## Monolithic PIN SP5T Diode Switch

## FEATURES

- Ultra Broad Bandwidth: 50 MHz to 26 GHz
- 1.0 dB Insertion Loss
- 30 dB Isolation at 20 GHz
- Reliable.
- Fully Monolithic
- Glass Encapsulated Construction


## DESCRIPTION

The MASW-005100-1194 is a SP5T Series-Shunt broad band switch made with M/A-COM's HMIC ${ }^{\text {TM }}$ (Heterolithic Microwave Integrated Circuit) process, US Patent $5,268,310$. This process allows the incorporation of silicon pedestals that form series and shunt diodes or vias by imbedding them in a low loss, low dispersion glass. This hybrid combination of Silicon and Glass gives HMIC Switches exceptional low loss and remarkable high isolation through low millimeter-wave frequencies.

## APPLICATIONS

These high performance switches are suitable for the use in multi-band ECM, Radar, and instrumentation control circuits where high isolation to insertion loss ratios are required. With a standard $+5 \mathrm{~V} /-5 \mathrm{~V}$, TTL controlled PIN diode driver, 50 ns switching speeds are achieved.

## ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{AMB}}=+25^{\circ} \mathrm{C}($ Unless otherwise specified )

| PARAMETER | VALUE |
| :--- | :---: |
| OPERATING TEMPERATURE | $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |
| STORAGE TEMPERATURE | $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$ |
| RF C.W. INCIDENT POWER <br> $( \pm 20 \mathrm{~mA})$ | +33 dBm |
| BIAS CURRENT <br> ( FORWARD ) | $\pm 20 \mathrm{~mA}$ |
| APPLIED VOLTAGE <br> (REVERSE ) | -25 V |

## Note:

Exceeding any of these values may result in permanent damage.
Maximum operating conditions for combination of RF power, D.C. bias and temperature: +30 dBm C.W.,
15 mA per diode @+85 ${ }^{\circ} \mathrm{C}$


## TYPICAL DRIVER CONNECTIONS

CONTROL LEVEL (DC CURRENT )

| $\mathbf{J 2}$ | J3 | $\mathbf{J 4}$ | J5 | J6 | J2-J 1 | J3-J 1 | J4-J 1 | J5-J 1 | J6-J 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{- 2 0 ~ m A}$ | +20 mA | +20 mA | +20 mA | +20 mA | Low Loss | Isolation | Isolation | Isolation | Isolation |
| +20 mA | $\mathbf{- 2 0 ~ m A}$ | +20 mA | +20 mA | +20 mA | Isolation | Low Loss | Isolation | Isolation | Isolation |
| +20 mA | +20 mA | $\mathbf{- 2 0 ~ m A}$ | +20 mA | +20 mA | Isolation | Isolation | Low Loss | Isolation | Isolation |
| +20 mA | +20 mA | +20 mA | $\mathbf{- 2 0 ~ m A}$ | +20 mA | Isolation | Isolation | Isolation | Low Loss | Isolation |
| +20 mA | +20 mA | +20 mA | +20 mA | $\mathbf{- 2 0} \mathbf{m A}$ | Isolation | Isolation | Isolation | Isolation | Low Loss |

Electrical Specifications @ $\mathrm{T}_{\mathrm{AMB}}=25^{\circ} \mathrm{C}, \pm \mathbf{2 0} \mathrm{mA}$ bias current (on-wafer measurements)

| RF SPECIFICATIONS |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | FREQUENCY | MIN | TYP | MAX | UNITS |  |
| INSERTION LOSS | 20 GHz |  | 0.9 | 1.4 | dB |  |
| ISOLATION | 20 GHz | 28 | 38 |  | dB |  |
| INPUT RETURN LOSS | 20 GHz |  | 22 |  | dB |  |
| OUTPUT RETURN LOSS | 20 GHz |  | 23 | dB |  |  |
| SWITCHING SPEED | 10 GHz 1 |  | 50 |  | nS |  |

## Note:

1.) Typical switching speed is measured from $10 \%$ to $90 \%$ of the detected RF voltage driven by a TTL compatible driver. Driver output parallel RC network uses a capacitor between 390pF - 560pF and a resistor between $150 \Omega-220 \Omega$ to achieve 50 ns rise and fall times.

## Typical Microwave <br> Performance




## Typical Microwave

## Performance




## ASSEMBLY INSTRUCTIONS

## Cleanliness

These chips should be handled in a clean environment free of organic contamination.

## Electro-Static Sensitivity

The MASW-00 Series PIN switches are ESD, Class 1A sensitive (HBM). The proper ESD handling procedures must be used.

## Wire Bonding

Thermosonic wedge wire bonding using $0.003^{\prime \prime} \times 0.00025^{\prime \prime}$ ribbon or $0.001^{\prime \prime}$ diameter gold wire is recommended. A stage temperature of $150^{\circ} \mathrm{C}$ and a force of 18 to 22 grams should be used. Ultrasonic energy should be adjusted to the minimum required. RF bonds should be kept as short as possible to minimize inductance.

## Mounting

These chips have Ti-Pt-Au back metal. They can be die mounted with a $80 \mathrm{Au} / 20 \mathrm{Sn}$ or electrically conductive Ag epoxy. Mounting surface must be flat and clean of oils and contaminants.

## Eu Eutectic Die Attachment

An $80 / 20$ gold-tin eutectic solder preform is recommended with a work surface temperature of $255^{\circ} \mathrm{C}$ and a tool tip temperature of $265^{\circ} \mathrm{C}$. When hot gas is applied, the tool tip temperature should be $290^{\circ} \mathrm{C}$. The chip should not be exposed to temperatures greater than $320^{\circ} \mathrm{C}$ for more than 10 seconds. No more than three seconds should be required for the die attachment.

## Epoxy Die Attachment

Assembly should be preheated to $125^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$. A Controlled thickness of 2 mils is recommended for best electrical and thermal conductivity. A thin epoxy fillet should be visible around the perimeter of the chip after placement to ensure complete coverage. Cure epoxy per manufacturer's recommended schedule.

## Operation of the MASW-005100-1194 Switch

The simultaneous application of negative DC current to the Low Loss Port and positive DC current to the remaining Isolated Ports as shown in Figure 1 achieves operation of the MASW-005100-1194 diode switch. The backside area of the die is the RF and DC return ground plane. The DC return is achieved on common Port J1. Constant current sources should supply the DC control currents. The voltages at these points will not exceed $\pm 1.5$ volts ( 1.2 volts typical) for supply currents up to $\pm 20 \mathrm{~mA}$. In the Low Loss state, the Series Diode must be forward biased and the Shunt Diode reverse biased. For all the isolated ports, the Shunt Diode is forward biased and the Series Diode is reverse biased. The bias network design should yield $>30 \mathrm{~dB}$ RF to DC isolation. Best Insertion Loss, P1dB, IP3, and switching speed are achieved by using a voltage pull-up resistor in the DC return path, ( J1 ). A minimum value of $|-2 \mathrm{~V}|$ is recommended at this return node, which is achievable with a standard, 65V TTL controlled PIN diode driver. A typical DC bias schematic for 2-18 GHz operation is shown in Figure 1.

## 2-18 GHz Bias Network Schematic



Fig. 1

## MASW-005100-1194

## Chip Dimensions



Nominal Chip Dimensions

| DIM | INCHES | $\boldsymbol{\mu M}$ |
| :---: | :---: | :---: |
| A | 0.068 | 1730 |
| B | 0.034 | 865 |
| C | 0.058 | 1480 |
| D | 0.037 | 945 |
| E | 0.030 | 750 |
| F | 0.030 | 750 |
| G | 0.033 | 825 |
| All Pads | $.005 \times .005$ | $120 \times 120$ |
| Thickness | 0.005 | 120 |

## ORDERING INFORMATION

| Part Number | Package |
| :---: | :---: |
| MASW-005100-11940W | Waffle Pack |

