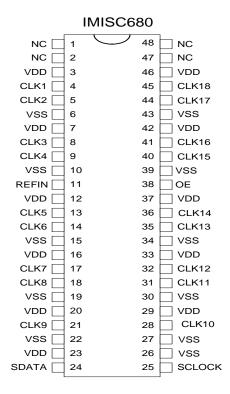


Product Features

- 18 output buffer for high clock fanout applications
- Each output can be internally disabled for EMI reduction
- VDD=3.3 volts for chip Vdd
- Output frequency range 10 Mhz to 100 Mhz
- < 250ps skew between output clocks</p>
- 48-pin SSOP package
- Single Clock Enable pin for testability

Block Diagram



Product Description

The SC680 is a high fanout system clock buffer. Its primary application is to create the large quantity of clocks needed to support a wide range of applications that requires those clock loads signal that are referenced to a single existing clock. Loads of up to 30 pF are supported. One of the chief applications of this component is where long traces are used to transport clocks from their generating devices to their loads. The creation of EMI and the degradation of waveform rise and fall times is greatly reduced by running a single reference clock trace to this device and then using it to regenerate the clock that drives shorter traces. Using these devices EMI is therefore minimized and board real estate is saved.

Pin Configuration

Document#: 38-07026 Rev. *A

ineeithu.com

Pin Description

Pin Descr	•	1					
PIN	Pin	PWR	I/O	TYPE	Description		
No.	Name						
11	REFIN	VDD	I	PAD	This pin is connected to the input reference clock. This clock		
					must be in the range of 10.0 to 100.0 Mhz.		
4,5	CLK(1:2)	VDD	0	BUF1	Low skew output clock		
8,9	CLK(3:4)	VDD	0	BUF1	Low skew output clock		
13, 14	CLK(5:6)	VDD	0	BUF1	Low skew output clock		
17, 18	CLK(7:8)	VDD	0	BUF1	Low skew output clock		
21, 28	CLK(9:10)	VDD	0	BUF1	Low skew output clock		
31, 32	CLK(11:12)	VDD	0	BUF1	Low skew output clock		
35, 36	CLK(13:14)	VDD	0	BUF1	Low skew output clock		
40, 41	CLK(15:16)	VDD	0	BUF1	Low skew output clock		
44, 45	CLK(17:18)	VDD	0	BUF1	Low skew output clock		
38	OE	-	I	PAD	Buffer Output Enable pin. When driven to a logic low level this pin is used to place all output clocks (CLK1:18) in a tri state condition. This feature facilitates in production board level testing to be easily implemented for the clocks that this device produces. Has internal pull-up resistor.		
24	SDATA	-	I/O	PAD	serial data of SMBus 2-wire control interface. Has internal pup resistor.		
25	SDCLK	-	I	PAD	Serial clock of SMBus 2-wire control interface. Has internal p up resistor.		
6, 10, 15, 19, 22, 30, 34, 39, 43	Vss		PWR	-	Ground pins for clock output buffers. These pins must be returned to the same potential to reduce output clock skew.		
3, 7, 12, 16, 20, 33, 37, 42, 46	Vdd	-	PWR	-	Power for output clock buffers.		
29, 23	Vdd	-	PWR	-	Power for core logic.		
26, 27	Vss	-	PWR	-	Ground supply pins for internal Icore logic pins.		

2-Wire SMBus Control Interface

The 2-wire control interface implements a write only slave interface. The device cannot be read back. Sub-addressing is not supported, thus all <u>preceding bytes must be sent</u> in order to change one of the control bytes. The 2-wire control interface allows each clock output to be individually enabled or disabled.

During normal data transfer, the SDATA signal only changes when the SDCLK signal is low, and is stable when SDCLK is high. There are two exceptions to this. A high to low transition on SDATA while SDCLK is high is used to indicate the start of a data transfer cycle. A low to high transition on SDATA while SDCLK is high indicates the end of a data transfer cycle. Data is always sent as complete 8-bit bytes, after which an acknowledgement is generated. The first byte of a transfer cycle is a 7-bit address with a Read/Write bit as the LSB. Data is transferred MSB first.

The device will respond to writes to 10 bytes (max) of data to address <u>D2</u> by generating the acknowledge (low) signal on the SDATA wire following reception of each byte. The device will not respond to any other control interface conditions. Previously set control registers are retained.

Serial Control Registers

NOTE: The Pin# column lists the affected pin number where applicable. The @Pup column gives the state at true power up. Bytes are set to the values shown only on true power up, and not when the PWR_DWN# pin is activated.

Following the acknowledge of the Address Byte (D2), two additional bytes must be sent:

- 1) "Command Code " byte, and
- 2) "Byte Count" byte.

Although the data (bits) in these two bytes are considered "don't care", they <u>must be sent and will be acknowledged.</u>

After the Command Code and the Count bytes have been acknowledged, the below described sequence (Byte 0, Byte 1, Byte 2,) will be valid and acknowledged.

Serial Control Registers (Cont.)

Byte 0: Function Select Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	1	18	CLK8 (Active = 1, Forced low = 0)
6	1	17	CLK7 (Active = 1, Forced low = 0)
5	1	14	CLK6 (Active = 1, Forced low = 0)
4	1	13	CLK5 (Active = 1, Forced low = 0)
3	1	9	CLK4 (Active = 1, Forced low = 0)
2	1	8	CLK3 (Active = 1, Forced low = 0)
1	1	5	CLK2 (Active = 1, Forced low = 0)
0	1	4	CLK1 (Active = 1, Forced low = 0)

Byte 1: Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	1	45	CLK18 (Active = 1, Forced low = 0)
6	1	44	CLK17 (Active = 1, Forced low = 0)
5	1	41	CLK16 (Active = 1, Forced low = 0)
4	1	40	CLK15 (Active = 1, Forced low = 0)
3	1	36	CLK14 (Active = 1, Forced low = 0)
2	1	35	CLK13 (Active = 1, Forced low = 0)
1	1	32	CLK12 (Active = 1, Forced low = 0)
0	1	31	CLK11 (Active = 1, Forced low = 0)

Byte 2: Clock Register (1 = enable, 0 = Stopped)

Bit	@Pup	Pin#	Description
7	1	28	CLK10 (Active = 1, Forced low = 0)
6	1	21	CLK9 (Active = 1, Forced low = 0)
5	0	-	Not Used
4	0	-	Not Used
3	0	-	Not Used
2	0	-	Not Used
1	1	ı	Not Used
0	1	-	Not Used

Maximum Ratings¹

Voltage Relative to VSS: -0.3V Voltage Relative to VDD: 0.3V -65°C to + 150°C Storage Temperature: Operating Temperature: 0°C to +70°C Maximum Power Supply: 7V

This device contains circuitry to protect the inputs against damage due to high static voltages or electric field; however, precautions should be taken to avoid application of any voltage higher than the maximum rated voltages to this circuit. For proper operation, Vin and Vout should be constrained to the range:

VSS<(Vin or Vout)<VDD

Unused inputs must always be tied to an appropriate logic voltage level (either VSS or VDD).

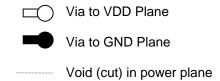
Electrical Characteristics

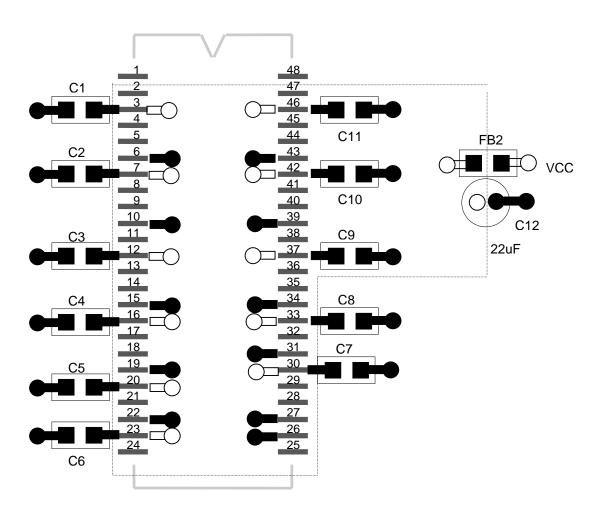
Characteristic	Symbol	Min	Тур	Max	Units	Conditions		
Input Low Voltage	VIL	-	-	0.8	Vdc	-		
Input High Voltage	VIH	2.0	-	-	Vdc	-		
Input Low Current	IIL	-66			μΑ			
Input High Current	IIH			66	μΑ			
Output Low Voltage IOL = 40mA	VOL	-	-	0.4	Vdc	All Outputs (see buffer spec)		
Output High Voltage IOH = 30mA	VOH	2.4	-	-	Vdc	All Outputs Using 3.3V Power (see buffer spec)		
Tri-State leakage Current	loz	-	-	10	μΑ			
Dynamic Supply Current	Idd ₆₆	9	-	160	mA	Input frequency = 66 Mhz - All outputs on and at 30 pF load		
	Idd ₁₀₀	12	-	220	mA	Input frequency 100 Mhz - All outputs on and at 30 pF load		
Static Supply Current	Isdd	-	-	4	mA	All outputs disabled no input clock		
Short Circuit Current	ISC	25	-	-	mA	1 output at a time - 30 seconds		
Input Rise Time	VIR	2.4	-	-	nS	.8 to 2.4 volts		
VDD = VDD1 thru VDD9 =3.3V $\pm 5\%$, TA = 0°C to +70°C								

Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

Switching Characteristics

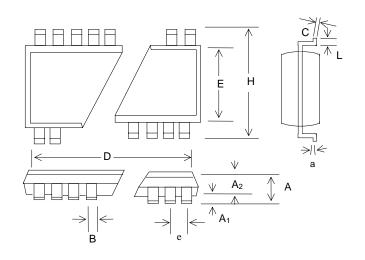
Characteristic	Symbol	Min	Тур	Max	Units	Conditions	
Output Duty Cycle	-	45	50	55	%	Measured at 1.5V (50/50 in)	
Buffer out/out Skew All Buffer Outputs	tSKEW	-	-	250	pS	35 pF Load Measured at 1.5V	
Buffer input to output Skew	tSKEW	2.0	0	5.0	nS		
Jitter Cycle to Cycle*	TJCC			100	pS	@ 30 pF loading	
Jitter Absolute (Peak to Peak)* 150 pS @ 30 pF loading							
VDD = VDD1 thru VDD9 = 3.3V ±5%, , TA = 0°C to +70°C							


^{*}This jitter is additive to the input clock's jitter.


TB40_ Type Buffer Characteristics (All Clock Outputs)

Characteristic	Symbol	Min	Тур	Max	Units	Conditions	
Pull-Up Current Min	IOH _{min}	30	-	39	mA	Vout = VDD5V	
Pull-Up Current Max	IOH _{max}	75	-	109	mA	Vout = 1.5 V	
Pull-Down Current Min	IOL _{min}	30	-	40	mA	Vout = 0.4 V	
Pull-Down Current Max	IOL _{max}	75	-	103	mA	Vout = 1.2 V	
Dynamic Output Impedance	Zo	8	-	15	Ohms	66-100 MHz	
Rise/Fall Time Min Between 0.4 V and 2.4 V	TRF _{min}	0.5	-	1.33	nS	30 pF Load	
Rise/Fall Time Max Between 0.4 V and 2.4 V	TRF _{max}	0.5	-	1.33	nS	30 pF Load	
VDD = VDD1 thru VDD9 =3.3V $\pm 5\%$, , TA = 0°C to +70°C							

PCB layout Suggestion



This is only a layout recommendation for best performance and lower EMI. the designer may choose a different approach but C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, and C11 (all are 0.1 uf) should always be used and placed as close to their VDD pins as is physically possible.

Packing Drawing and Dimensions

48 Pin SSOP Outline Dimensions

		INCHES		MII	MILLIMETERS		
SYMBOL	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.095	0.102	0.110	2.41	2.59	2.79	
A ₁	0.008	0.012	0.016	0.20	0.31	0.41	
A2	0.085	0.090	0.095	2.16	2.29	2.41	
В	0.008	0.010	0.0135	0.203	0.254	0.343	
С	0.005	.008	0.010	0.127	0.20	0.254	
D	0.620	0.625	0.637	15.75	15.88	16.18	
Е	0.291	0.295	0.299	7.39	7.49	7.59	
е	C	0.0256 BS	С	C	.640 BS	С	
Н	0.395	0.408	0.420	10.03	10.36	10.67	
L	0.024	0.030	0.040	0.61	0.76	1.02	
а	00	40	80	00	40	80	

Ordering Information

Part Number	Package Type	Production Flow
SC680EYB	48 PIN SSOP	Commercial, 0°C to +70°C

Note: The ordering part number is formed by a combination of device number, device revision, package style, and

Document#: 38-07026 Rev. *A

screening as shown below.

Marking: Example: Cypress

SC680EYB Date Code, Lot #

Notice

Cypress Semiconductor Corporation reserves the right to make changes to its products in order to improve design, performance or reliability. Cypress Semiconductor Corporation assumes no responsibility for the use of its products in life supporting and medical applications where the failure or malfunction of the product could cause failure of the life supporting and medical systems. Products are not authorized for use in such applications unless a written approval is requested by the manufacturer and an approval is given in writing by Cypress Semiconductor Corporation for the use of its products in the life supporting and medical applications.

	Document Title: SC680E SMBus System Clock Buffer Document Number: 38-07026						
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change			
**	106954	06/29/01	IKA	Convert from IMI to Cypress			
*A	122724	12/17/02	RBI	Added power-up requirements to maximum ratings information.			