Approved by（Production Div．）

Checked by（ACI Engineering Div．）

NO．	ITEM	PAGE
-	Contents	1
1	Application	2
2	Features	2
3	Mechanical Specifications	2
4	Mechanical Drawing of TFT－LCD module	3
5	Input／Output Terminals	4
6	Absolute Maximum Ratings	6
7	Electrical Characteristics	6
8	Power On Sequence	12
9	Optical Characteristics	13
10	Handling Cautions	16
11	Reliability Test	17
12	Indication of Label	17
13	Block Diagram	18
14	Standard	19
15	Packing	24
-	Revision History	25

1.Application

This data sheet applies to a color TFT LCD module, T-51410D104J-FW-P-AC.
T-51410D104J-FW-P-AC module applies to notebook PC, sub-note-book PC and other OA product, which require high quality flat panel display. This module is not designed for aerospace, avionics, medical, F/A, transportation, car or any other products, which require extreme level of reliability.
Prime View assume no responsibility for any damage resulting from the use of the device which dose not comply with the instructions and the precautions in these specification sheet.
2. Features
. Amorphous silicon TFT LCD panel with back-light unit
. Pixel in stripe configuration
. Slim and compact, designed for O/A application
. Display Colors:262,144 colors
. Optimum Viewing Direction:6 o'clock
. 3.3V LVDS interface standard: DS90CF364 as receiver
. +3.3V DC supply voltage for TFT LCD panel driving
. Backlight driving DC/AC inverter not included in this module
.Long Life Lamp
3.Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	26.4 (diagonal)	cm
	10.4 (diagonal)	inch
Display Format	$800 \times(\mathrm{R}, \mathrm{G}, \mathrm{B}) \times 600$	dot
Display Colors	262,144	mm
Active Area	$211.2(\mathrm{H}) \times 158.4(\mathrm{~V})$	mm
Pixel Pitch	$0.264(\mathrm{H}) \times 0.264(\mathrm{~V})$	
Pixel Configuration	Stripe	mm
Outline Dimension	$238.6(\mathrm{w}) \times 171.0(\mathrm{H}) \times 6.0($ typ. $)(\mathrm{D})$	g
Weight	$310($ typ. $), 320($ max. $)$	
Back-light	Single CCFL, side-light type	
Surface treatment	Anti-glare and hard-coating	
Display mode	Normally white	

4.Mechanical Drawing of TFT-LCD Module

5. Input Terminals

5-1) TFT-LCD Panel Driving
Connector type: Molex 55177-1491

Pin No.	Symbol		Function
1	VDD	Power supply : +3.3V	
2	VDD	Power supply : +3.3V	
3	GND		
4	GND		
5	IN0-	Pixel data Transmission pair 0 (negative -)	
6	IN0 +	Pixel data Transmission pair 0 (positive +)	
7	IN1-	Pixel data Transmission pair 1 (negative -)	
8	IN1+	Pixel data Transmission pair 1 (positive +)	
9	IN2-	Pixel data Transmission pair 2 (negative -)	
10	IN2+	Pixel data Transmission pair 2 (positive +)	
11	CLK-	Sampling Clock (negative -)	
12	CLK +	Sampling Clock (positive +)	
13	GND		
14	GND		

Recommended Transmitter (DS90C*363 of National Semiconductor) to T-51410D104J-FW-P-AC interface Assignment:

Input terminal of DS$90 C * 363$			Graphic controller output signal	Output signal symbol	$\begin{array}{\|l} \hline \text { To T-51410D104J- } \\ \text { FW-P-AC } \\ \text { Interface } \\ \text { terminal(Symbol) } \end{array}$
Symbol	No.	Symbol	Function		
TIN0	44	R0	Red pixel data (LSB)		
TIN1	45	R1	Red pixel data		
TIN2	47	R2	Red pixel data	t0-	No. 5 : INO-
TIN3	48	R3	Red pixel data		
TIN4	1	R4	Red pixel data	Tout0+	No. 6 : INO+
TIN5	3	R5	Red pixel data(MSB)		
TIN6	4	G0	Green pixel data (LSB)		
TIN7	6	G1	Green pixel data		
TIN8	7	G2	Green pixel data		
TIN9	9	G3	Green pixel data	t1-	-No. 7 : IN1-
TIN10	10	G4	Green pixel data		
TIN11	12	G5	Green pixel data(MSB)	out1+	No. $8: 1 \mathrm{~N} 1+$
TIN12	13	B0	Blue pixel data(LSB)		
TIN13	15	B1	Blue pixel data		
TIN14	16	B2	Blue pixel data		
TIN15	18	B3	Blue pixel data		
TIN16	19	B4	Blue pixel data	Tout2-	-No. 9 : IN2-
TIN17	20	B5	Blue pixel data(MSB)		
TIN18	22	NC	No connection	Tout2+	N0.10: $\mathrm{IN} 2+$
TIN19	23	NC	No connection		
TIN20	25	ENAB	Compound Synchronization signal		
CLK in	26	NCLK	Data sampling clock	TCLK outTCLK out+	No. 11 : CLK INNo. 12 : CLK IN+

Data stream of INO-/+, IN1-/+ and IN2-/+ for T-51410D104J-FW-P-AC

ENAB
NC
B5
B4
B3
B2

LVDS Interface Block Diagram

5-2) Backlight driving
Connector type : "BHR-02VS-1" of Japan Solderless Terminal MFG Co. LTD

PIN NO.	Symbol	Description	Remark
1	VL1	Input Voltage(High)	
2	VL2	Input Voltage(Low)	

6.Absolute Maximum Ratings:

$\mathrm{GND}=0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameters	Symbol	MIN.	MAX.	Unit	Remark
Supply Voltage	VDD	-0.3	+4.0	V	
Input Signals Voltage	V_{IN}	-0.3	$\mathrm{VDD}+0.3$	V	Note 6-1
Backlight Driving Voltage	V_{L}	-	2000	V	
Backlight Driving Frequency	F_{L}	0	100	KHz	
Storage Temperature	T_{ST}	-20	+70	${ }^{\circ} \mathrm{C}$	Note 6-2
Operating Temperature	T_{OP}	0	+60	${ }^{\circ} \mathrm{C}$	

Note 6-1: LVDS signal
Note 6-2: Humidity : 90% RH Max. at $\mathrm{Ta} \leq 40$ Maximum wet-bulb temperature is at 39 ,or less at $\mathrm{Ta}>40$, and no condensation.

7.Electrical Characteristics

7-1) Recommended Operating Conditions:

Item	Symbol	Min.	Typ.	Max.	Unit	Remark
Supply Voltage	VDD	3.0	3.3	3.6	V	
Current Dissipation	ID	-	350	450	mA	Note 7-1
LVDS Differential input high threshold	VTH	-	-	100	mV	Note 7-2
LVDS Differential input low threshold	VTL	-100	-	-		
Lamp Current	IFL	3.0	5.0	6.0	mA	$5 \mathrm{~mA}: 160 \mathrm{~cd} / \mathrm{m} 2$ Note 7-3 Note 7-5
Lamp Voltage	V_{L}	500	550	600	Vrms	$\mathrm{I}_{\mathrm{FL}}=5 \mathrm{~mA}$ Note 7-3
Lamp Initial Voltage	$\mathrm{V}_{\text {SFL }}$	-	1200	-	Vrms	at $\mathrm{Ta}=25^{\circ} \mathrm{C}$
		1000				at $\mathrm{Ta}=0^{\circ} \mathrm{C}$
Lamp Driving Frequency	F_{L}	-	45	-	KHz	
Total power consumption (at $\mathrm{l}_{\mathrm{FL}}=5 \mathrm{~mA}$)		--	3.91	-	W	Note 7-4

Note 7-1: To test the current dissipation of VDD, using the "color bars" testing pattern shown as below.

Idd current dissipation testing pattern

Note 7-2: Please refers to DS90CF364 specification by National Semiconductor Corporation. This LCD module conforms to LVDS standard.
Note 7-3: The back-light driving waveform should be as closed to sine-wave as possible. In order to satisfy the quality of B/L, no matter use what kind of inverter , the output lamp current must between Min. and Max. to avoid the abnormal display imagecaused by B/L.

Note 7-4: Not including the efficiency of backlight DC/AC inverter
Note 7-5: Lamp current is measured with current meter for high frequency as shown below

Yokogawa 2016-01
Lamp current dissipation testing configuration
7-2) Input / Output signal timing chart
(A) Vertical Timing

(B) Horizontal Timing

Duty (, b): 50 $\pm 10 \%$
D) Timing Specifications

Item	Symbol	Min.	Typ.	Max.	Unit	Remark
Frame Cycling	t 1	$604 \times \mathrm{t} 3$	$628 \times \mathrm{t} 3$	$660 \times \mathrm{t} 3$	-	
		-	16.58	17.86	ms	
Vertical Display Period	t 2	$600 \times \mathrm{t} 3$	$600 \times \mathrm{t} 3$	$600 \times \mathrm{t} 3$	-	
Horizontal Scanning Time	t 3	$844 \times \mathrm{t} 5$	$1056 \times \mathrm{t} 5$	$1064 \times \mathrm{t} 5$	-	
		26.3	26.4	-	$\mu \mathrm{s}$	
Horizontal Display Period	t 4	-	$800 \times \mathrm{t} 5$	-	-	
Clock Cycle	t 5	24.0	25.0	-	ns	
Clock High Level Time	t 6	9.0	-	-	ns	
Clock Low Level Time	t 7	9.0	-	-	ns	
Hold time	t 8	4.0	-	-	ns	
Set-up time	t 9	5.0	-	-	ns	

7-3) Display Color and Gray Scale Reference

Color		Input Color Data																				
		Red						Green							Blue							
		R5	R4	R3	R2	R1	R0	G5	G4	G3	G2		G1	G0	B5	B4	B3	B2	B1	B0		
Basic Colors	Black	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		
	Red (63)	1	1	1	1	1	1	0	0	0	0		0	0	0	0	0	0	0	0		
	Green (63)	0	0	0	0	0	0	1	1	1	1		1	1	0	0	0	0	0	0		
	Blue (63)	0	0	0	0	0	0	0	0	0	0		0	0	1	1	1	1	1	1		
	Cyan	0	0	0	0	0	0	1	1	1	1		1	1	1	1	1	1	1	1		
	Magenta	1	1	1	1	1	1	0	0	0	0		0	0	1	1	1	1	1	1		
	Yellow	1	1	1	1	1	1	1	1	1	1		1	1	0	0	0	0	0	0		
	White	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1		
Red	Red (00)	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		
	Red (01)	0	0	0	0	0	1	0	0	0	0		0	0	0	0	0	0	0	0		
	Red (02)	0	0	0	0	1	0	0	0	0	0		0	0	0	0	0	0	0	0		
	Darker																					
	\downarrow																					
	Brighter																					
	Red (61)	1	1	1	1	0	1	0	0	0	0		0	0	0	0	0	0	0	0		
	Red (62)	1	1	1	1	1	0	0	0	0	0		0	0	0	0	0	0	0	0		
	Red (63)	1	1	1	1	1	1	0	0	0	0		0	0	0	0	0	0	0	0		
Green	Green (00)	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		
	Green (01)	0	0	0	0	0	0	0	0	0	0		0	1	0	0	0	0	0	0		
	Green (02)	0	0	0	0	0	0	0	0	0	0		1	0	0	0	0	0	0	0		
	Darker																					
	\downarrow	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$						\downarrow	\downarrow	\downarrow	\downarrow		\downarrow	\downarrow	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$							
	Brighter															0						
	Green (61)	0	0	0	0	0	0	1	1	1	1		0	1	0			00				
	Green (62)	0	0	0	0	0	0	1	1	1	1		1	0	0	0	0	0	0			
	Green (63)	0	0	0	0	0	0	1	1	1	1		1	1	0	0	0	0	0	0		
Blue	Blue (00)	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0		
	Blue (01)	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	1		
	Blue (02)	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	1	0		
	Darker		$\downarrow \downarrow \downarrow \downarrow$					\downarrow		$\downarrow \downarrow$	$\downarrow \downarrow \downarrow$				\downarrow	-	$\downarrow \downarrow$	\downarrow	$\downarrow \downarrow$			
	\downarrow	\downarrow																				
	Brighter																					
	Blue (61)	0	00		0	0	0			0	0	0				0	1	1	1	1	0	1
	Blue (62)		0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0		
	Blue (63)	0	$0 \quad 0$	0	0	0	0	0	0	0	0		0	0	1	1	1	1	1	1		

7-4) Pixel Arrangement

The LCD module pixel arrangement is the stripe.

8.Power On Sequence

1. The supply voltage for input signals should be same as V_{Cc}.
2. When the power is off , please keep whole signals (Hsync, Vsync, CLK, Data) low level or high impedance

9. Optical Characteristics

9-1) Specification:
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing Angle	Horizontal	θ	$C R \geq 10$	± 35	± 45	-	deg	Note 9-1
	Vertical	θ (to 12 o'clock)		10	15	-	deg	
		θ (to 6 o'clock)		25	40	-	deg	
Contrast Ratio		CR	Optimum direction	100	180	-	-	Note 9-2
Response time	Rise	Tr	$\theta=0^{\circ}$	-	15	50	ms	Note 9-4
	Fall	Tf	$\varphi=0^{\circ}$	-	25	50	ms	
Luminance Luminance Uniformity		L	$\theta=0^{\circ} / \varphi=0^{\circ}$	130	160	-	$\mathrm{cd} / \mathrm{m}^{2}$	$\mathrm{IFL}_{\text {L }}=5 \mathrm{~mA}$, Note 9-3
		U		55	80	-	\%	Note 9-5
White Chromaticity		x		0.260	0.310	0.360	-	
		y		0.290	0.340	0.390	-	
		Tc		6400	6600	6800	K	
Lamp Life Time				30000	40000	-	hr	$\mathrm{I}_{\mathrm{L}}=5 \mathrm{~mA}$
Cross Talk Ratio		CTK		-	-	3.5	\%	Note 9-6

All the optical measurement shall be executed 30 minutes after backlight being turn-on. The optical characteristics shall be measured in dark room (ambient illumination on panel surface less than 1 Lux). The measuring configuration shows as following figure.

Optical characteristics measuring configuration

Note 9-1': The definitions of viewing angles are as follows.

Note 9-2: The definition of contrast ratio $\mathrm{CR}=\frac{\text { Luminance }}{\text { Luminance }}$	at gray	level	63
at gray	level	0	

Note 9-3: Topcon BM-5A luminance meter 2° field of view is used in the testing (after 30 minutes' operation). The typical luminance value is measured at lamp current 3.0 mA . The max luminance value is measured at lamp current 6.0 mA .

Note 9-4: Definition of Response Time T_{r} and T_{f} :

Note 9-5: The uniformity of LCD is defined as
$\mathrm{U}=\frac{\text { The Minimum Brightness of the } 9 \text { testing Points }}{\text { The Maximum Brightness of the } 9 \text { testing Points }}$
Luminance meter : BM-5A or BM-7 fast(TOPCON)
Measurement distance : $500 \mathrm{~mm}+/-50 \mathrm{~mm}$
Ambient illumination : < 1 Lux
Measuring direction : Perpendicular to the surface of module

The test pattern is white (Gray Level 63).

Note 8-6: Cross Talk (CTK) $=\frac{|\mathrm{YA}-\mathrm{YB}|}{\mathrm{YA}} \times 100 \%$
YA: Brightness of Pattern A
YB: Brightness of Pattern B
Luminance meter: BM 5A (TOPCON)
Measurement distance: $500 \mathrm{~mm}+/-50 \mathrm{~mm}$
Ambient illumination: < 1 Lux
Measuring direction: Perpendicular to the surface of module

Pattern A

(Gray Level 31)

Pattern B
(Gray Level 31, central black box exclusive)

\mathbf{X} : Measuring Point (A and B are at the same point.)
(Gray Level 0)
10. Handling Cautions

10-1) Mounting of module
a) Please power off the module when you connect the input/output connector.
b) Please connect the ground pattern of the inverter circuit surely. If the connection is not perfect, some following problems may happen possibly.
1.The noise from the backlight unit will increase.
2. The output from inverter circuit will be unstable.
3.In some cases a part of module will heat.
c) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
d) Protective film (Laminator) is applied on surface to protect it against scratches and dirts. It is recommended to peel off the laminator before use and taking care of static electricity.
10-2) Precautions in mounting
a) When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
b) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
c) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
d) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.
10-3) Adjusting module
a) Adjusting volumes on the rear face of the module have been set optimally before shipment.
b) Therefore, do not change any adjusted values. If adjusted values are changed, the specifications described may not be satisfied.
10-4) Others
a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
b) Store the module at a room temperature place.
c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel. Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
e) Observe all other precautionary requirements in handling general electronic components.
f) Please adjust the voltage of common electrode as material of attachment by 1 module.
11. Reliability Test

No	Test Item	Test Condition	Remark
1	High Temperature Storage Test	$\mathrm{Ta}=+70^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	
2	Low Temperature Storage Test	$\mathrm{Ta}=-20^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	
3	Low Temperature Operation Test	$\mathrm{Ta}=0^{\circ} \mathrm{C}, 240 \mathrm{hrs}$	
4	High Temperature \& High Humidity Operation Test	$\mathrm{Ta}=+60^{\circ} \mathrm{C}, 80 \% \mathrm{RH}, 240 \mathrm{hrs}$ (No Condensation)	
5	Thermal Cycling Test (non-operating)	$0^{\circ} \mathrm{C} \leftarrow \rightarrow+25^{\circ} \mathrm{C} \leftarrow \rightarrow+60^{\circ} \mathrm{C}, 50 \text { Cycles }$ $1 \mathrm{Hr} \quad 0.5 \mathrm{Hr} \quad 1 \mathrm{Hr}$	
6	Vibration Test (non-operating)	Frequency: $10 \sim 57 \mathrm{~Hz}_{\mathrm{z}}$, Amplitude: 0.15 mm $58 \sim 500 \mathrm{~Hz}, 1 \mathrm{G}$ Sweep time: 11 min Test Period: 3 hrs(1 hr for each direction of X, Y, Z)	
7	Shock Test (non-operating)	$\begin{aligned} & 80 \mathrm{G}, 6 \mathrm{~ms}, \mathrm{X}, \mathrm{Y}, \mathrm{Z} \\ & 1 \text { times for each direction } \end{aligned}$	

Ta: ambient temperature
[Judgement Criteria]
Under the display quality test conditions with normal operation state, there should be no change which may affect practical display function.
12. Indication of Label
a) Indicated contents of the label

Contents of lot number : 1st—Process area : class $1000 \Rightarrow \mathrm{H}$ class $100 \mathrm{~K} \Rightarrow \mathrm{M}$
2nd ~ 3 rd—Module screen size(in inch) : 1.8" $\Rightarrow 18,2.5 " \Rightarrow 25 \ldots .$.
5th—Production year : $1999 \Rightarrow 9,2000 \Rightarrow A, 2001 \Rightarrow 1 \ldots \ldots$.
6th—Production month : 1, 2, 3,...9, A, B, C
7th~10th—Serial numbers: 0001~9999
b) Indicated contents of the Product number label

Production Country
The Module Manufacture Location

T-51410D104J-FW-P-AC (AC) No. 2002-0203	OPTREX CORPORATION	Page 17/25

13. Block Diagram

14. Standard

14-1) Inspection condition
Viewing Angle (Major axis x)
$\theta<45^{\circ}$ inspection under non-operating condition $\theta<5^{\circ}$ inspection under operating condition

14-2) Environment condition
-Ambient Temperature: $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
-Ambient Humidity: 65さ5\%RH
-Ambient Luminance: 20 watts fluorescent lamp (about 500 lux)

14-3) Sampling condition
Unless otherwise agreed in written, the sampling inspection shall be applied to the incoming inspection of customer.
-Lot size: Quantity of shipment lot per model.
-Sampling type: Normal inspection, single sampling
-Sampling Level: Level II
-Sampling table: ISO 2859 (Also known as MIL-STD-105E).

14-4) Acceptance Quality Level (AQL)
The AQL for major and minor defects is defined as follows:
-Major defect: 0.65\%
-Minor defect: 1.5\%

14-5) Classification of defects
Defects and classified as either a major or minor defect defined as bellows:
-Major defect:
It is a defect that is likely to result in failure or to reduce materially the usability of the product for the intended function.
-Minor defect:

It is a defect that will not result in functioning problem with deviation classified.

14-6) Inspection Instrument:
-DC Power supply: DC 12V
-Luminance color meter: Topcon BM -7
\bullet-Others: Micrometer, Microscope, and Caliper.

14-7) Cosmetic Specification

Item		Specification/Description			Classification	Note
Display Inspection (operating)	Display function	No Display Malfunction			Major	
	Flickering	Visible at display area			Minor	
	Contrast ratio (Black, White)	Does not meet specified range in the spec.			Major	
	Line defect	Vertical and Horizontal Line defect in bright, dark			Major	
	Point defect (Red, Green, Blue, Dark)	Item	Number	Total	Minor	1
		Bright (Green)	$$	12		
	Image retention	After displaying fixed pattern for 30 minutes, the afterimage is visible after 10 seconds.			Minor	
	Non-uniformity	Visible through 2 \% ND Filter.			Minor	
External Inspection (non-operating)	Dimension	Outline			Major	
	Bezel appearance	Out of mechanical spec regarding bending area.			Minor	
	Scratch on the polarizer	$\begin{aligned} & N=5 \max (W \leq 0.1 \text { or } L \leq 10) \\ & N=0(W>0.1 \text { or } L>10) \end{aligned}$			Minor	2
	Dent or Bubble on the polarizer (in available viewing area)	$\begin{aligned} & N=5 \max (W \leq 0.5 \text { and } L \leq 10) \\ & N=0(W>0.5 \text { or } L>1.0) \end{aligned}$			Minor	2
	Foreign material on polarizer	$\begin{aligned} & (\mathrm{W}>1 / 4 \mathrm{~L}) \\ & \mathrm{N}=4 \max (0.1 \mathrm{~L}<\mathrm{D} \leq 0.4) \\ & \mathrm{N} \text { disregard } \\ & (\mathrm{W} \leq 1 / 4 \mathrm{~L}) \\ & \mathrm{N}=4 \max (0.03<\mathrm{W} \leq 0.10 \\ & \text { and } 0.3<\mathrm{L} \leq 2.1) \\ & \mathrm{N}=0(\mathrm{~W}>0.1 \text { orL }>2.1) \\ & \hline \end{aligned}$			Minor	3
	Plastic frame	Break or modification			Minor	2
	Wrinkle on polarizer	Serious wrinkle is not allowed				

| Cable | The metal wire is exposed | Minor | 2 |
| :--- | :--- | :--- | :---: | :---: |
| Connector
 (signal input) | Break | Major | |

(W-Width in mm, L-Length in mm, N-Number, D-Average Diameter in mm,) Remark: Major: Defect that is likely to result in failure or to reduce materially the usability of the product for the intended function.
Minor: Defect that will not result in functioning problem with deviation as classified.

Note: 1. (a) Bright point defect is defined as point defect of R, G, B with area $>1 / 2$ pixel Respectively and is not visible by using 5% ND filter.
(b) Definition of distribution of point defect is as follows:
within 20 mm diameter, it is allowed 4 dark points or 3 bright and dark points max.
(c) Definition of joined bright point defect is as follows:
-Three joined bright point must be nil.
-Joined bright point is 3 pairs maximum.
(d) Definition of joined dark point defect is as follows:
-Three jointed dark point must be nil.
-Coupling of one dark and one bright point in junction is counted as one dark and one bright spot.
-Two dark point in junction is counted as one dark point.
Note: 2. The external inspection is conducted at the distance 30 cm minimum between the eyes of inspector and the panel. The inspection area is defined as full screen.
Note: 3. W: Width of foreign material
L : Length of foreign material (Take larger value of L_{1} and L_{2})

4A:

15. Packing

Revision History

Rev.	Issued Date	Revised Content
1.0	Apr. 03, 2002	New
1.1	Jun. 03, 2002	Add Page 18 : Indication of Lot Number Label

