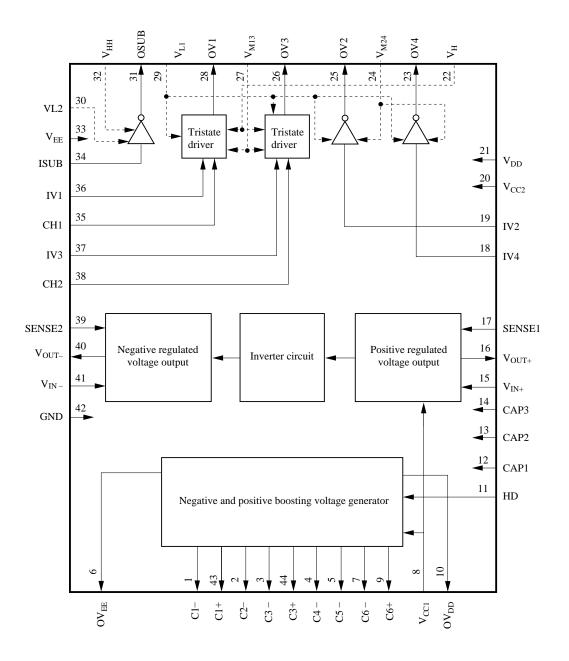
MN3113F

Vertical Driver LSI for Video Camera CCD Area Image Sensor

Overview

The MN3113F is a vertical driver LSI for a two-dimensional interline CCD image sensor. It features a built-in power supply circuit that, in conjunction with such external components as six booster capacitors and two voltage stabilization capacitors, produces stabilized +15.0V and -10.0V power supplies from a +5.0V input and HD pulses.

The MN3113F makes it possible to drive a CCD image sensor on a single 5 volt power supply.


Features

- Single 5 volt power supply
- Adjustable output voltage for regulated voltage circuit
- Applications
- Video cameras

Pin Assignment

Block Diagram

Symbol

 V_{CC1} V_{CC2}

GND

 $V_{\rm H}$

 $V_{\rm HH}$

V_{M13}

 V_{M24}

 V_{L1}

 V_{L2}

 V_{DD}

V_{EE}

 \boldsymbol{V}_{IN^+}

 $V_{IN -}$

Pin Descriptions

Pin No.

8

20

42

22

32

27

24

29

30

21

33

15

41

ent		MN3113F			
Pin Name	I/O	Function Description			
"H" level power supply	Ι	"H" level input for 5 volt circuits			
for input block					
"L" level power supply	Ι	"L" level input for 5 volt circuits			
for input block					
"H" level power supply	Ι	"H" level input for high-voltage circuits			
for vertical driver					
"H" level power supply	Ι	"H" level input for high-voltage circuits			
for SUB driver					
"M" level power supply	Ι	"M" level input for high-voltage circuits			
for vertical driver					
"L" level power supply	Ι	"L" level input for high-voltage circuits			
for vertical driver					
"L" level input	Ι	"L" level input for high-voltage circuits			
for SUB driver					
Power supply 1 for driver	Ι	"H" level for high-voltage circuits			
Power supply 2 for driver	Ι	"L" level for high-voltage circuits			
Positive regulated voltage	Ι	Positive regulated voltage block			
block voltage input		voltage input pin			
Negative regulated voltage	Ι	Negative regulated voltage block			
block voltage input		voltage input pin			

	* IIN -	riegunie regulated voltage	-	rieguite regulated to hage croch	
		block voltage input		voltage input pin	
11	HD	HD pulse input	I	HD pulse input pin	
19	IV2	Transfer pulse input	I	Charge transfer pulse input pin	
18	IV4	Transfer pulse input	I	Charge transfer pulse input pin	
36	IV1	Transfer pulse input	Ι	Charge transfer pulse input pin	
37	IV3	Transfer pulse input	Ι	Charge transfer pulse input pin	
35	CH1	Charge pulse input	I	Charge readout pulse input pin	
38	CH2	Charge pulse input	Ι	Charge readout pulse input pin	
34	ISUB	SUB pulse input	I	Unwanted charge rejection pulse input pin	
17	SENSE1	Positive voltage sensing	I	Positive voltage control sensing pin	
		input			
39	SENSE2	Negative voltage sensing	I	Negative voltage control sensing pin	
		input			
43	C1+	C1 connection	0	Booster block voltage charging capacitor	
1	C1-			connection pins	
2	C2+	C2 connection	0	Booster block voltage charging capacito	
	C2-			connection pins	
44	C3+	C3 connection	0	Booster block voltage charging capacitor	
3	C3 –			connection pins	
4	C4 –	C4 connection	0	Booster block voltage charging capacitor	
				connection pins	
5	C5 –	C5 connection	0	Booster block voltage charging capacitor	
				connection pins	

■ Pin Descriptions (continued)

Pin No.	Symbol	Pin Name	I/O	Function Description
7	C6 –	C6 connection pins	0	Booster block voltage charging capacitor
9	C6+			connection pins
10	OV _{DD}	Booster block positive voltage output	0	Booster block positive voltage output pin
6	OV _{EE}	Booster block negative voltage output	0	Booster block negative voltage output pin
16	V _{OUT+}	Positive regulated voltage output	0	Positive regulated voltage output pin
40	V _{OUT-}	Negative regulated voltage output	0	Negative regulated voltage output pin
23	OV4	Binary transfer pulse output	0	Binary (V_{M24}, V_{L1}) transfer pulse output pin
25	OV2	Binary transfer pulse output	0	Binary (V_{M24}, V_{L1}) transfer pulse output pin
26	OV3	Tristate transfer pulse output	0	Tristate (V_H, V_{M13}, V_{L1}) transfer pulse output pin
28	OV1	Tristate transfer pulse output	0	Tristate (V_H, V_{M13}, V_{L1}) transfer pulse output pin
31	OSUB	SUB pulse output	0	Unwanted charge (V_{HH}, V_{L2}) rejection pulse input pin
12	CAP1	Stabilizing capacitor	0	Pins for connecting capacitors for internal
13	CAP2	connection		voltage stabilization circuits
14	CAP3			

Functional Description

Binary transfer pulses (vertical driver block)

1 (,
IV2	OV2
IV4	OV4
Н	L
L	М

Tristate transfer pulses (vertical driver block)

IV1	OV1
IV3	OV3
Н	L
L	М
Н	L
L	Н
	IV3 H L

*1 IV1, IV2, IV3, IV4, CH1, CH2

 $\begin{array}{c} OV1,\,OV2,\,OV3,\,OV4\\ H:\,V_{H}\\ M:\,V_{M13}\,,\,or\,\,V_{M24}\\ L:\,V_{L1} \end{array}$

Unwanted charge rejection pulses (SUB driver block)

90.0900000000000	
ISUB	OSUB
Н	L
L	Н
*1 ISUB	
H: V _{CC}	
L: GND	
OSUB	
H: V _{HH}	
L: V _{L2}	

H: V_{CC} L: GND

Electrical Characteristics

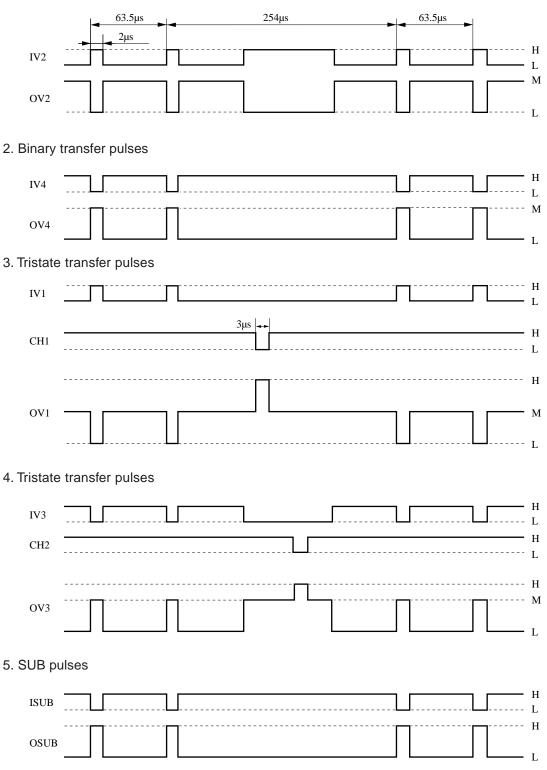
(1) DC characteristics

 $V_{\rm HH}\!\!=\!\!V_{\rm H}\!\!=\!\!15.0V$, $V_{\rm M13}\!\!=\!\!V_{\rm M24}\!\!=\!\!1.0V$, GND=0.0V ,

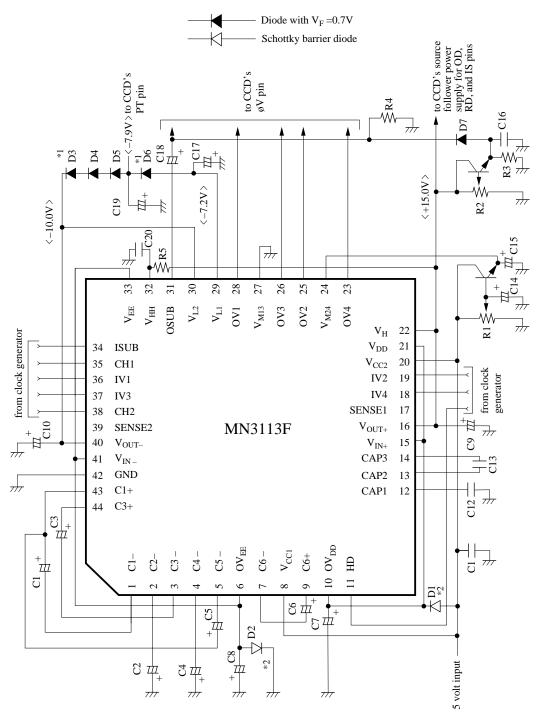
 $V_{CC1}{=}V_{CC2}{=}5.0V\;({=}V_{CC}), \, V_{L1}={-}7.0V$, $V_{L2}={-}10.0V$, Ta=+25°C

001 002 (007) 21		- 10.07, 14-125 C				
Parameter	Symbol	Test conditions	min	typ	max	Unit
Quiescent supply current	I _{DDST}	V _I =GND , V _{CC}		2	4	mA
Operating supply current	I _{DDDYN}	V _I =GND , V _{CC}		45	90	mA
Power supply output pins	OV	_{DD} , OV _{EE}				
Positive voltage stabilization	V _{OUT+}	V_I =GND , V_{CC} , I_O =7mA	14.5	15.0	15.5	V
circuit output voltage		f_{INHD} =15.7kHz				
Negative voltage stabilization	V _{OUT-}	V _I =GND, V _{CC} , I _O =-2mA	-10.5	-10.0	-9.5	V
circuit output voltage		f _{INHD} =15.7kHz				
Input pins	IV1	, IV2 , IV3 , IV4 , CH1 , CH2 , ISU	B, HD			
"H" level voltage	V _{IH}		3.5		V _{CC}	V
"L" level voltage	V _{IL}		GND		1.5	V
Input leak current	I _{LI}	V _I =0 to 5V			±1	μΑ
Output pins 1 (Binary output) OV	2 , OV4	-	1		
Output voltage "M" level	V _{OM1}	V _I =GND, V _{CC} , I _{OM1} =-1mA	0.9		V _{M24}	V
Output voltage "L" level	V _{OL1}	V _I =GND, V _{CC} , I _{OL1} =1mA	V _{L1}		-6.9	V
Output on resistance "M" level	R _{ONM1}	I _{OM1} =-50mA			40	Ω
Output on resistance "L" level	R _{ONL1}	I _{OL1} =50mA			40	Ω
Output pins 2 (Tristate output	it) OV	1 , OV3				
Output voltage "H" level	V _{OH2}	V _I =GND, V _{CC} , I _{OH2} =-1mA	14.9		V _H	V
Output voltage "M" level	V _{OM2}	V _I =GND, V _{CC} , I _{OM2} =-1mA	0.9		V _{M13}	V
Output voltage "L" level	V _{OL2}	V _I =GND, V _{CC} , I _{OL2} =1mA	V _{L1}		-6.9	V
Output on resistance "H" level	R _{ONH2}	I _{OH2} =-50mA			50	Ω
Output on resistance "M" level	R _{ONM2}	I _{OM2} =±50mA			40	Ω
Output on resistance "L" level	R _{ONL2}	I _{OL2} =50mA			40	Ω
Output pin 3 (SUB output)	OS	UB				
Output voltage "H" level	V _{OHH3}	V _I =GND, V _{CC} , I _{OHH3} =-1mA	14.9		V _{HH}	V
Output voltage "L" level	V _{OL3}	V _I =GND, V _{CC} , I _{OL3} =1mA	V _{L2}		-9.9	V
Output on resistance "H" level	R _{ONHH3}	I _{ONHH3} =-50mA			50	Ω
Output on resistance "L" level	R _{ONL3}	I _{ONL3} =50mA			40	Ω
	1	I		1		

(2) AC characteristics


 $V_{\rm HH}\!\!=\!\!V_{\rm H}\!\!=\!\!15.0V$, $V_{\rm M13}\!\!=\!\!V_{\rm M24}\!\!=\!\!1.0V$, GND=0.0V ,

 $V_{CC1}{=}V_{CC2}{=}5.0V\;({=}V_{CC})$, $V_{L1}{=}{-}7.0V$, $V_{L2}{=}{-}10.0V$, Ta=+25°C

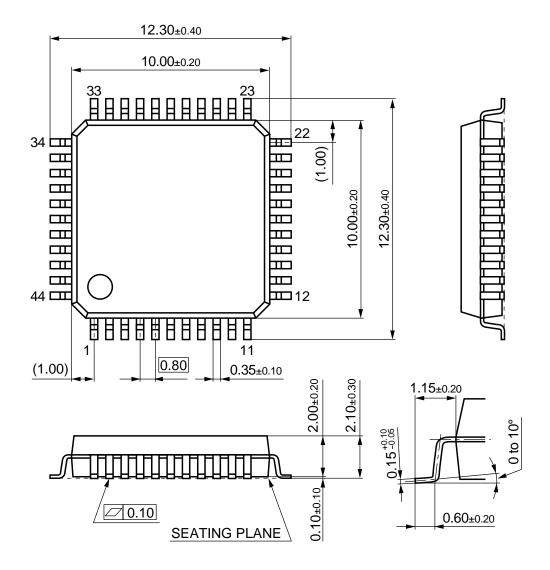

Parameter	Symbol	Test Conditions	min	typ	max	Unit
Output pins 1 (Binary output	ut) OV	2 , OV4				
Transmission delay time	t _{PLM}	No load		100	200	ns
	t _{PML}	From "L" level to "M" level				
Rise time	t _{TLM}			200	300	ns
Fall time	t _{TML}					
Output pins 2 (Tristate outp	out) OV	1 , OV3				
Transmission delay time	t _{PLM}	No load		100	200	ns
	t _{PML}	From "L" level to "M" level				
Transmission delay time	t _{PMH}	No load		200	400	ns
	t _{PHM}	From "M" level to "H" level				
Rise time	t _{TLM}			200	300	ns
Fall time	t _{TML}					
Rise time	t _{TMH}			200	300	ns
Fall time	t _{THM}					
Output pin 3 (SUB output)	OS	UB				
Transmission delay time	t _{PLHH}	No load		100	200	ns
	t _{PHHL}	From "L" level to "H" level				
Risie time	t _{TLHH}			200	300	ns
Fall time	t _{THHL}					

Timing Chart

1. Binary transfer pulses

Application Circuit Example

Notes


*1: These diodes must have a V_F of 0.7V.

*2: These diodes must be Schottky barrier diodes (MA723).

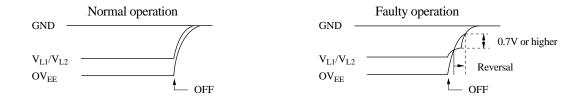
*3: The booster circuit's electrolytic capacitors (C1 to C8) and voltage stabilization capacitors (C9 and C10) must have little impedance fluctuation at low temperatures.

Package Dimensions (Unit: mm)

QFP044-P-1010

Usage Notes

External components


 This product requires two Schottky barrier diodes. We recommend the following components.

Schottky barrier diodes: MA723 or equivalents

Ta=25°C

Component	Model number	Typical characteristics	Notes
Schottky barrier diodes	MA723	$I_F = 200 \text{mA}, V_F \le 0.55 \text{V}$	

The MN3113F will not operate properly if the components do not satisfy the above specifications.

2. Always use the specified components for peripheral circuits so as to ensure that OV_{EE} and V_L do not reverse potentials when the power is turned off.

As the above sketch illustrates, allowing OV_{EE} to exceed V_{L1} and V_{L2} by more than 0.7 V produces the risk of applying a forward bias to the PN junction, turning on the parasitic transistor, and generating an overcurrent that produces latch-up.

If this phenomenon arises, increase the size of capacitor C8 or decrease the size of capacitor C10 to increase the OV_{EE} time constant.

(See the sample application circuit for the locations of C8 and C10.)

3. Adjusting boost voltages with SENSE pins

The MN3113F provides the SENSE pins, SENSE1 and SENSE2, for adjusting the boost voltages (V_{OUT+} and V_{OUT-}) with the following procedures.

Adjusting the positive boosted voltage

(1) Making $V_{OUT+} < 15V$

Insert a resistor, R, between the SENSE1 pin (pin 17) and the V_{OUT+} pin (pin 16). The theoretical output voltage at the V_{OUT+} pin is then given by the following formula.

$$V_{OUT+'} = V_{CC} \times \frac{50k\Omega + 100k\Omega//R}{50k\Omega}$$

(where 100 k Ω //R is the effective resistance of the 100 k Ω resistor and R connected in parallel.)

For example, if R is 50 k Ω ,

$$V_{OUT+'} = 5 \text{ x} \frac{50k\Omega + 33.3k\Omega}{50k\Omega} = 8.3V$$

(2) Making $V_{OUT+} > 15V$

Insert a resistor, R, between the SENSE1 pin (pin 17) and the GND pin (pin 42).

$$V_{OUT+'} = V_{CC} x \frac{50k\Omega//R + 100k\Omega}{50k\Omega//R}$$

Adjusting the negative boosted voltage

(1) Making $V_{OUT-} < -10V$

Insert a resistor, R, between the SENSE2 pin (pin 39) and the GND pin (pin 42).

$$V_{OUT-'} = V_{CC} \times \frac{50k\Omega//R + 50k\Omega}{50k\Omega//R}$$

(2) Making $V_{OUT-} > -10V$

Insert a resistor, R, between the SENSE2 pin (pin 39) and the V_{OUT-} pin (pin 40).

$$V_{OUT-'} = -V_{CC} \ \textbf{x} \ \frac{50 k \Omega + 50 k \Omega //R}{50 k \Omega}$$

For example, if R is 50 k Ω ,

$$V_{OUT-'} = -5 \text{ x} \frac{50k\Omega + 25k\Omega}{50k\Omega} = -7.5 \text{ V}$$

Note, however, that the above formulas are mere guidelines, that the internal resistances vary between samples, and that therefore each sample will have to be adjusted.

Note also that booster circuit capacity and output load current impose limits on adjustments for boosting V_{OUT+} above 15V and V_{OUT-} below -10V.

(The maximum possible adjustments are 20V for V_{OUT+} and –15V for $V_{OUT-}.)$

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuit examples of the products. It does not constitute the warranting of industrial property, the granting of relative rights, or the granting of any license.
- (3) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (4) The products and product specifications described in this material are subject to change without notice for reasons of modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, redundant design is recommended, so that such equipment may not violate relevant laws or regulations because of the function of our products.
- (6) When using products for which dry packing is required, observe the conditions (including shelf life and after-unpacking standby time) agreed upon when specification sheets are individually exchanged.
- (7) No part of this material may be reprinted or reproduced by any means without written permission from our company.

Please read the following notes before using the datasheets

- A. These materials are intended as a reference to assist customers with the selection of Panasonic semiconductor products best suited to their applications.
 Due to modification or other reasons, any information contained in this material, such as available product types, technical data, and so on, is subject to change without notice.
 Customers are advised to contact our semiconductor sales office and obtain the latest information before starting precise technical research and/or purchasing activities.
- B. Panasonic is endeavoring to continually improve the quality and reliability of these materials but there is always the possibility that further rectifications will be required in the future. Therefore, Panasonic will not assume any liability for any damages arising from any errors etc. that may appear in this material.
- C. These materials are solely intended for a customer's individual use. Therefore, without the prior written approval of Panasonic, any other use such as reproducing, selling, or distributing this material to a third party, via the Internet or in any other way, is prohibited.