LH1692

DESCRIPTION

The LH1692 is a 300 -output TFT-LCD gate driver IC.

FEATURES

- Number of LCD drive outputs : 300
- LCD drive output sequence : Output shift direction can be selected
$\mathrm{OG}_{1} \rightarrow \mathrm{OG} 300$ or $\mathrm{OG} 300 \rightarrow \mathrm{OG}_{1}$
- Cascade connection :

Max. 4 cascades (internal counting system)

- Usable with both positive/negative power supplies
- Output mode selection
- Normal mode (1-pulse scanning)
- Continuous 2-pulse mode (2-pulse scanning)
- Jumping 2-pulse mode (2-pulse scanning)
- LCD drive voltage : +16.0 to +42.0 V
- Operating temperature : -30 to $+85^{\circ} \mathrm{C}$
- Package : 319-pin TCP (Tape Carrier Package)

300-output TFT-LCD Gate Driver IC

PIN CONNECTIONS

PIN DESCRIPTION

PIN NO.	SYMBOL	I/O	DESCRIPTION
1 to 300	OG1-OG300	O	LCD drive output pins
301,309	VDD	-	Power supply pins for LCD drive
302,318	VEE	-	Power supply pins for LCD drive
303,317	Vss	-	Power supply pins for logic system
304,316	VcC	-	Power supply pins for logic system
305,315	VLS	-	Power supply pins for input level shifter
306,307	MODE2, MODE 11	I	Output mode selection pins
308	R/L	I	Pin for selecting bi-directional shift register and setting cascade sequence
309,310	CE $2, ~ C E 1 ~_{1}$	I	Cascade sequence setting pins
311	SPV	I	Vertical scanning start pulse input pin
312	CKV	I	Vertical shift clock input pin
313,314	TEST2, TEST $_{1}$	I	IC test pins

BLOCK DIAGRAM

FUNCTIONAL OPERATIONS OF EACH BLOCK

BLOCK	FUNCTION
Control Logic	Used to create signals necessary for mode selecting signal, cascade sequence setting signal and for operation of bi-directional shift register.
Bi-directional Shift Register	Used as transfer circuit of LCD drive output start signal. It is possible to set LCD drive output sequence of OG1 \rightarrow OG300 direction or OG300 \rightarrow OG1 direction.
Level Shifter	Used as circuit which shifts LCD drive output signals transferred by bi-directional shift register to VDD-VEE level.
Output Circuit	Configured with output buffers to output VDD-VEE level.

INPUT/OUTPUT CIRCUITS

Fig. 1 Input Circuit

Fig. 2 Output Circuit

FUNCTIONAL DESCRIPTION

Pin Functions

SYMBOL	FUNCTION			
VDD	Used as power supply pin for high level LCD drive.			
VLs	Used as power supply pin for input level shifters.			
Vcc	Used as power supply pin for logic system, normally connected to Vss + 5.0 V.			
Vee	Used as power supply pin for low level LCD drive.			
Vss	Used as logic system power supply pin.			
CKV	Used as vertical shift clock pulse input pin.			
SPV	Used as vertical scanning start pulse input pin. (At least, input one cycle of CKV during "L" period of SPV.)			
$\begin{aligned} & \text { MODE }_{1} \\ & \text { MODE }_{2} \end{aligned}$	Used as input pins for selecting output mode.			
	MODE 1		MODE2	Output mode
	H		H Norm	mode (1-pulse scanning)
	L		H Cont	us 2-pulse mode
	H		L Jump	2-pulse mode
	L		L Set al	utputs to Vee level.
R/L	Used as input pin for selecting the shift direction of bi-directional shift register and for setting the sequence of cascade connection. LCD drive outputs shift from OG1 to OG300 when set to "H". LCD drive outputs shift from OG300 to OG1 when set to "L". At the same time, cascade sequence is set as shown in the table below.			
$\begin{aligned} & C E_{1} \\ & C E 2 \end{aligned}$	Used as input pins for setting of chip cascade sequence. (Max. 4 cascades)			
	CE1	CE2	Cascade sequence	
			R/L = "H"	R/L = "L"
	H	H	1st	4th
	L	H	2nd	3rd
	H	L	3rd	2nd
				1st
	With above setting, sets the cascade sequence signal inside the IC.			
$\begin{aligned} & \text { TEST1 } \\ & \text { TEST2 } \end{aligned}$	Used as input pins for IC testing. Must be set to " H ".			
OG1-OG300	Used as output pins for LCD drive output, and which output data at 2 levels. - Selecting data is output at Vdd level . - Non-selecting data is output at Vee level.			

Functional Operations

(1) Example of Cascade Sequence (One Side Assembled)

* At this time, normal mode (scanning with 1 pulse) is set when MODE $1=$ " H " and MODE2 $=$ " $\mathrm{H} "$, jumping 2-pulse mode (scanning with 2 pulses) is set when MODE $1=$ " H " and MODE $2=$ "L", continuous 2-pulse mode (scanning with 2 pulses) is set when MODE $1=" \mathrm{~L} "$ and MODE $2=$ " H ", and output Vee level is set when $\mathrm{MODE}_{1}=$ "L" and MODE2 $=$ "L".
(2) Example of Input/Output Timing (For 1st Cascade Sequence)

(3) Example of Cascade Sequence (Both Side Assembled)

* At this time, normal mode (scanning with 1 pulse) is set when $\mathrm{MODE}_{1}=$ " H " and MODE2 $=$ " $\mathrm{H} "$, jumping 2-pulse mode (scanning with 2 pulses) is set when MODE $1=$ " H " and MODE $2=$ "L", continuous 2-pulse mode (scanning with 2 pulses) is set when MODE1 = "L" and MODE2 $=$ " H ", and output VEE level is set when MODE1 $=$ "L" and MODE $2=$ "L".
(4) Example of Input/Output Timing (For 1st Cascade Sequence)

PRECAUTIONS

Precautions when connecting or disconnecting the power supply
This IC has a high-voltage LCD driver, so it may be permanently damaged by a high current which may flow if voltage is supplied to the LCD drive power supply while the logic system power supply is floating. Therefore, when connecting the power supply, observe the following sequence.

Logic system power supply (VLs) or internal logic system power supply (Vss, Vcc; Vcc > Vss) \rightarrow logic input \rightarrow LCD drive power supply (Vee, Vdd)

It is possible to set voltage VEE to the same as Vss. When connecting the power supply when Vee = Vss, observe the following sequence and the recommended sequence figure shown below.

Logic system power supply (VLS), internal logic system power supply (Vss, Vcc; Vcc > Vss) and low-level LCD drive power supply (VEE) \rightarrow logic input \rightarrow high-level LCD drive power supply (Vdd)

When disconnecting the power supply, follow the reverse sequence.
Since the logic state of the internal circuit is unstable immediately after the logic system power is supplied, input CKV and SPV while initializing the internal circuit (minimum input clock number is 300 CKV).
MODE1 and MODE2 should be set to "L" during the initializing period for setting the LCD drive output to Vee level.

Input pin setting

Input pins other than CKV and SPV must be set to " H " or "L" level.

Maximum ratings

When connecting or disconnecting the power, this IC must be used within the range of the absolute maximum ratings.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	APPLICABLE PINS	RATING	UNIT	NOTE
Supply voltage	VDD	VdD	-0.3 to +45.0	V	1,2
	VLs	VLs	-0.3 to +7.0	V	
	Vcc - Vss	Vcc, Vss	-0.3 to +7.0	V	
	Vee - Vss	Vee, Vss	-0.3 to +45.0	V	
	$\begin{gathered} \text { VDD - VEE } \\ (\mathrm{VSS}) \end{gathered}$	Vdd, Vee, Vss	-0.3 to +45.0	V	
Input voltage	Vin	CKV, SPV, CE1, CE2, R/L, MODE1, MODE2, TEST1, TEST2	-0.3 to VLs +0.3	V	
Storage temperature	Tsta		-45 to +125	${ }^{\circ} \mathrm{C}$	

NOTES :

1. $\mathrm{T} A=+25^{\circ} \mathrm{C}$
2. The maximum applicable voltage on any pin with respect to 0 V .

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	VDD	+5.5	+9.0	+42.0	V	1,2
	VLs	+3.0	+5.0	+5.5	V	
	Vcc - Vss	+3.0	+5.0	+5.5	V	
	Vee - Vss	0		+11.0	V	
	$\begin{gathered} \hline \text { VDD - VEE } \\ \text { (VSS) } \end{gathered}$	+16.0	+25.0	+42.0	V	
Input voltage	Vin	0		VLs	V	
Operating temperature	Topr	-30		+85	${ }^{\circ} \mathrm{C}$	

NOTES :

1. The applicable voltage on any pin with respect to 0 V .
2. Ensure that voltages are set as follows.

Vss, Vee ≤ 0 V
$\mathrm{Vcc}-\mathrm{Vss}=\mathrm{V} \mathrm{Ls} \pm 0.1 \mathrm{~V}$ (For 3.3 V specifications)
$\mathrm{Vcc}-\mathrm{Vss}=\mathrm{V} \mathrm{LS} \pm 0.2 \mathrm{~V}$ (For 5.0 V specifications)
Vcc \leq VLS

When power supply pins are set as shown below, the LH1692 can output positive voltage and negative voltage to LCD drive output.

Example 1 : For Positive Voltage Output
VDD \quad VLs, VCC

Example 2 : For Negative Voltage Output

ELECTRICAL CHARACTERISTICS

DC Characteristics
(VLS $=+3.3 \pm 0.3 \mathrm{~V}(=\mathrm{VCC}-\mathrm{VSS}), \mathrm{VEE}=\mathrm{VsS}, \mathrm{TOPR}=-30$ to $\left.+85^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL		CKV, SPV, MODE1,			0.2VLS	V	
Input "High" voltage	VIH		MODE2, CE1, CE2, R/L	0.8VLS			V	
Output "Low" voltage	Vol	$\mathrm{lOL}=0.4 \mathrm{~mA}$	OG1-OG			Vee + 0.4	V	
Output "High" voltage	VOH	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	OG1-OG300	VDD - 0.4			V	
Input "Low" current	ILL	$\mathrm{V} \mathrm{I}=0 \mathrm{~V}$	CKV, SPV, MODE1,			5.0	$\mu \mathrm{A}$	
Input "High" current	IIH	V I $=\mathrm{VLS}$	MODE2, CE1, CE2, R/L			5.0	$\mu \mathrm{A}$	1
Supply current (1)	IDD	For 1-pulse mode				60	$\mu \mathrm{A}$	2
	ILS					130	$\mu \mathrm{A}$	
	Icc					80	$\mu \mathrm{A}$	
	IEE					50	$\mu \mathrm{A}$	
Supply current (2)	IDD	For jumping 2-pulse mode				130	$\mu \mathrm{A}$	3
	ILS					200	$\mu \mathrm{A}$	
	Icc					90	$\mu \mathrm{A}$	
	IEE					50	$\mu \mathrm{A}$	
Supply current (3)	IDD	For continuous 2-pulse mode				130	$\mu \mathrm{A}$	4
	ILS					200	$\mu \mathrm{A}$	
	IcC					90	$\mu \mathrm{A}$	
	IEE					90	$\mu \mathrm{A}$	

NOTES :

1. All input pins : 3.3 V
2. CKV : Frequency $=31 \mathrm{kHz}$, "L" period width $\mathrm{twL}=16.2 \mu \mathrm{~s}$

SPV : Frequency $=60 \mathrm{~Hz}$
Other input pins : 3.3 V
All output pins are opened.
3. CKV : Frequency $=31 \mathrm{kHz}$, "L" period width $\mathrm{twL}=16.2 \mu \mathrm{~s}$

SPV : Frequency $=60 \mathrm{~Hz}$
MODE2 : 0 V
Other input pins : 3.3 V
All output pins are opened.
4. CKV : Frequency $=31 \mathrm{kHz}$, "L" period width $\mathrm{twL}=16.2 \mu \mathrm{~s}$

SPV : Frequency $=60 \mathrm{~Hz}$
MODE1: 0 V
Other input pins : 3.3 V
All output pins are opened.
(VLS $=+5.0 \pm 0.5 \mathrm{~V}(=\mathrm{Vcc}-\mathrm{Vss})$, $\mathrm{VeE}=\mathrm{Vss}$, $\mathrm{Topr}=-30$ to $+85^{\circ} \mathrm{C}$)

PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL		CKV, SPV, MODE1,			0.2VLS	V	
Input "High" voltage	VIH		MODE2, CE1, CE2, R/L	0.8VLs			V	
Output "Low" voltage	Vol	$\mathrm{loL}=0.4 \mathrm{~mA}$	O			Vee + 0.4	V	
Output "High" voltage	VOH	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	OG1-OG300	VDD - 0.4			V	
Input "Low" current	ILL	V I $=0 \mathrm{~V}$	CKV, SPV, MODE1,			5.0	$\mu \mathrm{A}$	
Input "High" current	IIH	V I $=$ VLS	MODE2, CE1, CE2, R/L			5.0	$\mu \mathrm{A}$	1
Supply current (1)	IDD	For 1-pulse mode				60	$\mu \mathrm{A}$	2
	ILS					180	$\mu \mathrm{A}$	
	Icc					100	$\mu \mathrm{A}$	
	IEE					50	$\mu \mathrm{A}$	
Supply current (2)	IDD	For jumping 2-pulse mode				130	$\mu \mathrm{A}$	3
	ILS					300	$\mu \mathrm{A}$	
	Icc					150	$\mu \mathrm{A}$	
	IEE					50	$\mu \mathrm{A}$	
Supply current (3)	IDD	For continuous 2-pulse mode				130	$\mu \mathrm{A}$	4
	ILS					300	$\mu \mathrm{A}$	
	Icc					150	$\mu \mathrm{A}$	
	IEE					50	$\mu \mathrm{A}$	

NOTES :

1. All input pins : 5 V
2. CKV : Frequency $=31 \mathrm{kHz}$, "L" period width twL $=16.2 \mu \mathrm{~s}$

SPV : Frequency $=60 \mathrm{~Hz}$
Other input pins : 5 V
All output pins are opened.
3. CKV : Frequency $=31 \mathrm{kHz}$, "L" period width $\mathrm{twL}=16.2 \mu \mathrm{~s}$

SPV : Frequency $=60 \mathrm{~Hz}$
MODE2 : 0 V
Other input pins: 5 V
All output pins are opened.
4. CKV : Frequency $=31 \mathrm{kHz}$, "L" period width twL $=16.2 \mu \mathrm{~s}$ SPV : Frequency $=60 \mathrm{~Hz}$
MODE1: 0 V
Other input pins : 5 V
All output pins are opened.

AC Characteristics (VLS $=+3.3 \pm 0.3 \mathrm{~V}(=\mathrm{VCC}-\mathrm{VSS})$, VEE $=\mathrm{VSS}$, $\mathrm{TOPR}=-30$ to $\left.+85^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT
Clock frequency	fckv		CKV			100	kHz
"L" clock pulse width	twL			0.5			$\mu \mathrm{s}$
Clock rise time	trCKV					100	ns
Clock fall time	tFCKV					100	ns
Data setup time	tsu		CKV, SPV	100			ns
Data hold time	th			300			ns
Pulse rise time	tRSPV		SPV			100	ns
Pulse fall time	tFSPV					100	ns
Output transfer delay time	tD	$C L=500 \mathrm{pF}$	OG1-OG300			3.0	$\mu \mathrm{s}$
Output rise time	tR					1.0	$\mu \mathrm{s}$
Output fall time	tF					1.0	$\mu \mathrm{s}$

(VLS $=+5.0 \pm 0.5 \mathrm{~V}(=\mathrm{Vcc}-\mathrm{Vss})$, $\mathrm{Vee}=\mathrm{Vss}$, Topr $=-30$ to $\left.+85^{\circ} \mathrm{C}\right)$

PARAMETER	SYMBOL	CONDITIONS	APPLICABLE PINS	MIN.	TYP.	MAX.	UNIT
Clock frequency	fckv		CKV			100	kHz
"L" clock pulse width	twL			0.5			$\mu \mathrm{s}$
Clock rise time	trckv					100	ns
Clock fall time	tFCKV					100	ns
Data setup time	tsu		CKV, SPV	100			ns
Data hold time	th			300			ns
Pulse rise time	trsPV		SPV			100	ns
Pulse fall time	tFSPV					100	ns
Output transfer delay time	tD	$\mathrm{CL}=500 \mathrm{pF}$	OG1-OG300			2.0	$\mu \mathrm{s}$
Output rise time	tR					1.0	$\mu \mathrm{s}$
Output fall time	tF					1.0	$\mu \mathrm{s}$

Timing Chart

PACKAGE

UPILEX is a trademark of UBE INDUSTRIES, LTD..

