

INITIAL RELEASE Final Electrical Specifications LT1636

Over-The-Top Micropower Rail-to-Rail Input and Output Op Amp May 1998

The LT[®]1636 op amp operates on all single and split supplies

with a total voltage of 2.7V to 44V drawing less than 55µA of

quiescent current. The LT1636 can be shut down, making the

output high impedance and reducing the guiescent current to

4µA. The LT1636 has a unique input stage that operates and

remains high impedance when above the positive supply. The

inputs take 44V both differential and common mode, even

when operating on a 3V supply. The output swings to both

supplies. Unlike most micropower op amps, the LT1636 can

drive heavy loads; its rail-to-rail output drives 18mA. The

LT1636 is unity-gain stable into all capacitive loads up to

10,000pF when a 0.22μ F and 150Ω compensation network

The LT1636 is reverse supply protected: it draws no current for reverse supply up to 27V. Built-in resistors protect the

inputs for faults below the negative supply up to 22V. There is no phase reversal of the output for inputs 5V below V_{FF} or

The LT1636 op amp is available in the 8-pin MSOP, 8-pin

T, LTC and LT are registered trademarks of Linear Technology Corporation.

Over-The-Top is a trademark of Linear Technology Corporation.

44V above V_{FF}, independent of V_{CC}.

PDIP and SO packages.

DESCRIPTION

is used.

FEATURES

- Rail-to-Rail Input and Output
- Micropower: 55µA IQ, 44V Supply
- MSOP Package
- Over-The-TopTM:Input Common Mode Range Extends 44V Above V_{EE}, Independent of V_{CC}
- Low Input Offset Voltage: 225µV Max
- Specified on 3V, 5V and ±15V Supplies
- High Output Current: 18mA
- Output Shutdown
- Output Drives 10,000pF with Output Compensation
- Reverse Battery Protection to 27V
- High Voltage Gain: 2000V/mV
- High CMRR: 110dB
- 220kHz Gain Bandwidth Product

APPLICATIONS

- Battery- or Solar-Powered Systems Portable Instrumentation Sensor Conditioning
- Supply Current Sensing
- Battery Monitoring
- MUX Amplifiers
- 4mA to 20mA Transmitters

TYPICAL APPLICATION

MUX Amplifier Waveforms

$$\label{eq:VS} \begin{split} &V_S = \pm 2.5V\\ &V_{IN1} = 1.2 \text{kHz AT } 4V_{\text{P-P}}, V_{IN2} = 2.4 \text{kHz AT } 2V_{\text{P-P}}\\ &INPUT SELECT = 120 \text{Hz AT } 5V_{\text{P-P}} \end{split}$$

1636 TA02

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V ⁺ to V ⁻)	44V
Input Differential Voltage	44V
Input Current	±25mA
Output Short-Circuit Duration (Note 1)	Continuous
Operating Temperature Range	-40°C to 85°C

PACKAGE/ORDER INFORMATION

Consult factory for Military grade parts.

3V, 5V ELECTRICAL CHARACTERISTICS

 $V_S = 3V$, 0V; $V_S = 5V$, 0V; $V_{CM} = V_{OUT} = half supply$, Pin 5 = open or V_{EE} , Pins 1 and 8 open, $T_A = 25^{\circ}C$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{OS}	Input Offset Voltage	N8 Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		50	225 400 550	μV μV uV
		S8 Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		50	225 600 750	μV μV μV
			•		50	225 700 850	μV μV μV
	Input Offset Voltage Drift (Note 7)	$\label{eq:rescaled} \begin{array}{l} N8 \mbox{ Package, } -40^\circ C \leq T_A \leq 85^\circ C \\ S8 \mbox{ Package, } -40^\circ C \leq T_A \leq 85^\circ C \\ MS8 \mbox{ Package, } -40^\circ C \leq T_A \leq 85^\circ C \end{array}$	•		1 2 2	5 8 10	μV/°C μV/°C μV/°C
I _{OS}	Input Offset Current	V _{CM} = 44V (Note 3)	•		0.1	0.8 0.6	nA μA
I _B	Input Bias Current	V _{CM} = 44V (Note 3) V _S = 0V	•		5 3 0.1	8 6	nA μA nA
	Input Noise Voltage	0.1Hz to 10Hz			1		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			52		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.035		pA/√Hz
R _{IN}	Input Resistance	Differential Common Mode, V _{CM} = 0V to 44V		6 7	10 15		MΩ MΩ

3V, 5V ELECTRICAL CHARACTERISTICS

 $V_S = 3V$, 0V; $V_S = 5V$, 0V; $V_{CM} = V_{OUT} =$ half supply, Pin 5 = open or V_{EE} , Pins 1 and 8 open, $T_A = 25^{\circ}C$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
CIN	Input Capacitance				4		pF
	Input Voltage Range		•	0		44	V
CMRR	Common Mode Rejection Ratio (Note 3)	$V_{CM} = 0V$ to $V_{CC} - 1V$ $V_{CM} = 0V$ to 44V (Note 6)	•	84 86	110 98		dB dB
A _{VOL}	Large-Signal Voltage Gain	$ \begin{array}{l} V_S = 3V, V_0 = 500mV \ to \ 2.5V, \ R_L = 10k \\ V_S = 3V, 0^\circ C \leq T_A \leq 70^\circ C \\ V_S = 3V, -40^\circ C \leq T_A \leq 85^\circ C \end{array} $	•	200 133 100	1300		V/mV V/mV V/mV
		$ \begin{array}{l} V_S = 5V, V_0 = 500mV \ to \ 4.5V, R_L = 10k \\ V_S = 5V, 0^\circ C \leq T_A \leq 70^\circ C \\ V_S = 5V, -40^\circ C \leq T_A \leq 85^\circ C \end{array} $	•	400 250 200	2000		V/mV V/mV V/mV
V _{OL}	Output Voltage Swing LOW	No Load I _{SINK} = 5mA V _S = 5V, I _{SINK} = 10mA	• • •		2 480 860	10 875 1600	mV mV mV
V _{OH}	Output Voltage Swing HIGH	V _S = 3V, No Load V _S = 3V, I _{SOURCE} = 5mA	•	2.95 2.55	2.985 2.8		V V
		$V_S = 5V$, No Load $V_S = 5V$, I _{SOURCE} = 10mA	•	4.95 4.30	4.985 4.75		V V
I _{SC}	Short-Circuit Current (Note 1)	$V_S = 3V$, Short to GND $V_S = 3V$, Short to V_{CC}		7 20	15 42		mA mA
		$V_S = 5V$, Short to GND $V_S = 5V$, Short to V_{CC}		12 25	25 50		mA mA
PSRR	Power Supply Rejection Ratio	$V_{S} = 2.7V$ to 12.5V, $V_{CM} = V_{0} = 1V$	•	90	103		dB
	Reverse Supply Voltage	I _S = −100μA	•	27	40		V
I _S	Supply Current (Note 4)		•		42	55 60	μΑ μΑ
	Supply Current, SHDN	V _{PIN5} = 2V, No Load (Note 4)	•		4	12	μA
I _{SD}	Shutdown Pin Current	V_{PIN5} = 0.3V, No Load (Note 4) V_{PIN5} = 2V, No Load (Note 3)	•		0.5 1.1	15 5	nA μA
	Output Leakage Current	V _{PIN5} = 2V, No Load (Note 4)	•		0.05	1	μA
	Maximum Shutdown Pin Current	V _{PIN5} = 32V, No Load (Note 3)	•		27	150	μA
t _{ON}	Turn-On Time	$V_{PIN5} = 5V$ to 0V, $R_L = 10k$			120		μs
t _{OFF}	Turn-Off Time	$V_{PIN5} = 0V \text{ to } 5V, R_{L} = 10k$			2.5		μs
GBW	Gain Bandwidth Product (Note 3)	$ f = 1 kHz 0°C \le T_A \le 70°C -40°C \le T_A \le 85°C $	•	110 100 90	200		kHz kHz kHz
SR	Slew Rate (Note 5)	$\begin{array}{l} A_V = -1, \ R_L = \infty \\ 0^\circ C \leq T_A \leq 70^\circ C \\ -40^\circ C \leq T_A \leq 85^\circ C \end{array}$	•	0.035 0.031 0.030	0.07		V/μs V/μs V/μs

$\pm 15V$ ELECTRICAL CHARACTERISTICS

 $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, Pin 5 = open or V_{EE} , Pins 1 and 8 open, $T_A = 25^{\circ}C$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
V _{0S}	Input Offset Voltage	N8 Package $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		100	450 550 700	μV μV μV
		S8 Package $0^{\circ}C \leq T_A \leq 70^{\circ}C$ $-40^{\circ}C \leq T_A \leq 85^{\circ}C$	•		100	450 750 900	μV μV μV
			•		100	450 850 1000	μV μV μV
	Input Offset Voltage Drift (Note 7)	N8 Package, $-40^{\circ}C \le T_A \le 85^{\circ}C$ S8 Package, $-40^{\circ}C \le T_A \le 85^{\circ}C$ MS8 Package, $-40^{\circ}C \le T_A \le 85^{\circ}C$	•		1 2 2	4 8 10	μV/°C μV/°C μV/°C
l _{os}	Input Offset Current		•		0.2	1.0	nA
I _B	Input Bias Current				4	10	nA
	Input Noise Voltage	0.1Hz to 10Hz			1		μV _{P-P}
e _n	Input Noise Voltage Density	f = 1kHz			52		nV/√Hz
i _n	Input Noise Current Density	f = 1kHz			0.035		pA/√Hz
R _{IN}	Input Resistance	Differential Common Mode, V _{CM} = –15V to 14V		5.2	13 12000		MΩ MΩ
CIN	Input Capacitance				4		pF
	Input Voltage Range		•	-15		29	V
CMRR	Common Mode Rejection Ratio	$V_{CM} = -15V$ to 29V		86	103		dB
A _{VOL}	Large-Signal Voltage Gain	$ \begin{array}{l} V_0 = \pm 14 V, \ R_L = 10 k \\ 0^\circ C \leq T_A \leq 70^\circ C \\ -40^\circ C \leq T_A \leq 85^\circ C \end{array} $	•	100 75 50	500		V/mV V/mV V/mV
V _{OL}	Output Voltage Swing LOW	No Load I _{SINK} = 5mA I _{SINK} = 10mA	•		-14.997 -14.500 -14.125	-14.95 -14.07 -13.35	V V V
V _{OH}	Output Voltage Swing HIGH	No Load I _{SOURCE} = 5mA I _{SOURCE} = 10mA	•	14.9 14.5 14.3	14.975 14.750 14.650		V V V
I _{SC}	Short-Circuit Current (Note 1)	Short to GND $0^{\circ}C \le T_A \le 70^{\circ}C$ $-40^{\circ}C \le T_A \le 85^{\circ}C$	•	±18 ±15 ±10	±30		mA mA mA
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = \pm 1.35 \text{V} \text{ to } \pm 22 \text{V}$	•	90	114		dB
I _S	Supply Current		•		50	70 85	μΑ μΑ
	Positive Supply Current, SHDN	$V_{PIN5} = -20V, V_S = \pm 22V, No Load$			12	30	μA
I _{SHDN}	Shutdown Pin Current	V_{PIN5} = $-21.7V,$ V_S = $\pm 22V,$ No Load V_{PIN5} = $-20V,$ V_S = $\pm 22V,$ No Load	•		0.7 1.2	15 8	nA μA
	Maximum Shutdown Pin Current	$V_{PIN5} = 32V, V_{S} = \pm 22V$			27	150	μA
	Output Leakage Current	V_{PIN5} = -20V, V_S = ±22V, No Load			0.1	2	μA
GBW	Gain Bandwidth Product		•	125 110 100	220		kHz kHz kHz

±15V ELECTRICAL CHARACTERISTICS

 $V_S = \pm 15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, Pin 5 = open or V_{EE} , Pins 1 and 8 open, $T_A = 25^{\circ}C$ unless otherwise noted. (Note 2)

SYMBOL	PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
SR	Slew Rate	$A_V = -1$, $R_L = \infty$, $V_0 = \pm 10V$ Measured at $\pm 5V$ $0^\circ C \le T_A \le 70^\circ C$ $-40^\circ C \le T_A \le 85^\circ C$	•	0.0375 0.033 0.030	0.085		V/μs V/μs V/μs

The ${\ensuremath{\bullet}}$ denotes specifications that apply over the full specified temperature range.

Note 1: A heat sink may be required to keep the junction temperature below absolute maximum.

Note 2: The LT1636C is guaranteed to meet specified performance from 0° C to 70°C and is designed, characterized and expected to meet these extended temperature limits, but is not tested at -40°C and 85°C. The LT1636I is guaranteed to meet the extended temperature limits.

Note 3: $V_S = 5V$ limits are guaranteed by correlation to $V_S = 3V$, and $V_S = \pm 15V$ or $V_S = \pm 22V$ tests.

Note 4: V_S = 3V limits are guaranteed by correlation to V_S = 5V, and V_S = ±15V or V_S = ±22V tests.

Note 5: Guaranteed by correlation to slew rate at V_S = $\pm 15V$, and GBW at V_S = 3V and V_S = $\pm 15V$ tests.

Note 6: This specification implies a typical input offset voltage of 600μ V at V_{CM} = 44V and a maximum input offset voltage of 3mV at V_{CM} = 44V. **Note 7:** This parameter is not 100% tested.

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

MS8 Package 8-Lead Plastic MSOP (LTC DWG # 05-08-1660)

* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

TYPICAL APPLICATIONS

Square Wave Oscillator

 2π RC V_{OUT} = 5V_{P-P} WITH 5V SUPPLY TOTAL CURRENT = 200 μ A

AT V_S = 5V, R = 50k, C = 1nF OUTPUT IS 5kHz SLEW LIMITED TRIANGLE WAVE Optional Offset Adjust and Optional Output Compensation for Capacitive Loads Greater Than 200pF

RELATED PARTS

8

PART NUMBER	DESCRIPTION	COMMENTS
LT1460	Micropower Precision Series Reference	Accuracy: 0.075% Max, Drift: 10ppm/°C Max, 2.5V, 5V, 10V Versions Available
LT1466/LT1467	75µA Dual/Quad Rail-to-Rail Input and Output Op Amps	390μV V _{OS(MAX)} , Gain Bandwidth = 120kHz
LT1490/LT1491	50µA Dual/Quad Rail-to-Rail Input and Output Op Amps	950μV V _{OS(MAX)} , Gain Bandwidth = 200kHz
LT1495/LT1496	1.5µA Max, Dual/Quad Precision Rail-to-Rail Input and Output Op Amps	375µV V _{OS(MAX)} , 1.5µA Supply Current Max
LT2078/LT2079	55µA Dual/Quad Precision Single Supply Op Amps	120 μ V V _{OS(MAX)} , Gain Bandwidth = 200kHz
LT2178/LT2179	17µA Dual/Quad Precision Single Supply Op Amps	120μV V _{OS(MAX)} , Gain Bandwidth = 60kHz

