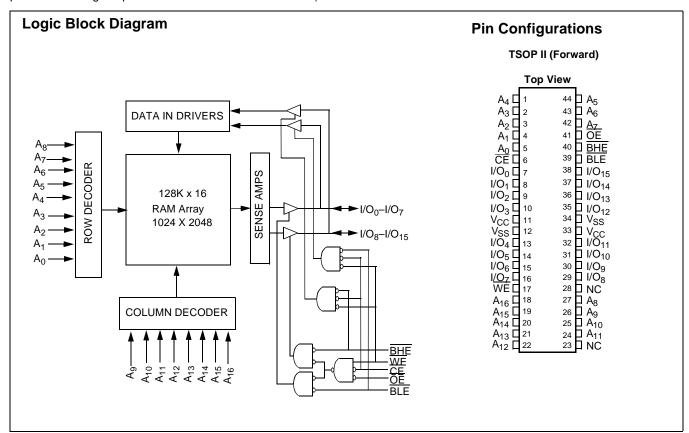


128K x 16 Static RAM

Features

- Low voltage range:
 CY62136V: 2.7V-3.6V
- Ultra-low active, standby power
- Easy memory expansion with CE and OE features
- · TTL-compatible inputs and outputs
- Automatic power-down when deselected
- CMOS for optimum speed/power Functional Description

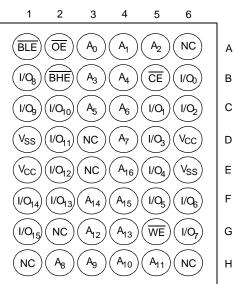

The CY62136V is a high-performance CMOS static RAM organized as 131,072 words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBLTM) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected ($\overline{\text{CE}}$ HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected ($\overline{\text{CE}}$

HIGH), outputs are disabled (\overline{OE} HIGH), \overline{BHE} and \overline{BLE} are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW, and \overline{WE} LOW).

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified on the address pins $(A_0$ through A_{16}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through $I/O_{15})$ is written into the location specified on the address pins $(A_0$ through $A_{16})$.

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

The CY62136V is available in 48-ball FBGA and standard 44-pin TSOP Type II (forward pinout) packaging.



MoBL and More Battery Life are trademarks of Cypress Semiconductor Corporation.

Pin Configurations (continued)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Supply Voltage to Ground Potential.....-0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State ^[1]	0.5V to V _{CC} + 0.5V
DC Input Voltage ^[1]	
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device Range		Ambient Temperature	V _{cc}
CY62136V	Industrial	−40°C to +85°C	2.7V to 3.6V

Product Portfolio

					Power Dissipation (Industrial)			
	V _{CC} Range				Opera	ting (I _{CC})	Si	tandby (I _{SB2})
Product	V _{CC(min.)}	V _{CC(typ.)} ^[2]	V _{CC(max.)}	Power	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62136V	2.7V	3.0V	3.6V	LL	7 mA	15 mA	1 μΑ	15 µA

- V_{IL}(min) = -2.0V for pulse durations less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

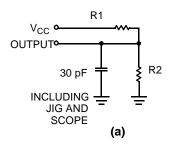
Electrical Characteristics Over the Operating Range

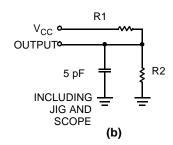
				CY62136V			
Parameter	Description	Test Condi	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$		-1	<u>+</u> 1	+1	μΑ
l _{oz}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Ou	utput Disabled	-1	+1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	$I_{OUT} = 0$ mA, $f = f_{MAX} = 1/t_{RC}$, CMOS levels	V _{CC} = 3.6V		7	15	mA
		I _{OUT} = 0 mA, f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-Down Current— CMOS Inputs	$\begin{tabular}{ll} \hline \hline \hline CE &\geq V_{CC}-0.3V, \\ V_{IN} &\geq V_{CC}-0.3V \ or \\ V_{IN} &\leq 0.3V, \ f=f_{MAX} \end{tabular}$				100	μΑ
I _{SB2}	Automatic CE Power-Down Current— CMOS Inputs		V _{CC} = LL 3.6V		1	15	μΑ

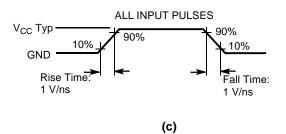
Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, f = 1 MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

Thermal Resistance

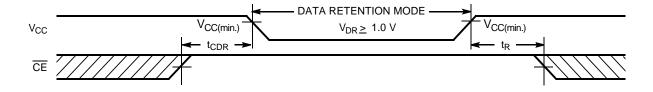

Description	Test Conditions	Symbol	BGA	TSOPII	Unit
Thermal Resistance (Junction to Ambient) ^[3]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	Θ_{JA}	55	60	°C/W
Thermal Resistance (Junction to Case) ^[3]		Θ _{JC}	16	22	°C/W


Note


^{3.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT Equivalent to:


	RTH		
OUTPUT•——		—	٧

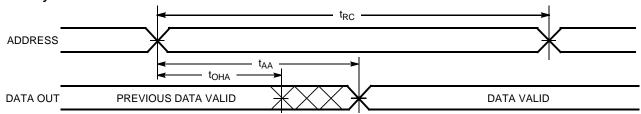
Parameters	3.0V	UNIT
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[5]		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\begin{split} & \frac{V_{CC}}{\text{CE}} = 1.0 \text{V} \\ & \text{CE} \geq V_{CC} - 0.3 \text{V}, \\ & V_{\text{IN}} \geq V_{CC} - 0.3 \text{V or} \\ & V_{\text{IN}} \leq 0.3 \text{V} \\ & \text{No input may exceed} \\ & V_{CC} + 0.3 \text{V} \end{split}$	LL		0.5	7.5	μА
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R ^[4]	Operation Recovery Time			70			ns

Data Retention Waveform

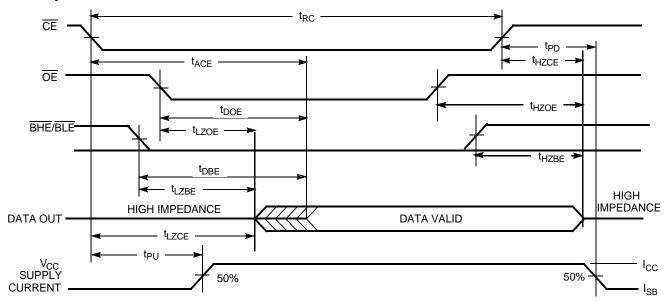
- Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 ms or stable at V_{CC(min)} ≥ 100 ms.
 Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.



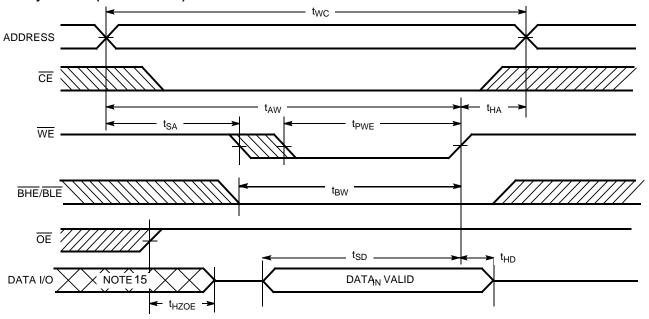
Switching Characteristics Over the Operating Range^[5]

		55	i ns	70) ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE	•	'	•	•	•	•
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[6]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		25		25	ns
t _{LZCE}	CE LOW to Low Z ^[6]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		25		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
t _{DBE}	BLE / BHE LOW to Data Valid		25		35	ns
t _{LZBE}	BLE / BHE LOW to Low Z ^[6, 7]	5		5		ns
t _{HZBE}	BLE / BHE HIGH to High Z ^[8]		25		25	ns
WRITE CYCLE ^{[8,}	9]	'	•	•	•	•
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{BW}	BLE / BHE LOW to Write End	50		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[6]	5		10		ns

Switching Waveforms

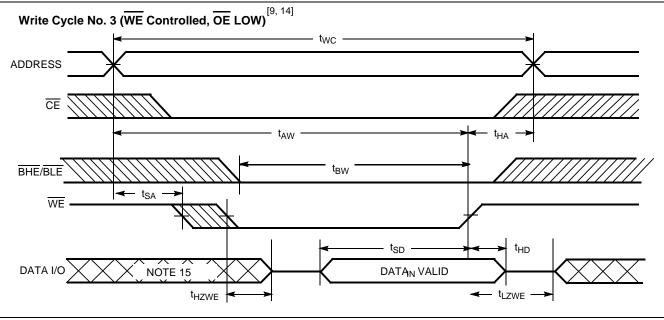


- At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, and t_{HZWE} for any given device.
 t_{HZCE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
 Device is continuously selected. OE, CE = V_{IL}.
 WE is HIGH for read cycle.



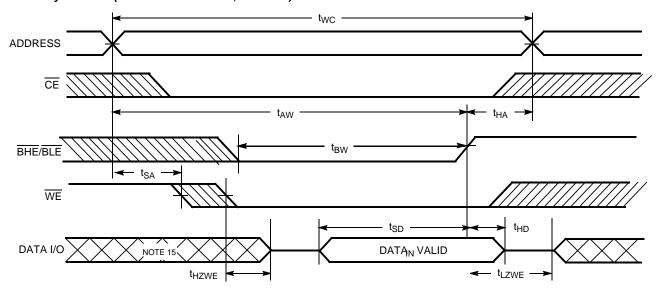
Switching Waveforms (continued)

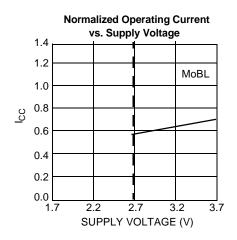
Read Cycle No. 2 $^{[11, 12]}$

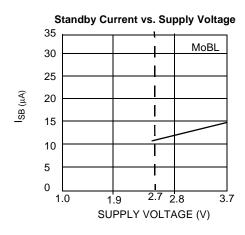


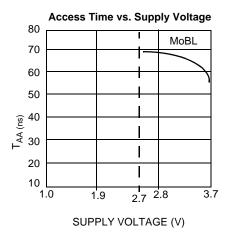
- Address valid prior to or coincident with CE transition LOW.
 Data I/O is high impedance if OE = V_{II}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.

Switching Waveforms (continued)




Switching Waveforms (continued)

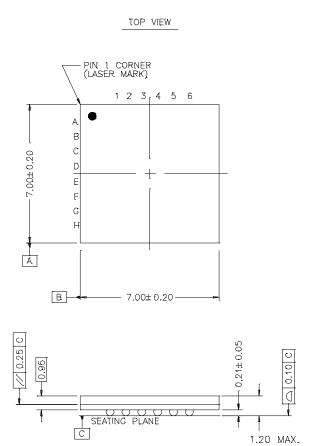

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[15]

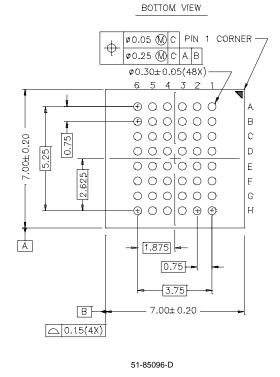


Typical DC and AC Characteristics

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

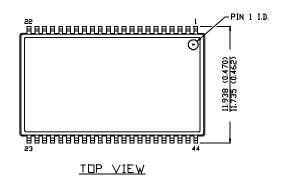


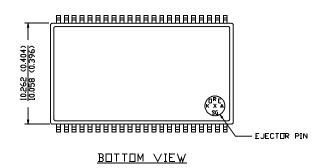

Ordering Information

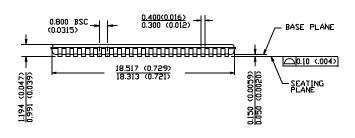
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62136VLL-55ZI	Z44	44-Pin TSOP II	Industrial
	CY62136VLL-55BAI	BA48	48-Ball Fine Pitch BGA	
70	CY62136VLL-70ZI	Z44	44-Pin TSOP II	
	CY62136VLL-70BAI	BA48	48-Ball Fine Pitch BGA	

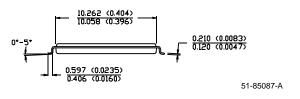
Package Diagrams

48-Ball (7.00 mm x 7.00 mm) FBGA BA48




Package Diagrams (continued)


44-Pin TSOP II Z44


D[MENS] IN MM (INCH)

MAX
MIN.

Document Title: CY62136V MoBL™ 128K x 16 Static RAM Document Number: 38-05087				
REV.	ECN NO.	Issue Date	Oreg. of Change	Description of Change
**	107347	05/25/01	SZV	Change from Spec #: 38-00728 to 38-05087