocated to one of the external pins as an option.
- EP version: LC65E1104, OTP version: LC65P1104

Package Dimensions

unit : mm
3196-DIP30SD

unit : mm

3073A-MFP30S

Note: The package drawings shown above are provided without error tolerances and are for reference purposes only. Contact Sanyo for official package drawings.

Function Overview

Item		LC651204N/1202N	LC651204F/1202F	LC651204L/1202L
Memory	ROM	4096×8 bits (1204 N)	4096×8 bits (1204F)	4096×8 bits (1204L)
		2048×8 bits (1202N)	2048×8 bits (1202F)	2048×8 bits (1202L)
	RAM	256×4 bits (1204/1202N)	256×4 bits (1204/1202F)	256×4 bits (1204/1202L)
Instruction	Instruction set	80	80	80
	Table reference	Supported	Supported	Supported
Built-in functions	Interrupts	1 external, 1 internal	1 external, 1 internal	1 external, 1 internal
	Timers	4-bit prescaler + 8-bit timer	4-bit prescaler + 8-bit timer	4-bit prescaler + 8-bit timer
	Stack levels	8	8	8
	Standby function	Supports standby mode entered by the HALT instruction	Supports standby mode entered by the HALT instruction	Supports standby mode entered by the HALT instruction
1/O ports	Number of ports	$22 \mathrm{l} / \mathrm{O}$ pins	22 I/O pins	22 I/O pins
	Serial ports	4-bit or 8-bit I/O	4-bit or 8-bit I/O	4-bit or 8-bit I/O
	I/O voltage	15 V max.	15 V max.	15 V max.
	Output current	10 mA typ. 20 mA max.	10 mA typ. 20 mA max.	10 mA typ. 20 mA max.
	I/O circuit types	Open drain (n -channel) or built-in pull-up resistor output selectable on a per-bit basis.		
	Output levels at reset	High or low can be selected in port units. (ports C and D only)		
	Square wave output	Supported	Supported	Supported
Characteristics	Minimum cycle time	2.77 ¢ $\left(\mathrm{V}_{\mathrm{DD}} \geq 3 \mathrm{~V}\right)$	$0.92 \mu \mathrm{~s}\left(\mathrm{~V}_{\mathrm{DD}} \geq 3 \mathrm{~V}\right)$	$3.84 \mu \mathrm{~s}\left(\mathrm{~V}_{\mathrm{DD}} \geq 2.5 \mathrm{~V}\right)$
	Power-supply voltage	3 to 5.5 V	3 to 5.5 V	2.5 to 5.5 V
	Power-supply current	1.5 mA typ.	2 mA typ.	1.5 mA typ.
Oscillator	Oscillator	Ceramic ($800 \mathrm{kHz}, 1 \mathrm{MHz}, 4 \mathrm{MHz}$)	Ceramic (4 MHz)	Ceramic ($800 \mathrm{kHz}, 1 \mathrm{MHz}, 4 \mathrm{MHz}$)
	Divider circuit option	1/1, 1/3, 1/4	1/1	1/1, 1/3, 1/4
Other functions	Package	DIP30S-D MFP30S	DIP30S-D MFP30S	DIP30S-D MFP30S

[^0] should check with Sanyo for the latest information as the development process progresses.

Pin Assignment

Common assignments for the DIP and MFP packages

Note: NC pins must be connected to V_{SS}.

Pin Functions

Pin	
OSC1, OSC2	Connections for a ceramic oscillator element
$\overline{\text { RES }}$	Reset
PA0 to 3	I/O dual-function port A0 to A3
PC0 to 3	I/O dual-function port C0 to C3
PD0 to 3	I/O dual-function port D0 to D3
PE0 to 1	I/O dual-function port E0 to E1
PF0 to 3	I/O dual-function port F0 to F3
PG0 to 3	I/O dual-function port G0 to G3
TEST	Test
$\overline{\text { INT }}$	Interrupt request
SI	Serial input
SO	Serial output
SCK	Serial clock input and output
NC	No connection
WDR	Watchdog reset

Note: The SI, SO, $\overline{\text { SCK, }}$, and $\overline{\mathrm{INT}}$ pins are shared function pins that are also used as PF0 to PF3.

System Block Diagram
LC651204N/F/L, LC651202N/F/L

RAM: Data memory	ROM: Program memory	
F: Flag	PC: Program counter	
WR: Working register	INT: Interrupt control	
AC: Accumulator	IR: Instruction register	
ALU: Arithmetic and logic unit	I.DEC: Instruction decoder	
DP: Data pointer	CF, CSF: Carry flag, carry save flag	
E: E register	ZF, ZSF: Zero flag, zero save flag	
CTL: Control register	EXTF: External interrupt request flag	
OSC: Oscillator circuit	TMF: Internal interrupt request flag	
TM: Timer		
STS: Status register		

Development Support

Sanyo provides the following items to support application development using the LC651204 and LC651202.

1. User's manual

The "LC651104/1102 User's Manual" is used with these microcontrollers.
2. Development tool manual

See the "EVA800 - LC651104/1102 Development Tool Manual" for details on use of the EVA-800 system.
3. Development tool

- Program development (using the EVA-800 system)
— MS-DOS host computer system *1
- Cross assembler ... MS-DOS-based cross assembler: LC65S.EXE
— Evaluation chip: LC6595
- Emulator: The EVA-800 main unit plus the evaluation chip
- Program development (using the EVA-86000 system): Use the EVA86K-ECB651100.
- Program evaluation

The <LC65E1104> on-chip EPROM microcontroller

Development Support System

EVA-800 System

Note: 1. MS-DOS is a registered trademark of Microsoft Corporation
2. Here, "EVA-800" is a generic term for several emulators. Suffixes (A, B, etc.) will be attached to the name as new versions are developed. Note that the EVA-800 emulator (i.e., the model with no suffix) is an old version and cannot be used.

Pin Functions

Pin	Pin no.	I/O	Function	Options	State at reset	Handling when unused
$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{SS}} \end{aligned}$	1	-	Power supply	-	-	-
OSC1	1	Input	- System clock oscillator Connect an external ceramic oscillator element to these pins	(1) External clock (2) Two-pin ceramic oscillator (3) Divider circuit option	-	-
OSC2	1	Output	- Leave OSC2 open if an external clock is supplied.	1. No divider circuit 2. Divide-by-three circuit 3. Divide-by-four circuit		
$\begin{aligned} & \text { PAO to } \\ & \text { PA3 } \end{aligned}$	4	I/O	- I/O port A0 to A3 Input in 4-bit units using the IP instruction Output in 4-bit units using the OP instruction Port bits can be tested in bit units using the BP and BNP instructions. Port bits can be set or cleared in bit units using the SPB and RPB instructions. - PA3 is used for standby control. - Applications must be designed so that no chattering (e.g. switch bounce) occurs on the PA3 pin during a HALT instruction execution cycle.	(1) Output open drain (2) Built-in pull-up resistor - Options (1) and (2) can be specified in bit units.	High-level output (i.e., the output n-channel transistor will be off.)	Open drain output select the options, connect to V_{SS}.
$\begin{aligned} & \text { PC0 to } \\ & \text { PC3 } \end{aligned}$	4	I/O	- I/O port C0 to C3 The PC0 to PC3 pin functions are identical to those of the PA0 to 3 pins.* - High or low can be specified as the output at reset as an option. Note: These pins do not have a standby control function.	(1) Output open drain (2) Built-in pull-up resistor (3) High-level output at reset (4) Low-level output at reset - Options (1) and (2) can be specified in bit units. - Option (3) and (4) are specified in 4-bit units.	- High-level output - Low-level output (Depending on the option specified.)	The same as PA0 to PA3.
$\begin{aligned} & \text { PD0 to } \\ & \text { PD3 } \end{aligned}$	4	I/O	- I/O port D0 to D3 The PD0 to PD3 pin functions and options are identical to those of the PC0 to PC3 pins.	The same as PC0 to PC3.	The same as PCO to PC3.	The same as PA0 to PA3.

Continued on next page.

Continued from preceding page.

Pin	Pin no.	I/O	Function	Options	State at reset	Handling when unused
PE0 to PE1 /WDR	2	I/O	- I/O port E0 to E1 Input in 4-bit units using the IP instruction Output in 4-bit units using the OP instruction Port bits can be set or cleared in bit units using the SPB and RPB instructions. Port bits can be tested in bit units using the BP and BNP instructions. - The PE0 pin also has a continuous pulse (64-Tcyc) output function. - The PE1 pin can be set to function as the WDR watchdog timer reset pin as an option.	(1) Output open drain (2) Built-in pull-up resistor - Options (1) and (2) can be specified in bit units. (3) Normal port PE1 (4) Watchdog timer reset WDR (5) (3) or (4) can be specified.	High-level output (i.e., the output n-channel transistor will be off.)	The same as PA0 to PA3.
$\begin{aligned} & \mathrm{PF} 0 / \mathrm{SI} \\ & \mathrm{PF} 1 / \mathrm{SO} \\ & \mathrm{PF} 2 / \overline{\mathrm{SCK}} \\ & \mathrm{PF} 3 / \overline{\mathrm{NT}} \end{aligned}$	4	I/O	- I/O port F0 to F3 This port has the same functions and options as PE0 to PE1. * - The pins PF0 to PF3 are also used as the serial interface and the $\overline{\text { INT }}$ pin. The function used can be selected under program control. SISerial input port SO.....Serial output port $\overline{\text { SCK }}$.-Serial clock input or output $\overline{\mathrm{INT}}$....Interrupt request input Serial I/O can be switched between 4bit and 8-bit operation under program control. Note: This port does not provide a continuous pulse output function.	The same as PA0 to PA3.	The same as PA0 to PA3. The serial port function is disabled. The interrupt source is INT.	The same as PA0 to PA3.
$\begin{aligned} & \text { PG0 to } \\ & \text { PG3 } \end{aligned}$	4	I/O	- I/O port G0 to G3 This port has the same functions and options as PE0 to PE1. * Note: This port does not provide a continuous pulse output function.	The same as PA0 to PA3.	The same as PA0 to PA3.	The same as PA0 to PA3.
NC	2		- NC pin. This pin must be connected to V_{SS} in the EP and OTP versions.	-	-	Connect to $\mathrm{V}_{\text {SS }}$.
$\overline{\mathrm{RES}}$	1	Input	- System reset input - Connect an external capacitor for the power up reset. - A low level must be applied for at least four clock cycles for the reset startup sequence to operate correctly.	-	-	-
TEST	1	Input	- LSI test pin Must be connected to $\mathrm{V}_{\text {SS }}$.	-	-	Must be connected to V_{SS}.

Oscillator Circuit Options

Option	Conditions and notes		
External clock		The OSC2 pin must be left open.	
Ceramic oscillator			

Divider Options

Option

Caution: The oscillator and divider options are summarized in the following tables. The information presented in those tables is crucial when using these products.

LC651204N/F/L, LC651202N/F/L

Divider Options for the LC651204N/1202N, LC651204F/1202F, and LC651204L/1202L LC651204N, LC651202N

Circuit type	Frequency	Divider option (cycle time)	V_{DD} range	
Ceramic oscillator	800 kHz	$1 / 1(5 \mu \mathrm{~s})$	3 to 5.5 V	
	1 MHz	$1 / 1(4 \mu \mathrm{~s})$	3 to 5.5 V	
	4 MHz	$1 / 3(3 \mu \mathrm{~s})$	3 to 5.5 V	Notes
		$1 / 4(4 \mu \mathrm{~s})$	3 to 5.5 V	divider (i.e., no divider circuit) option.
two-terminal RC oscillator circuit	2000 k to 4330 kHz	$1 / 3(6$ to $2.77 \mu \mathrm{~s})$	3 to 5.5 V	
	2600 k to 4330 kHz	$1 / 4(6$ to $3.70 \mu \mathrm{~s})$	3 to 5.5 V	3 to 5.5 V

LC651204F, LC651202F

Circuit type	Frequency	Divider option (cycle time)	V_{DD} range	Notes
Ceramic oscillator	4 MHz	$1 / 1(1 \mu \mathrm{~s})$	3 to 5.5 V	
External clock generated by a two-terminal RC oscillator circuit	670 k to 4330 kHz	$1 / 1(6$ to $0.92 \mu \mathrm{~s})$	3 to 5.5 V	
Use of an external clock with the ceramic oscillator circuit	Driving the circuit with an external clock is not possible. To use external clock drive, specify the two-terminal RC oscillator option.			

LC651204L LC651202L

Circuit type	Frequency	Divider option (cycle time)	V_{DD} range	
Ceramic oscillator	800 kHz	$1 / 1(5 \mu \mathrm{~s})$	2.5 to 5.5 V	
	1 MHz	$1 / 1(4 \mu \mathrm{~s})$	2.5 to 5.5 V	
	2 MHz	$1 / 4(4 \mu \mathrm{~s})$	2.5 to 5.5 V	This frequency cannot be used with the $1 / 1,1 / 3$ divider (i.e., no divider circuit) option.
		$1 / 1(6$ to $3.84 \mu \mathrm{~s})$	2.5 to 5.5 V	
two-terminal RC oscillator circuit	2000 k to 3120 kHz	$1 / 3(6$ to $3.84 \mu \mathrm{~s})$	2.5 to 5.5 V	
	2600 k to 4160 kHz	$1 / 4(6$ to $3.84 \mu \mathrm{~s})$	2.5 to 5.5 V	
Use of an external clock with the ceramic oscillator option selected	Driving the circuit with an external clock is not possible. To use external clock drive, specify the two-terminal RC oscillator option.			

LC651204N/F/L, LC651202N/F/L

Port C and D Output State at Reset Options

The output levels at reset of the I/O ports C and D can be selected from the following two options, which are specified in 4-bit units.

Option	Conditions and notes
High-level output at reset	Ports C and D in 4-bit units
Low-level output at reset	Ports C and D in 4-bit units

Port Output Circuit Type Option

The output circuit types of the I/O ports can be selected from the following two options in bit units.

Option	Circuit	Conditions and notes	
Open drain output		P C, D, E, F, and G	
Pull-up resistor output			

Watchdog Timer Reset Option

Whether the PE1/WDR pin functions as the normal port PE1 or as the WDR watchdog timer reset pin can be selected as an option.

LC651204N, 651202N
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings	Unit
Maximum supply voltage	V_{DD} max		V_{DD}	-0.3 to +7.0	V
Output voltage	V_{0}		OSC2	Voltages up to any generated voltage are allowed.	V
Input voltage	$\mathrm{V}_{1}(1)$		OSC1 * 1	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{1}(2)$		TEST, $\overline{\text { RES }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
I/O voltage	$\mathrm{V}_{\text {IO }}(1)$	PC0 to 3, PD0 to 3, PE0, 1, PF0 to 3	OD specification ports	-0.3 to + 15	V
	$\mathrm{V}_{\text {IO }}$ (2)	PC0 to 3, PD0 to 3, PE0, 1, PF0 to 3	PU specification ports	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	V_{IO} (3)	PA0 to 3, PG0 to 3		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Peak output current	${ }^{\text {OP }}$		I/O ports	-2 to +20	mA
Average output current	I_{OA}	Average value per pin over a 100-ms period	I/O ports	-2 to +20	mA
	$\Sigma \mathrm{I}_{\mathrm{OA}}(1)$	Total current for pins PC0 to 3, PD0 to 3, and PEO to 1*2	PC0 to PC3 PD0 to PD3 PE0 to PE1	-15 to +100	mA
	$\Sigma \mathrm{I}_{\mathrm{OA}}(2)$	Total current for pins PFO to 3, PG0 to 3, and PA0 to $3 * 2$	PF0 to PF3 PG0 to PG3 PA0 to PA3	-15 to +100	mA
Allowable power dissipation	Pd max (1)	Ta $=-40$ to $+85^{\circ} \mathrm{C}$ (DIP package)		250	mW
	Pd max (2)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (MFP package)		150	mW
Operating temperature	Topr			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-55 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0$ to 5.5 V (unless otherwise specified)

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Operating power-supply voltage	$V_{D D}$		$V_{D D}$	3.0		5.5	V
Standby power-supply voltage	$\mathrm{V}_{\text {ST }}$	RAM and register values retained *3	$V_{\text {DD }}$	1.8		5.5	V
Input high-level voltage	$\mathrm{V}_{\mathrm{IH}}(1)$	Output n-channel transistors off	OD specification ports C, D, E, and F	$0.7 \mathrm{~V}_{\mathrm{DD}}$		13.5	V
	$\mathrm{V}_{\mathrm{IH}}(2)$	Output n-channel transistors off	PU specification ports C, D, E, and F	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V
	V_{IH} (3)	Output n-channel transistors off	Port A, G	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
	$\mathrm{V}_{\mathrm{IH}}(4)$	Output n-channel transistors off	The $\overline{\mathrm{NT}}, \overline{\mathrm{SCK}}$, and SI pins with OD specifications	0.8 V DD		13.5	V
	$\mathrm{V}_{\mathrm{IH}}(5)$	Output n-channel transistors off	The $\overline{\mathrm{NT}}, \overline{\mathrm{SCK}}$, and SI pins with PU specifications	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{D D}$	V
	$\mathrm{V}_{\mathrm{IH}}(6)$	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	$\overline{\mathrm{RES}}$	0.8 V DD		V_{DD}	V
	$\mathrm{V}_{\mathrm{IH}}(7)$	External clock specifications	OSC1	0.8 V DD		V_{DD}	V

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions		Applicable pins/notes	Ratings				
				min	typ	max	Unit		
Input low-level voltage	$\mathrm{V}_{\text {IL }}$ (1)	Output n-channel transistor off	$\mathrm{V}_{\mathrm{DD}}=4$ to 5.5 V		Port	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }}$ (2)	Output n-channel transistor off	$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V	Port	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }}$ (3)	Output n-channel transistor off	$\mathrm{V}_{\mathrm{DD}}=4$ to 5.5 V	$\overline{\text { INT, }} \overline{\text { SCk, SI }}$	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }}$ (4)	Output n-channel transistor off	$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V	INT, $\overline{\text { SCk, SI }}$	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\text {DD }}$	V	
	$\mathrm{V}_{\text {IL }}$ (5)	External clock specifications	$\mathrm{V}_{\mathrm{DD}}=4$ to 5.5 V	OSC1	$V_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }}$ (6)	External clock specifications	$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V	OSC1	$V_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }}(7)$		$\mathrm{V}_{\mathrm{DD}}=4$ to 5.5 V	TEST	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }}$ (8)		$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V	TEST	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }}$ (9)		$\mathrm{V}_{\mathrm{DD}}=4$ to 5.5 V	$\overline{\text { RES }}$	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
	$\mathrm{V}_{\text {IL }}$ (10)		$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V	$\overline{\text { RES }}$	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V	
Operating frequency (cycle time)	$\begin{aligned} & \text { fop } \\ & \text { (Tcyc) } \end{aligned}$	Frequencies up to 4.33 MHz are supported if the divide-bythree or divide-by-four divider circuit option is used.	$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V		$\begin{gathered} 670 \\ (6) \end{gathered}$		$\begin{gathered} 1444 \\ (2.77) \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & (\mu \mathrm{~s}) \end{aligned}$	
External clock conditions Frequency	text	Figure 1. The divide-by-three or divide-by-four divider circuit option must be used if the clock frequency exceeds 1.444 MHz .	$V_{D D}=3$ to 5.5 V	OSC1	670		4330	kHz	
Pulse width	textH, textL		$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V	OSC1	69			ns	
Rise and fall times	textR, textF		$\mathrm{V}_{\mathrm{DD}}=3$ to 5.5 V	OSC1			50	ns	
Guaranteed oscillator constants Ceramic oscillator		Figure 2				See Table 1			

LC651204N/F/L, LC651202N/F/L

Electrical Characteristics at $\mathrm{Ta}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0$ to 5.5 V (unless otherwise specified)

Parameter		Symbol	Conditions	Applicable pins/notes	Ratings				
		min			typ	max	Unit		
Input high-level current			${ }_{1 / H}(1)$	Output n-channel transistor off (Includes the n -channel transistor off leakage current.) $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}$	Ports C, D, E, and F with open-drain specifications			5.0	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{IH}}(2)$	Output n-channel transistor off (Includes the n -channel transistor off leakage current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	Ports A and G with open-drain specifications			1.0	$\mu \mathrm{A}$	
		$\mathrm{I}_{\mathrm{IH}}(3)$	External clock mode, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	OSC1			1.0	$\mu \mathrm{A}$	
Input low-level current		IIL (1)	Output n-channel transistor off $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	Ports with open-drain specifications	-1.0			$\mu \mathrm{A}$	
		$\mathrm{I}_{\text {IL }}$ (2)	Output n-channel transistor off $V_{I N}=V_{S S}$	Ports with pull-up resistor specifications	-1.3	-0.35		mA	
		IIL (3)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	RES	-45	-10		$\mu \mathrm{A}$	
		IL (4)	External clock mode, $\mathrm{V}_{1 \mathrm{I}}=\mathrm{V}_{\text {SS }}$	OSC1	-1.0			$\mu \mathrm{A}$	
Output high-level voltage		$\mathrm{V}_{\mathrm{OH}}{ }^{(1)}$	$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=4.0 \text { to } 5.5 \mathrm{~V} \end{array}$	Ports with pull-up resistor specifications	$V_{D D}-1.2$			V	
		$\mathrm{V}_{\mathrm{OH}}{ }^{(2)}$	$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A} \\ \mathrm{~V}_{\mathrm{DD}}=3.0 \text { to } 5.5 \mathrm{~V} \end{array}$	Ports with pull-up resistor specifications	$\mathrm{V}_{\mathrm{DD}}-0.5$			V	
Output low-level voltage		V_{OL} (1)	$\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4.0$ to 5.5 V	Port			1.5	V	
		$\mathrm{V}_{\mathrm{OL}}{ }^{(2)}$	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$, with the I_{OL} for all ports no more than $1 \mathrm{~mA} . \mathrm{V}_{\mathrm{DD}}=3.0$ to 5.5 V	Port			0.5	V	
	Hysteresis voltage	$\mathrm{V}_{\mathrm{HIS}}$		$\overline{\mathrm{RES}}, \overline{\mathrm{INT}}, \overline{\mathrm{SCK}}$, and SI OSC1 with Schmitt specifications *4		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V	
	High-level threshold voltage	V_{tH}			$0.4 \mathrm{~V}_{\text {DD }}$		$0.8 \mathrm{~V}_{\mathrm{DD}}$	V	
	Low-level threshold voltage	V_{tL}			$0.2 \mathrm{~V}_{\mathrm{DD}}$		$0.6 \mathrm{~V}_{\mathrm{DD}}$	V	
	rrent drain	$\mathrm{I}_{\text {DDOP }}(1)$	Operating, output n-channel transistors off, Ports $=V_{D D}$ Figure 2, 4 MHz , divide-by-three circuit	$V_{D D}$		1.5	5	mA	
Ceramic oscillator		$\mathrm{I}_{\text {DDOP }}$ (2)	Figure 2, 4 MHz , divide-by-four circuit	$V_{\text {DD }}$		1.5	4	mA	
		IDDOP (3)	Figure 2, 800 kHz	$V_{D D}$		1.5	4	mA	
External clock		$\mathrm{I}_{\text {DDOP }}(4)$	670 to 1444 kHz , no divider circuit 2000 to 4330 kHz , divide-by-three circuit 2600 to 4330 kHz , divide-by-four circuit	$V_{D D}$		1.5	5	mA	
Standby mode		${ }^{\text {DDst }}$	Output n-channel transistor off, $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$ Ports $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	$V_{D D}$ $V_{D D}$		$\begin{gathered} 0.05 \\ 0.025 \end{gathered}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$	

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Oscillator characteristics Ceramic oscillator Oscillator frequency	${ }^{\text {f CFOSC }}$ *5	Figure 2, $\mathrm{fo}=800 \mathrm{kHz}$ Figure 2, fo $=1 \mathrm{MHz}$ Figure 2, fo $=4 \mathrm{MHz}$, divide-by-three or divide-by-four circuit	$\begin{aligned} & \text { OSC1, OSC2 } \\ & \text { OSC1, OSC2 } \\ & \text { OSC1, OSC2 } \end{aligned}$	$\begin{gathered} 768 \\ 960 \\ 3840 \end{gathered}$	$\begin{gathered} 800 \\ 1000 \\ 4000 \end{gathered}$	$\begin{gathered} 832 \\ 1040 \\ 4160 \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
Oscillator stabilization time	${ }^{\text {t CFS }}$	Figure 3, fo $=800 \mathrm{kHz}, 1 \mathrm{MHz}, 4 \mathrm{MHz}$ Divide-by-three or divide-by-four circuit				5	ms
Pull-up resistors I/O ports	R PP	Output n-channel transistor off $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$	Ports with pull-up resistor specifications	8	14	30	k Ω
$\overline{\mathrm{RES}}$	Ru	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\overline{\text { RES }}$	100	250	400	k Ω
External reset characteristics Reset time	$\mathrm{t}_{\text {RST }}$				See Figure 4.		
Pin capacitance	Cp	$\mathrm{f}=1 \mathrm{MHz}$ With all pins other than the pin being measured at $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$			10		pF
Serial clock Input clock cycle time	tckey (1)	Figure 5	$\overline{\text { SCK }}$	3.0			$\mu \mathrm{s}$
Output clock cycle time	${ }^{\text {t }}$ CKCY ${ }^{(2)}$	Figure 5	$\overline{\text { SCK }}$		$\begin{gathered} \hline 64 \times \mathrm{T}_{\mathrm{CYC}} \\ * 6 \end{gathered}$		$\mu \mathrm{s}$
Input clock low-level pulse width	$\mathrm{t}_{\mathrm{CKL}}$ (1)	Figure 5	$\overline{\text { SCK }}$	1.0			$\mu \mathrm{s}$
Output clock low-level pulse width	${ }^{\text {t }}$ KLL ${ }^{(2)}$	Figure 5	$\overline{\text { SCK }}$		$32 \times \mathrm{T}_{\mathrm{cyc}}$		$\mu \mathrm{s}$
Input clock high-level pulse width	$\mathrm{t}_{\text {CKH }}{ }^{(1)}$	Figure 5	$\overline{\text { SCK }}$	1.0			$\mu \mathrm{s}$
Output clock high-level pulse width	$\mathrm{t}_{\text {CKH }}(2)$	Figure 5	$\overline{\text { SCK }}$		$32 \times \mathrm{T}_{\mathrm{crc}}$		$\mu \mathrm{s}$

Continued on next page.

Continued from preceding page.

Parameter		Symbol	Conditions		Applicable pins/notes	Ratings				
		$\mathrm{V}_{\mathrm{DD}}(\mathrm{v})$		min		typ	max	Unit		
Serial input Data setup time Data hold time			$t_{\text {ICK }}$ ${ }^{\mathrm{t}} \mathrm{CKI}$	Stipulated with respect to the rising edge of SCK. Figure 5		SI SI	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$			$\mu \mathrm{s}$ $\mu \mathrm{s}$
Serial output Output delay time		${ }^{\text {t CKO }}$	Stipulated with respect to the falling edge of SCK. For n-channel open-drain outputs only: External resistance: $1 \mathrm{k} \Omega$, external capacitance: 50 pF Figure 5	SO				0.6	$\mu \mathrm{s}$	
Pulse output Period High-level pulse width Low-level pulse width		$t_{\text {PCY }}$	Figure 6 Tcyc $=4 x$ the system clock period For n-channel open-drain outputs only: External resistance: $1 \mathrm{k} \Omega$, external capacitance: 50 pF		PE0		$64 \times \mathrm{T}_{\text {CYC }}$		$\mu \mathrm{s}$	
		t_{PH}			PE0		$\begin{array}{\|c\|} 32 \times \mathrm{T}_{\mathrm{CYC}} \\ \pm 10 \% \\ \hline \end{array}$		$\mu \mathrm{s}$	
		tpL			PE0		$\begin{array}{\|c\|} \hline 32 \times \mathrm{T}_{\mathrm{CYC}} \\ \pm 10 \% \end{array}$		$\mu \mathrm{s}$	
Guaranteed constants *7		C_{W}	When PE1 has open-drain output specifications	3 to 5.5	WDR		0.1 $1 \pm 5 \%$		$\mu \mathrm{F}$	
		R_{W}	When PE1 has open-drain output specifications		WDR		$680 \pm 1 \%$		k Ω	
		R_{1}	When PE1 has open-drain output specifications		WDR		$100 \pm 1 \%$		Ω	
	Clear time (discharge)	${ }_{\text {W }}$ WCT	See Figure 7.		WDR	100			$\mu \mathrm{s}$	
	Clear period (charge)	$t_{\text {Wccy }}$	See Figure 7.		WDR	29			ms	
	Guaranteed constants *7	C_{W}	When PE1 has open-drain output specifications	4 to 5.5	WDR		0.047さ5\%		$\mu \mathrm{F}$	
		R_{W}	When PE1 has open-drain output specifications		WDR		$680 \pm 1 \%$		k Ω	
		R_{I}	When PE1 has open-drain output specifications		WDR		$100 \pm 1 \%$		Ω	
	Clear time (discharge)	${ }^{\text {t }}$ WCT	See Figure 7.		WDR	40			$\mu \mathrm{s}$	
	Clear period (charge)	twccy	See Figure 7.		WDR	15			ms	

Note: 1. When driven internally using the oscillator circuit shown in Figure 3 with guaranteed constants, values up to the amplitude of the generated oscillation are allowed.
2. The average over a $100-\mathrm{ms}$ period
3. The operating power-supply voltage VDD must be maintained from the point where a HALT instruction is executed until the point where the device has fully entered the standby state. Also, applications must be designed so that no chattering (e.g. switch bounce) occurs on the PA3 pin during a HALT instruction execution cycle.
4. When external clock is selected as the oscillator option, the OSC1 pin has Schmitt characteristics.
5. The values shown for fCFOSC are the frequencies for which oscillation is possible. The center frequency when a ceramic oscillator is used may differ by about 1% from the nominal value listed by the manufacturer of the ceramic oscillator element. See the specifications of the ceramic oscillator element for details.
6. Tcyc $=4 \times$ the system clock period
7. If this device is used in an environment subject to condensation, extra care is required concerning leakage between PE1 and adjacent pins and leakage associated with external capacitors.

Figure 1 External Clock Input Waveform

Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Period

Table 1: Guaranteed Ceramic Oscillator Constants

4 MHz (Murata Mfg. Co., Ltd.) CSA4.00MG CST4.00MGW (built-in capacitor version)	C1	$33 \mathrm{pF} \pm 10 \%$
	C2	$33 \mathrm{pF} \pm 10 \%$
	R	0Ω
4 MHz (Kyocera Corporation) KBR4.0MSA KBR4.0MKS (built-in capacitor version)	C1	$33 \mathrm{pF} \pm 10 \%$
	C2	$33 \mathrm{pF} \pm 10 \%$
	R	0Ω
1 MHz (Murata Mfg. Co., Ltd.)CSB1000J	C1	$100 \mathrm{pF} \pm 10 \%$
	C2	$100 \mathrm{pF} \pm 10 \%$
	R	$2.2 \mathrm{k} \Omega$
1 MHz (Kyocera Corporation) KBR1000F	C1	$100 \mathrm{pF} \pm 10 \%$
	C2	$100 \mathrm{pF} \pm 10 \%$
	R	0Ω
800 kHz (Murata Mfg. Co., Ltd.) CSB800J	C1	$100 \mathrm{pF} \pm 10 \%$
	C2	$100 \mathrm{pF} \pm 10 \%$
	R	$2.2 \mathrm{k} \Omega$
800 kHz (Kyocera Corporation) KBR800F	C1	$220 \mathrm{pF} \pm 10 \%$
	C2	$220 \mathrm{pF} \pm 10 \%$
	R	0Ω

Figure 4 Reset Circuit
Note: When the power supply rise time is zero, the reset time with CRES $=0.1 \mu \mathrm{~F}$ will be between 5 and 50 ms . If the power supply rise time is comparatively long, increase the value of CRES so that the reset time is over 5 ms .

Figure 5 Serial I/O Timing

Figure 6 Port PEO Pulse Output Timing

${ }^{\text {t }}$ WCCY: : Charge time due to the external components $\mathrm{C}_{\mathrm{W}}, \mathrm{R}_{\mathrm{W}}$, and RI.
${ }^{t_{W C T}}$: Discharge time due to program processing
Figure 7 Watchdog Timer Waveform

LC651204F, 651202F
Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings	Unit
Maximum supply voltage	V_{DD} max		V_{DD}	-0.3 to +7.0	V
Output voltage	V_{O}		OSC2	Voltages up to any generated voltage are allowed.	V
Input voltage	V_{1} (1)		OSC1 * 1	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{1}(2)$		TEST, $\overline{\text { RES }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
I/O voltage	V_{IO} (1)	PC0 to 3, PD0 to 3, PE0, 1, PF0 to 3	OD specification ports	-0.3 to + 15	V
	V_{IO} (2)	PC0 to 3, PD0 to 3, PE0, 1, PF0 to 3	PU specification ports	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	V_{IO} (3)	PA0 to 3, PG0 to 3		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Peak output current	I_{OP}		1/O ports	-2 to +20	mA
Average output current	I_{OA}	Average value per pin over a 100-ms period	I/O ports	-2 to +20	mA
	$\Sigma \mathrm{I}_{\mathrm{OA}}(1)$	Total current for pins PC0 to 3, PD0 to 3 , and PE0 to 1 *2	PCO to 3 PDO to 3 PEO to 1	-15 to +100	mA
	$\Sigma \mathrm{I}_{\mathrm{OA}}(2)$	Total current for pins PF0 to 3, PG0 to 3, and PAO to 3*2	$\begin{aligned} & \text { PF0 to } 3 \\ & \text { PG0 to } 3 \\ & \text { PA0 to } 3 \end{aligned}$	-15 to +100	mA
Allowable power dissipation	Pd max (1)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (DIP package)		250	mW
	Pd max (2)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (MFP package)		150	mW
Operating temperature	Topr			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-55 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0$ to 5.5 V (unless otherwise specified)

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Operating power-supply voltage	$V_{D D}$		$V_{D D}$	3.0		5.5	V
Standby power-supply voltage	$\mathrm{V}_{\text {ST }}$	RAM and register values retained *3	$V_{D D}$	1.8		5.5	V
Input high-level voltage	V_{IH} (1)	Output n-channel transistors off	OD specification ports C, D, E, and F	0.7 V DD		13.5	V
	$\mathrm{V}_{\mathrm{IH}}(2)$	Output n-channel transistors off	PU specification ports C, D, E, and F	0.7 V DD		$V_{D D}$	V
	V_{IH} (3)	Output n-channel transistors off	Port A, G	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
	$\mathrm{V}_{\mathrm{IH}}(4)$	Output n-channel transistors off	The $\overline{\mathrm{NT}}$, $\overline{\text { SCK, and SI pins with }}$ OD specifications	0.8 V DD		13.5	V
	$\mathrm{V}_{\mathrm{IH}}(5)$	Output n-channel transistors off	The $\overline{\mathrm{NT}}$, $\overline{\text { SCK, and SI pins with }}$ PU specifications	0.8 V DD		V_{DD}	V
	$\mathrm{V}_{\mathrm{IH}}(6)$	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	$\overline{\mathrm{RES}}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
	$\mathrm{V}_{\mathrm{IH}}(7)$	External clock specifications	OSC1	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$ (1)	Output n-channel transistors off	Port	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\text {DD }}$	V
	$\mathrm{V}_{\text {IL }}$ (2)	Output n-channel transistors off	$\overline{\mathrm{INT}}$, $\overline{\text { SCK, SI }}$	V_{SS}		$0.2 \mathrm{~V}_{\text {DD }}$	V
	$\mathrm{V}_{\text {IL }}$ (3)	External clock specifications	OSC1	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\text {DD }}$	V
	$\mathrm{V}_{\text {IL }}$ (4)		TEST	$\mathrm{V}_{S S}$		$0.2 \mathrm{~V}_{\text {DD }}$	V
	$\mathrm{V}_{\text {IL }}$ (5)		$\overline{\text { RES }}$	$\mathrm{V}_{S S}$		$0.2 V_{\text {DD }}$	V

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Operating frequency (cycle time)	$\begin{aligned} & \hline \text { fop } \\ & \text { (T cyc) } \end{aligned}$			$\begin{gathered} \hline 670 \\ (6) \end{gathered}$		$\begin{gathered} 4330 \\ (0.97) \end{gathered}$	$\begin{aligned} & \hline \mathrm{kHz} \\ & (\mu \mathrm{~s}) \\ & \hline \end{aligned}$
External clock conditions Frequency Pulse width Rise and fall times	text textH, textL textR, textF	Figure 1	$\begin{aligned} & \text { OSC1 } \\ & \text { OSC1 } \\ & \text { OSC1 } \end{aligned}$	$\begin{gathered} 670 \\ 69 \end{gathered}$		$\begin{gathered} 4330 \\ 50 \end{gathered}$	kHz ns ns
Guaranteed oscillator constants Ceramic oscillator		Figure 2		See table 1.			

Electrical Characteristics at $\mathrm{Ta}=-\mathbf{4 0}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=\mathbf{3 . 0}$ to 5.5 V (unless otherwise specified)

Parameter	Symbol	Conditions		Applicable pins/notes	Ratings				
				min	typ	max	Unit		
Input high-level current	$\mathrm{I}_{\mathrm{HH}}(1)$	Output n-channel transistor off (Includes the n -channel transistor off leakage current.)$\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}$			Ports C, D, E, and F with open-drain specifications			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IH}}(2)$	Output n-channel transistor off (Includes the n -channel transistor off leakage current.)$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$		Ports A and G with open-drain specifications			1.0	$\mu \mathrm{A}$	
	$\mathrm{I}_{\mathrm{IH}}(3)$	External clock mode, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$		OSC1			1.0	$\mu \mathrm{A}$	
Input low-level current	ILL (1)	Output n-channel transistor off $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}$		Ports with open-drain specifications	-1.0			$\mu \mathrm{A}$	
	ILL (2)	Output n-channel transistor off $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$		Ports with pull-up resistor specifications	-1.3	-0.35		mA	
	IIL (3)	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		$\overline{\mathrm{RES}}$	-45	-10		$\mu \mathrm{A}$	
	ILL (4)	External clock mode, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		OSC1	-1.0			$\mu \mathrm{A}$	
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	$\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$		Ports with pull-up resistor specifications	$V_{D D}-1.2$			V	
	$\mathrm{V}_{\mathrm{OH}}(2)$	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$		Ports with pull-up resistor specifications	$V_{D D}-0.5$			V	
Output low-level voltage	$\mathrm{V}_{\text {OL }}(1)$	$\mathrm{l}_{\mathrm{OL}}=10 \mathrm{~mA}$		Port			1.5	V	
	$\mathrm{V}_{\text {OL }}$ (2)	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$, with the I_{OL} for all ports no more than 1 mA .		Port			0.5	V	
\% $\%$ Hysteresis voltage	$\mathrm{V}_{\text {HIS }}$			$\overline{\mathrm{RES}}, \overline{\mathrm{INT}}, \overline{\mathrm{SCK}}$, and SI OSC1 with Schmitt specifications *4		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V	
High-level threshold voltage	V_{tH}				$0.4 \mathrm{~V}_{\mathrm{DD}}$		0.8 V DD	V	
髺 Low-level threshold Cin voltage	$\mathrm{V}_{\text {tL }}$				$0.25 \mathrm{~V}_{\text {DD }}$		0.6 V ${ }_{\text {DD }}$	V	
Current drain Ceramic oscillator	IDDOP (1)	Figure 2, 4 MHz		$V_{D D}$		2	6	mA	
External clock	IDDOP (2)	670 to 1444 kHz *1 Operating, output n-channel transistors off, Ports = $V_{D D}$		$V_{D D}$		2	6	mA	
Standby mode	$l_{\text {DDst }}$	Output n-channel transistor off, Ports $=V_{D D}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	V_{DD}		0.05	10	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	$V_{D D}$		0.025	5	$\mu \mathrm{A}$	

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Oscillator characteristics Ceramic oscillator Oscillator frequency Oscillator stabilization time	${ }^{\text {f CFOSC }}$	Figure 2, fo $=4 \mathrm{MHz} * 5$	OSC1, OSC2	3840	4000	4160	kHz
	${ }^{\text {t CFS }}$	Figure 3, fo $=4 \mathrm{MHz}$				5	ms
Pull-up resistors I/O ports	R_{PP}	Output n-channel transistor off $V_{\text {in }}=V_{S S}, V_{D D}=5 V$	Ports with pull-up resistor specifications	8	14	30	$\mathrm{k} \Omega$
$\overline{\mathrm{RES}}$	Ru	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	$\overline{\mathrm{RES}}$	100	250	400	$\mathrm{k} \Omega$
External reset characteristics Reset time	$\mathrm{t}_{\text {RST }}$				See Figure 4.		
Pin capacitance	Cp	$\mathrm{f}=1 \mathrm{MHz}$ With all pins other than the pin being measured at $V_{I N}=V_{S S}$			10		pF
Serial clock Input clock cycle time Output clock cycle time	$\mathrm{t}_{\text {CKCY }}(1)$	Figure 5	$\overline{\text { SCK }}$	2.0			$\mu \mathrm{s}$
	${ }^{\text {t CKCY }}$ (2)	Figure 5	$\overline{\text { SCK }}$		$\begin{gathered} 64 \times \mathrm{T}_{\mathrm{CYC}} \\ * 6 \end{gathered}$		$\mu \mathrm{s}$
Input clock low-level pulse width	$\mathrm{t}_{\text {CKL }}$ (1)	Figure 5	SCK	0.6			$\mu \mathrm{s}$
Output clock low-level pulse width	$\mathrm{t}_{\text {CKL }}$ (2)	Figure 5	SCK		$32 \times \mathrm{T}_{\mathrm{CYC}}$		$\mu \mathrm{s}$
Input clock high-level pulse width	${ }^{\text {t }}$ CKH (1)	Figure 5	SCK	0.6			$\mu \mathrm{s}$
Output clock high-level pulse width	$\mathrm{t}_{\text {CKH }}(2)$	Figure 5	SCK		$32 \times \mathrm{T}_{\text {cYC }}$		$\mu \mathrm{s}$
Serial input Data setup time Data hold time	${ }_{\text {tICK }}$	Stipulated with respect to the rising edge of $\overline{\text { SCK }}$.	SI	0.2			$\mu \mathrm{s}$
	$\mathrm{t}_{\mathrm{CKI}}$	Figure 5	SI	0.2			$\mu \mathrm{s}$
Serial output Output delay time	${ }^{\text {t CKO }}$	Stipulated with respect to the falling edge of $\overline{\text { SCK }}$. For n-channel open-drain outputs only. External resistance: $1 \mathrm{k} \Omega$, external capacitance: 50 pF . Figure 5	SO			0.4	$\mu \mathrm{s}$
Pulse output Period	${ }_{\text {tPCY }}$	Figure 6 Tcyc $=4 \times$ the system clock period For n-channel open-drain outputs only: External resistance: $1 \mathrm{k} \Omega$, external capacitance: 50 pF	PE0		$64 \times \mathrm{T}_{\text {cYC }}$		$\mu \mathrm{s}$
High-level pulse width	t_{PH}		PE0		$\left\|\begin{array}{c} 32 \times \mathrm{T}_{\text {CYC }} \\ \pm 10 \% \end{array}\right\|$		$\mu \mathrm{s}$
Low-level pulse width	tPL		PE0		$\begin{gathered} 32 \times \mathrm{T}_{\mathrm{CYC}} \\ \pm 10 \% \\ \hline \end{gathered}$		$\mu \mathrm{s}$

Continued on next page.

Continued from preceding page.

Parameter		Symbol	Conditions		Applicable pins/notes	Ratings				
		$\mathrm{V}_{\mathrm{DD}}(\mathrm{v})$		min		typ	max	Unit		
	Guaranteed constants *7		C_{W}	When PE1 has open-drain output specifications	3 to 5.5	WDR		0.01 $\pm 5 \%$		$\mu \mathrm{F}$
		R_{W}	When PE1 has open-drain output specifications	WDR			680 $\pm 1 \%$		k Ω	
		R_{1}	When PE1 has open-drain output specifications	WDR			100 $\pm 1 \%$		Ω	
	Clear time (discharge)	${ }_{\text {t WCT }}$	See Figure 7.	WDR		10			$\mu \mathrm{s}$	
	Clear period (charge)	${ }^{\text {twcey }}$	See Figure 7.	WDR		3.0			ms	
	Guaranteed constants *7	C_{W}	When PE1 has open-drain output specifications	4.5 to 5.5	WDR		0.01 $\pm 5 \%$		$\mu \mathrm{F}$	
		R_{W}	When PE1 has open-drain output specifications		WDR		680 $\pm 1 \%$		$\mathrm{k} \Omega$	
		R_{1}	When PE1 has open-drain output specifications		WDR		100 $\pm 1 \%$		Ω	
	Clear time (discharge)	${ }_{\text {W }}$ WCT	See Figure 7.		WDR	10			$\mu \mathrm{s}$	
	Clear period (charge)	twccy	See Figure 7.		WDR	3.3			ms	

Note: 1. When driven internally using the oscillator circuit shown in Figure 2 with guaranteed constants, values up to the amplitude of the generated oscillation are allowed.
2. The average over a $100-\mathrm{ms}$ period
3. The operating power-supply voltage $V_{D D}$ must be maintained from the point where a HALT instruction is executed until the point where the device has fully entered the standby state. Also, applications must be designed so that no chattering (e.g. switch bounce) occurs on the PA3 pin during a HALT instruction execution cycle.
4. When external clock is selected as the oscillator option, the OSC1 pin has Schmitt characteristics.
5. The values shown for $f_{\text {CFOSC }}$ are the frequencies for which oscillation is possible.
6. Tcyc $=4 \times$ the system clock period
7. If this device is used in an environment subject to condensation, extra care is required concerning leakage between PE1 and adjacent pins and leakage associated with external capacitors.

Figure 1 External Clock Input Waveform

Figure 2 Ceramic Oscillator Circuit

Table 1: Guaranteed Ceramic Oscillator Constants

4 MHz (Murata Mfg. Co., Ltd.) CSA4.00MG CST4.00MGW (built-in capacitor version)	C 1	$33 \mathrm{pF} \pm 10 \%$
	C 2	$33 \mathrm{pF} \pm 10 \%$
	R	0Ω
MHz (Kyocera Corporation) KBR4.0MSA KBR4.0MKS (built-in capacitor version)	C 1	$33 \mathrm{pF} \pm 10 \%$
	C 2	$33 \mathrm{pF} \pm 10 \%$
	R	0Ω

Figure 3 Oscillator Stabilization Period

Figure 4 Reset Circuit
Note: When the power supply rise time is zero, the reset time with CRES $=0.1 \mu \mathrm{~F}$ will be between 5 and 50 ms
If the power supply rise time is comparatively long, increase the value of CRES so that the reset time is over 5 ms .

Figure 5 Serial I/O Timing

Figure 6 Port PEO Pulse Output Timing

$t_{\text {WCCY: }}$ Charge time due to the external components $\mathrm{C}_{\mathrm{W}}, \mathrm{R}_{\mathrm{W}}$, and RI.
${ }^{t_{W C T}}$: Discharge time due to program processing
Figure 7 Watchdog Timer Waveform

LC651204L, 651202L
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{v}_{\text {SS }}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings	Unit
Maximum supply voltage	V_{DD} max		V_{DD}	-0.3 to +7.0	V
Output voltage	V_{O}		OSC2	Voltages up to any generated voltage are allowed.	V
Input voltage	V_{1} (1)		OSC1*1	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{1}(2)$		TEST, $\overline{\text { RES }}$	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
I/O voltage	V_{IO} (1)	PC0 to 3, PD0 to 3, PE0, 1, PF0 to 3	OD specification ports	-0.3 to + 15	V
	V_{IO} (2)	PC0 to 3, PD0 to 3, PE0, 1, PF0 to 3	PU specification ports	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	V_{IO} (3)	PA0 to 3, PG0 to 3		-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Peak output current	I_{OP}		1/O ports	-2 to +20	mA
Average output current	I_{OA}	Average value per pin over a 100-ms period	I/O ports	-2 to +20	mA
	$\Sigma \mathrm{I}_{\mathrm{OA}}(1)$	Total current for pins PC0 to 3, PD0 to 3 , and PE0 to 1 *2	PCO to 3 PDO to 3 PEO to 1	-15 to +100	mA
	$\Sigma \mathrm{I}_{\mathrm{OA}}(2)$	Total current for pins PF0 to 3, PG0 to 3, and PAO to 3 *2	$\begin{aligned} & \text { PF0 to } 3 \\ & \text { PG0 to } 3 \\ & \text { PA0 to } 3 \end{aligned}$	-15 to +100	mA
Allowable power dissipation	Pd max (1)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (DIP package)		250	mW
	Pd max (2)	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (MFP package)		150	mW
Operating temperature	Topr			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg			-55 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.5$ to 5.5 V (unless otherwise specified)

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Operating power-supply voltage	$V_{D D}$		$V_{D D}$	2.5		5.5	V
Standby power-supply voltage	$V_{S T}$	RAM and register values retained *3	$V_{D D}$	1.8		5.5	V
Input high-level voltage	$\mathrm{V}_{\mathrm{IH}}(1)$	Output n-channel transistors off	OD specification ports C, D, E, and F	$0.7 \mathrm{~V}_{\mathrm{DD}}$		13.5	V
	$\mathrm{V}_{\mathrm{IH}}(2)$	Output n-channel transistors off	PU specification ports C, D, E, and F	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V
	$\mathrm{V}_{\mathrm{IH}}(3)$	Output n-channel transistors off	Port A, G	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
	V_{IH} (4)	Output n-channel transistors off	The $\overline{\mathrm{NT}}, \overline{\mathrm{SCK}}$, and SI pins with OD specifications	$0.8 \mathrm{~V}_{\mathrm{DD}}$		13.5	V
	$\mathrm{V}_{\mathrm{IH}}(5)$	Output n-channel transistors off	The $\overline{\mathrm{NT}}$, $\overline{\text { SCK, and SI pins with }}$ PU specifications	$0.8 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	V
	$\mathrm{V}_{\mathrm{IH}}(6)$	$\mathrm{V}_{\mathrm{DD}}=1.8$ to 5.5 V	$\overline{\mathrm{RES}}$	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
	$\mathrm{V}_{\mathrm{IH}}(7)$	External clock specifications	OSC1	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$ (1)	Output n-channel transistors off	Port	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }}$ (2)	Output n-channel transistors off	$\overline{\mathrm{INT}}, \overline{\text { SCK, SI }}$	$\mathrm{V}_{S S}$		$0.15 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }}$ (3)	External clock specifications	OSC1	$\mathrm{V}_{S S}$		$0.15 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }}$ (4)		TEST	V_{SS}		$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL }}$ (5)		$\overline{R E S}$	$\mathrm{V}_{S S}$		$0.15 \mathrm{~V}_{\mathrm{DD}}$	V

Continued from preceding page.

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Operating frequency (cycle time)	$\begin{array}{\|l\|} \hline \text { fop } \\ \text { (Tcyc) } \end{array}$	Frequencies up to 4.16 MHz are supported if the divide-by-four divider circuit option is used.		670 (6)		$\begin{gathered} 1040 \\ (3.84) \end{gathered}$	$\begin{aligned} & \hline \mathrm{kHz} \\ & (\mu \mathrm{~s}) \end{aligned}$
External clock conditions Frequency Pulse width Rise and fall times	text texth, textL textR, textF	Figure 1. The divide-by- three or divide-by-four divider circuit option must be used if the clock frequency exceeds 1.040 MHz .	$\begin{aligned} & \text { OSC1 } \\ & \text { OSC1 } \\ & \text { OSC1 } \end{aligned}$	$\begin{aligned} & 670 \\ & 150 \end{aligned}$		$\begin{gathered} 4160 \\ 100 \end{gathered}$	$\begin{gathered} \mathrm{kHz} \\ \mathrm{~ns} \\ \mathrm{~ns} \end{gathered}$
Guaranteed oscillator constants Ceramic oscillator		Figure 2		See table 1.			

Electrical Characteristics at $\mathrm{Ta}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.5$ to 5.5 V (unless otherwise specified)

Parameter		Symbol	Conditions	Applicable pins/notes	Ratings				
		min			typ	max	Unit		
Input high-level current			$\mathrm{IIH}^{(1)}$	Output n-channel transistor off (Includes the n -channel transistor off leakage current.) $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}$	Ports C, D, E, and F with open drain specifications			5.0	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{IH}}(2)$	Output n-channel transistor off (Includes the n -channel transistor off leakage current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	Ports A and G with open drain specifications			1.0	$\mu \mathrm{A}$	
		$\mathrm{IIH}^{(3)}$	External clock mode, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$	OSC1			1.0	$\mu \mathrm{A}$	
Input low-level current		ILL (1)	Output n-channel transistor off $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	Ports with open drain specifications	-1.0			$\mu \mathrm{A}$	
		ILL (2)	Output n-channel transistor off $V_{I N}=V_{S S}$	Ports with pull-up resistor specifications	-1.3	-0.35		mA	
		IIL (3)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$	$\overline{\mathrm{RES}}$	-45	-10		$\mu \mathrm{A}$	
		ILL (4)	External clock mode, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	OSC1	-1.0			$\mu \mathrm{A}$	
	tput high-level voltage	$\mathrm{V}_{\mathrm{OH}}(1)$	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$	Ports with pull-up resistor specifications	$V_{D D}-0.5$			V	
Output low-level voltage		V_{OL} (1)	$\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$	Port			1.5	V	
		V_{OL} (2)	$\mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$, with the I_{OL} for all ports no more than 1 mA .	Port			0.4	V	
	Hysteresis voltage	$\mathrm{V}_{\mathrm{HIS}}$		$\overline{\mathrm{RES}}, \overline{\mathrm{INT}}, \overline{\text { SCK }}$, and SI OSC1 with Schmitt specifications *4		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V	
	High-level threshold voltage	V_{tH}			$0.4 \mathrm{~V}_{\text {DD }}$		0.8 V DD	V	
	Low-level threshold voltage	V_{tL}			0.2 V D		$0.6 \mathrm{~V}_{\mathrm{DD}}$	V	

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions		Applicable pins/notes	Ratings				
				min	typ	max	Unit		
Current drain Ceramic oscillator	IDDOP (1)	Operating, output n-channel transistors off, Ports $=V_{D D}$ Figure 2, 4 MHz , divide-by-four circuit			$V_{D D}$		1.5	4	mA
	IDDOP (2)	Figure $2,4 \mathrm{MHz}$, divide-by-four circuit $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$		$V_{D D}$		0.5	1	mA	
	$\mathrm{I}_{\text {DDOP (}}$ (3)	Figure 2, 800 kHz		$V_{D D}$		1.5	4.0	mA	
External clock	IDDOP (4)	670 to 1024 kHz , no divider circuit 2000 to 3120 kHz , divide-by-three circuit 2600 to 4160 kHz , divide-by-four circuit		$V_{D D}$		1.5	4	mA	
Standby mode	${ }_{\text {DDst }}$	Output n-channel transistor off, Ports $=V_{D D}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$	V_{DD}		0.05	10	$\mu \mathrm{A}$	
			$\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$	V_{DD}		0.020	4	$\mu \mathrm{A}$	
Oscillator characteristics Ceramic oscillator Oscillator frequency	$\begin{aligned} & { }^{\mathrm{f} \text { CFOSC }} \\ & * 5 \end{aligned}$	Figure 2, fo $=800 \mathrm{kHz}$ Figure 2, fo $=1 \mathrm{MHz}$ Figure 2, fo $=4 \mathrm{MHz}$, divide-by-four circuit		$\begin{aligned} & \text { OSC1, OSC2 } \\ & \text { OSC1, OSC2 } \\ & \text { OSC1, OSC2 } \end{aligned}$	$\begin{gathered} 768 \\ 960 \\ 3840 \end{gathered}$	$\begin{gathered} 800 \\ 1000 \\ 4000 \end{gathered}$	$\begin{gathered} 832 \\ 1040 \\ 4160 \end{gathered}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	
Oscillator stabilization time	${ }^{\text {CHFS }}$	Figure 3, fo $=800 \mathrm{kHz}, 1 \mathrm{MHz}$, 4 MHz , divide-by-four circuit					5	ms	
Pull-up resistors I/O ports	R_{PP}	Output n-channel transistor off$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{SS}}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		Ports with pull-up resistor specifications	8	14	30	k Ω	
$\overline{\text { RES }}$	Ru	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		$\overline{\mathrm{RES}}$	100	250	400	k Ω	
External reset characteristics Reset time	$\mathrm{t}_{\text {RST }}$				See Figure 4.				
Pin capacitance	Cp	$\mathrm{f}=1 \mathrm{MHz}$ With all pins other than the pin being measured at $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$				10		pF	

Continued on next page.

Continued from preceding page.

Parameter	Symbol	Conditions	Applicable pins/notes	Ratings			
				min	typ	max	Unit
Serial clock Input clock cycle time Output clock cycle time Input clock low-level pulse width Output clock low-level pulse width Input clock high-level pulse width Output clock high-level pulse width	${ }^{\text {t }}$ CKCY (1)	Figure 5	SCK	6.0			$\mu \mathrm{s}$
	$\mathrm{t}_{\text {CKCY }}(2)$	Figure 5	SCK		$\begin{gathered} 64 \times \mathrm{T}_{\mathrm{CYC}} \\ * 6 \end{gathered}$		$\mu \mathrm{s}$
	$\mathrm{t}_{\text {CKL }}$ (1)	Figure 5	SCK	2.0			$\mu \mathrm{s}$
	$\mathrm{t}_{\text {CKL }}$ (2)	Figure 5	$\overline{\text { SCK }}$		$32 \times \mathrm{T}_{\mathrm{CYC}}$		$\mu \mathrm{s}$
	$\mathrm{t}_{\text {CKH }}(1)$	Figure 5	$\overline{\text { SCK }}$	2.0			$\mu \mathrm{s}$
	$\mathrm{t}_{\text {CKH }}(2)$	Figure 5	$\overline{\text { SCK }}$		$32 \times \mathrm{T}_{\mathrm{CYC}}$		$\mu \mathrm{s}$
Serial input Data setup time Data hold time	$\mathrm{t}_{\text {ICK }}$	Stipulated with respect to the rising edge of SCK.	SI	0.5			$\mu \mathrm{s}$
	$\mathrm{t}_{\text {CKI }}$	Figure 5	SI	0.5			$\mu \mathrm{s}$
Serial output Output delay time	${ }^{\text {teko }}$	Stipulated with respect to the falling edge of $\overline{\text { SCK }}$. For n-channel open-drain outputs only: External resistance: $1 \mathrm{k} \Omega$, external capacitance: 50 pF . Figure 5	SO			1.0	$\mu \mathrm{s}$
Pulse output period	$t_{\text {PCY }}$	Figure 6 Tcyc $=4 \times$ the system clock period For n-channel open-drain outputs only: External resistance: $1 \mathrm{k} \Omega$, external capacitance: 50 pF	PE0		$64 \times \mathrm{T}_{\mathrm{CYC}}$		$\mu \mathrm{s}$
High-level pulse width	tPH		PE0		$\left\|\begin{array}{c} 32 \times \mathrm{T}_{\mathrm{CYC}} \\ \pm 10 \% \end{array}\right\|$		$\mu \mathrm{s}$
Low-level pulse width	$t_{\text {PL }}$		PE0		$\begin{array}{\|c\|} \hline 32 \times \mathrm{T}_{\mathrm{CYC}} \\ \pm 10 \% \end{array}$		$\mu \mathrm{s}$

Continued on next page

Continued from preceding page.

Parameter		Symbol	Conditions		Applicable pins/notes	Ratings				
		$\mathrm{V}_{\mathrm{DD}}(\mathrm{v})$		min		typ	\max	Unit		
	Guaranteed constants *7		C_{W}	When PE1 has open-drain output specifications	2.5 to 5.5	WDR		0.1 $\pm 5 \%$		$\mu \mathrm{F}$
		R_{W}	When PE1 has open-drain output specifications	WDR			$680 \pm 1 \%$		$\mathrm{k} \Omega$	
		R_{1}	When PE1 has open-drain output specifications	WDR			$100 \pm 1 \%$		Ω	
	Clear time (discharge)	${ }^{\text {twCT }}$	See Figure 7.	WDR		100			$\mu \mathrm{s}$	
	Clear period (charge)	$\mathrm{t}_{\text {Wcce }}$	See Figure 7.	WDR		26			ms	
	Guaranteed constants *7	C_{W}	When PE1 has open-drain output specifications	2.5 to 5.5	WDR		0.047さ5\%		$\mu \mathrm{F}$	
		R_{W}	When PE1 has open-drain output specifications		WDR		$680 \pm 1 \%$		k ת	
		R_{1}	When PE1 has open-drain output specifications		WDR		100 $\pm 1 \%$		Ω	
	Clear time (discharge)	${ }_{\text {t }}$ CCT	See Figure 7.		WDR	40			$\mu \mathrm{s}$	
	Clear period (charge)	${ }^{\text {t WCCY }}$	See Figure 7.		WDR	12			ms	

Note: 1. When driven internally using the oscillator circuit shown in Figure 2 with guaranteed constants, values up to the amplitude of the generated oscillation are allowed.
2. The average over a $100-\mathrm{ms}$ period
3. The operating power-supply voltage $V_{D D}$ must be maintained from the point where a HALT instruction is executed until the point where the device has fully entered the standby state. Also, applications must be designed so that no chattering (e.g. switch bounce) occurs on the PA3 pin during a HALT instruction execution cycle.
4. When external clock is selected as the oscillator option, the OSC1 pin has Schmitt characteristics.
5. The values shown for $\mathrm{f}_{\text {CFOSC }}$ are the frequencies for which oscillation is possible.
6. $T_{\text {cyc }}=4 \times$ the system clock period
7. If this device is used in an environment subject to condensation, extra care is required concerning leakage between PE1 and adjacent pins and leakage associated with external capacitors.

Figure 1 External Clock Input Waveform

Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Period

Table 1: Guaranteed Ceramic Oscillator Constants

4 MHz (Murata Mfg. Co., Ltd.) CSA4.00MGU CST4.0MGWU (built-in capacitor version)	C 1	$33 \mathrm{pF} \pm 10 \%$
	C 2	$33 \mathrm{pF} \pm 10 \%$
	R	0Ω
1 MHz (Kyocera Corporation) KBR1000F	C 1	$100 \mathrm{pF} \pm 10 \%$
	C 2	$100 \mathrm{pF} \pm 10 \%$
	R	$2.2 \mathrm{k} \Omega$
800 kHz CSB800 (Murata Mfg. Co., Ltd.)	C 1	$100 \mathrm{pF} \pm 10 \%$
	C 2	$100 \mathrm{pF} \pm 10 \%$
	R	0Ω
800 kHz (Kyocera Corporation) KBR800F	C 1	$100 \mathrm{pF} \pm 10 \%$
	C 2	$100 \mathrm{pF} \pm 10 \%$
	R	$2.2 \mathrm{k} \Omega$
	C 1	$220 \mathrm{pF} \pm 10 \%$
	C 2	$220 \mathrm{pF} \pm 10 \%$
	R	0Ω

Figure 4 Reset Circuit
Note: When the power supply rise time is zero, the reset time with CRES $=0.1 \mu \mathrm{~F}$ will be between 5 and 50 ms .
If the power supply rise time is comparatively long, increase the value of CRES so that the reset time is over 5 ms .

Figure 5 Serial I/O Timing

Figure 6 Port PEO Pulse Output Timing

[^1]Figure 7 Watchdog Timer Waveform

LC651204/1202 Instruction Set (by function)

Abbreviations

AC:	Accumulator
ACt:	Accumulator bit t
CF:	Carry flag
CTL:	Control register
DP:	Data pointer
E:	E register
EXTF:	External interrupt request flag
Fn:	Flag bit n

M: Memory
M(DP): Memory addressed by DP
P(DPL): I/O port specified by DPL
PC: Program counter
STACK: Stack pointer
TM: Timer
TMF: Timer (internal) interrupt request flag
At, Ha, La: Working registers

ZF : Zero flag
()[]: Indicates the contents of the item enclosed.
\leftarrow : Transfer and direction

+ : Addition
- : Subtraction
\wedge : Logical AND
: Logical OR
$\forall \quad$: Logical exclusive OR

Continued from preceding page.

$\begin{array}{\|l\|l} \hline \text { 응 } \\ \text { 응 } \end{array}$	Mnemonic		Instruction code			$\begin{aligned} & \frac{6}{3} \\ & \frac{3}{3} \\ & \hline 0 \end{aligned}$	Operation	Description	Modified status flags	Notes
			$\begin{array}{lllll}D_{7} & D_{6} & D_{5} & D_{4}\end{array}$	$\mathrm{D}_{3} \mathrm{D}_{2} \quad \mathrm{D}_{1} \quad \mathrm{D}_{0}$	唇	芸				
	LDZ data	Load DP_{H} with Zero and DP ${ }_{\mathrm{L}}$ with immediate data respectively	1000	$\begin{array}{lllll}\mathrm{l}_{3} & \mathrm{l}_{2} & \mathrm{l}_{1} & \mathrm{I}_{0}\end{array}$	1	1	$\begin{aligned} & \mathrm{DP}_{\mathrm{H}} \leftarrow 0 \\ & \mathrm{DP}_{\mathrm{L}} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} \end{aligned}$	Loads 0 into DP_{H} and the immediate data 13121110 into DP $_{\mathrm{L}}$		
	LHI data	Load DPH with immediate data	0 1-10 0	$\begin{array}{lllll}\mathrm{I}_{3} & \mathrm{I}_{2} & \mathrm{I}_{1} & \mathrm{I}_{0}\end{array}$	1	1	$D P_{H} \leftarrow I_{3} I_{2} I_{1} I_{0}$	Loads the immediate data $I_{3} I_{2} I_{1} I_{0}$ into DP_{H}.		
	IND	Increment DP ${ }_{\text {L }}$	$1 \begin{array}{llll}1 & 1 & 0\end{array}$	$1 \begin{array}{llll}1 & 1 & 0\end{array}$	1	1	$\mathrm{DP}_{\mathrm{L}} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)+1$	Increments the contents of DP ${ }_{\text {L }}$.	ZF	
	DED	Decrement DP	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	$\mathrm{DP}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)-1$	Decrements the contents of DP_{L}.	ZF	
	TAL	Transfer AC to DP	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 1 & 1\end{array}$	1	1	$\mathrm{DP}_{\mathrm{L}} \leftarrow(\mathrm{AC})$	Moves the contents of AC to DP $\mathrm{L}^{\text {- }}$		
	TLA	Transfer DPL to AC	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	1	1	$\mathrm{AC} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)$	Moves the contents of DPL to AC.	ZF	
	XAH	Exchange AC with DPH	0000	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1	1	$(\mathrm{AC}) \leftrightarrow\left(\mathrm{DP}_{\mathrm{H}}\right)$	Exchanges the contents of AC and DP_{H}.		
	$\begin{aligned} & \hline \text { XAt } \\ & \text { XA0 } \\ & \text { XA1 } \\ & \text { XA2 } \\ & \text { XA3 } \end{aligned}$	Exchange AC with working register At	$\begin{array}{llll} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ \hline \end{array}$	t 1 t 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} (\mathrm{AC}) & \leftrightarrow(\mathrm{A} 0) \\ (\mathrm{AC}) & \leftrightarrow(\mathrm{A} 1) \\ (\mathrm{AC}) & \leftrightarrow(\mathrm{A} 2) \\ (\mathrm{AC}) & \leftrightarrow(\mathrm{A} 3) \end{aligned}$	Exchanges the contents of AC and the working register $\mathrm{A} 0, \mathrm{~A} 1$, A 2 , or A 3 specified by t 1 t 0 .		
	$\begin{array}{\|c\|} \hline \mathrm{XHa} \\ \mathrm{XH0} \\ \mathrm{XH} 1 \\ \hline \end{array}$	Exchange DPH with working register Ha	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \hline \end{array}$	$\begin{array}{llll} & \mathrm{a} & & \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \hline \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \left(\mathrm{DP}_{\mathrm{H}}\right) \leftrightarrow(\mathrm{H} 0) \\ & \left(\mathrm{DP}_{\mathrm{H}}\right) \leftrightarrow(\mathrm{H} 1) \end{aligned}$	Exchanges the contents of DP_{H} and the working register H 0 or H 1 specified by a.		
	$\begin{array}{\|c\|} \hline \text { XLa } \\ \text { XL0 } \\ \text { XL1 } \\ \hline \end{array}$	Exchange DPH with working register Ha	$\begin{array}{llll} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \hline \end{array}$	a 1 0 0 0 1 1 0 0	$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} \left(\mathrm{DP}_{\mathrm{L}}\right) \leftrightarrow(\mathrm{LO}) \\ \left(\mathrm{DP}_{\mathrm{L}}\right) \leftrightarrow(\mathrm{L} 1) \\ \hline \end{array}$	Exchanges the contents of DP_{L} and the working register L0 or L1 specified by a.		
	SFB flag	Set flag bit	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	$\begin{array}{lllll}\mathrm{B}_{3} & \mathrm{~B}_{2} & \mathrm{~B}_{1} & \mathrm{~B}_{0}\end{array}$	1	1	$\mathrm{Fn} \leftarrow 1$	Sets the flag specified by $B_{3} B_{2}$ $\mathrm{B}_{1} \mathrm{~B}_{0}$ to 1 .		
	RFB flag	Reset flag bit	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{lllll}\mathrm{B}_{3} & \mathrm{~B}_{2} & \mathrm{~B}_{1} & \mathrm{~B}_{0}\end{array}$	1	1	$\mathrm{Fn} \leftarrow 0$	Clears the flag specified by B_{3} $\mathrm{B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$ to 0 .	ZF	The flags are divided into four groups, F0 to F3, F4 to F7, F8 to F11, and F12 to F15. ZF is set or cleared according to the 4 bits included in the specified flags.
	JMP addr	Jumping in the current bank	$\begin{array}{cccc} 0 & 1 & 1 & 0 \\ P_{7} & P_{6} & P_{5} & P_{4} \\ \hline \end{array}$	$\begin{array}{rlll} 1 & P_{10} & P_{9} & P_{8} \\ P_{3} & P_{2} & P_{1} & P_{0} \\ \hline \end{array}$	2	2	$\begin{gathered} \mathrm{PC} \underset{\leftarrow}{\leftarrow} \mathrm{P}_{10} \mathrm{P}_{9} \mathrm{P}_{8} \mathrm{P}_{7} \mathrm{P}_{6} \\ \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \end{gathered}$	Jumps to the location specified by the immediate data $\mathrm{P}_{10} \mathrm{P}_{9}$ $P_{8} P_{7} P_{6} P_{5} P_{4} P_{3} P_{2} P_{1} P_{0}$.		
	JPEA	Jumping current page modified by E and AC	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	10010	1	1	PC_{0} to ${ }_{7} \leftarrow(\mathrm{E}, \mathrm{AC})$	Jumps to the location given by replacing the lower 8 bits of the PC with E and AC.		
	CZP addr	Call subroutine in the zero page	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	$\begin{array}{llllll}P_{3} & P_{2} & P_{1} & P_{0}\end{array}$	1	1		Calls a subroutine on page 0 .		
	CAL addr	Call subroutine	$\begin{array}{llll}1 & 0 & 1 & 0\end{array}$	$\begin{array}{lllll}1 & \mathrm{P}_{10} & \mathrm{P}_{9} & \mathrm{P}_{8}\end{array}$	2	2	STACK $\leftarrow(\mathrm{PC})+2$	Calls a subroutine.		
	RT	Return from subroutine	$\begin{array}{llll}0 & 1 & 1 & 0\end{array}$		1	1	$\mathrm{PC} \leftarrow$ (STACK)	Returns from a subroutine.		
	RTI	Return from interrupt routine	$0 \quad 0 \quad 10$	0 0 010	1	1	$\begin{aligned} & \hline \mathrm{PC} \leftarrow(\mathrm{STACK}) \\ & \mathrm{CF}, \mathrm{ZF} \leftarrow \mathrm{CSF}, \mathrm{ZSF} \end{aligned}$	Returns from an interrupt handling routine.	ZF CF	
	BANK	Change bank	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$1 \begin{array}{llll}1 & 1 & 0 & 1\end{array}$	1	1		Specifies a pseudo l/O port and changes the bank.		Only valid for the immediately following JMP, I/O, or branch instruction.
	BAt addr	Change bank	$\begin{array}{cccc} 0 & 1 & 1 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}$	$\begin{array}{cccc} 0 & 0 & \mathrm{t}_{1} & \mathrm{t}_{0} \\ \mathrm{P}_{3} & \mathrm{P}_{2} & \mathrm{P}_{1} & \mathrm{P}_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to }{ }_{0} \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \text { if } A C t=1 \end{aligned}$	Branches to the location on the same page specified by P_{7} to P_{0} if the bit in AC specified by the immediate data 11 t 0 is 1.		The mnemonics are BAO to BA3, reflecting the value of t .
	BNAt addr	Branch on no AC bit	$\begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 0 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to }{ }_{0} \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \text { if } \mathrm{ACt}=0 \end{aligned}$	Branches to the location on the same page specified by P_{7} to P_{0} if the bit in AC specified by the immediate data t1t0 is 0 .		The mnemonics are BNAO to BNA3, reflecting the value of t .
	BMt addr	Branch on M bit	$\begin{array}{cccc} 0 & 1 & 1 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}$	$\begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to }{ }_{0} \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{M}\left(\mathrm{DP}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right]=1 \end{aligned}$	Branches to the location on the same page specified by P_{7} to P_{0} if the bit in $M(D P)$ specified by the immediate data $t_{1} t_{0}$ is 1 .		The mnemonics are BM0 to BM3, reflecting the value of t .
	BNMt addr	Branch on no M bit	$\begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to }{ }_{0} \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{M}\left(\mathrm{DP}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right]=0 \end{aligned}$	Branches to the location on the same page specified by P_{7} to P_{0} if the bit in $M(D P)$ specified by the immediate data $t_{1} t_{0}$ is 0 .		The mnemonics are BNMO to BNM3, reflecting the value of t.
	BPt addr	Branch on Port bit	$\begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to }{ }_{0} \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{P}\left(\mathrm{DP} \mathrm{~L}_{\mathrm{L}}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right]=1 \end{aligned}$	Branches to the location on the same page specified by P_{7} to P_{0} if the bit in port $P(D P L)$ specified by the immediate data $t_{1} t_{0}$ is 1 .		The mnemonics are BP0 to BP3, reflecting the value of t .
	BNPt addr	Branch on no Port bit	$\begin{array}{cccc} 0 & 0 & 1 & 1 \\ P_{7} & P_{6} & P_{5} & P_{4} \end{array}$	$\begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to }{ }_{0} \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{P}\left(\mathrm{DP} \mathrm{P}_{\mathrm{L}}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right]=0 \end{aligned}$	Branches to the location on the same page specified by P_{7} to P_{0} if the bit in port $P(D P L)$ specified by the immediate data $t_{1} t_{0}$ is 0 .		The mnemonics are BNP0 to BNP3, reflecting the value of t.
	BTM addr	Branch on timer	$\begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}$	$\begin{array}{cccc} 1 & 0 & 0 & 0 \\ \mathrm{P}_{3} & \mathrm{P}_{2} & \mathrm{P}_{1} & \mathrm{P}_{0} \end{array}$	2	2	$\begin{gathered} \mathrm{PC}_{7} \text { to }{ }_{0} \leftarrow \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ \text { if TMF }=0 \\ \text { then } \mathrm{PMF} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \end{gathered}$	Branches to the location on the same page specified by P_{7} to P_{0} if TMF is 1 . Also clears TMF.	TMF	

Continued on next page.

Continued from preceding page.

■ No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.

- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1997. Specifications and information herein are subject to change without notice.

[^0]: Note: Sanyo will announce details on oscillator elements and oscillator circuit constants as recommended application circuits are developed. Customers

[^1]: ${ }^{t_{\text {WCcy: }}}$: Charge time due to the external components $\mathrm{C}_{\mathrm{W}}, \mathrm{R}_{\mathrm{W}}$, and RI $\mathrm{t}_{\mathrm{WCT}}$: Discharge time due to program processing

