FUJITSU SEMICONDUCTOR CM44-10105-2E

CONTROLLER MANUAL

FZMC-16LX FAMILY

16-BIT MICROCONTROLLER

MB90590 SERIES
HARDWARE MANUAL

[o®)
FUJITSU

FZMC-16LX FAMILY

16-BIT MICROCONTROLLER

MB90590 SERIES
HARDWARE MANUAL

FUJITSU LIMITED

PREFACE

m Objectives and Intended R eader

Thank you very much for your continued patronage of Fujitsu semiconductor products.

The MB90590 series has been developed as a general-purpose version of the F2MC®-16LX
series, which is an original 16-bit single-chip microcontroller compatible with the Application
Specific IC (ASIC).

This manual explains the functions and operation of the MB90590 series for designers who
actually use the MB90590 series to design products. Read this manual first.

m Tradem arks

F2MC stands for FUJITSU Flexible Microcontroller and is a registered trademark of Fuijitsu
Limited.

m Structure of This Manual
Chapter 1 Ov erview
Chapter 1 explains the advantages and basic specifications of the MB90590 series.
Chapter 2 CPU
Chapter 2 explains the memory layout of the MB90590 series.
Chapter 3 Interrupts

Chapter 3 explains the interrupt functions of the MB90590 series and also explains the
functions and operation of the extended intelligent 1/O service (EIZOS).

Chapter 4 Delayed Interrupts
Chapter 4 explains the delayed interrupt functions and operation.
Chapter 5 Clock and Reset
Chapter 5 explains the clock and reset functions and operation.
Chapter 6 Low-Power Control Circuit
Chapter 6 explains the functions and operation of the low-power control circuit.
Chapter 7 Memory Ac cess Modes
Chapter 7 explains the functions and operation of the memory access modes.
Chapter 8 1/O Ports
Chapter 8 explains the I/O port functions and operation.
Chapter 9 Time Ba se Timer
This chapter explains the time base timer functions and operation.
Chapter 10 Watchdog Timer
Chapter 10 explains the watchdog timer functions and operation.
Chapter 11 16-bit I/O Tim er

Chapter 11 explains the 16-bit I/O timer functions and operation.

Chapter 12 16-bit Reload Timer (with Event Count Function)

Chapter 12 explains functions and operation of the 16-bit reload timer (with the event count
function).

Chapter 13 Time Base Timer

Chapter 13 explains the time base timer functions and operation.
Chapter 14 8/16-bit PPG

Chapter 14 explains the 8/16-bit PPG functions and operation.
Chapter 15 DTP/External Interrupts

Chapter 15 explains the DTP/external interrupt functions and operation.
Chapter 16 A/D Converter

Chapter 16 explains the A/D converter functions and operation.
Chapter 17 UARTO

Chapter 17 explains the UARTO functions and operation.
Chapter 18 Serial 1/0

Chapter 18 explains the serial I/O functions and operation.
Chapter 19 CAN Controller

Chapter 19 explains the CAN controller functions and operation.
Chapter 20 Stepping Motor Controller

Chapter 20 explains the functions and operation of the stepping motor controller.
Chapter 21 Sound Generator

Chapter 21 explains sound generator functions and operation.
Chapter 22 ROM Correction

Chapter 22 explains the ROM correction functions and operation.
Chapter 23 ROM Mirroring Function Selection Module

Chapter 23 explains the functions and operation of the ROM mirroring function selection
module.

Chapter 24 Two-megabit Flash Memory

Chapter 24 explains the functions and operation of the 2-megabit flash memory.
Chapter 25 Example of Connection F 2MC-16LX MB90F594A for Serial Writing

Chapter 25 explains the connection of FPMC-16LX MB90F594A for serial writing, using an
example.

Appendix

Appendix explains instructions, provides I/O maps and timing diagrams in flash memory
mode, and lists MB90590 interrupt vectors.

. The contents of this document are subject to change without notice. Customers are advised to consult
with FUJITSU sales representatives before ordering.

. The information and circuit diagrams in this document are presented as examples of semiconductor
device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is
unable to assume responsibility for infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.

. The contents of this document may not be reproduced or copied without the permission of FUJITSU
LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office
automation and other office equipments, industrial, communications, and measurement equipments,
personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal
operation may directly affect human lives or cause physical injury or property damage, or where
extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls,
sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to
consult with FUJITSU sales representatives before such use. The company will not be responsible for
damages arising from such use without prior approval.

. Any semiconductor devices have inherently a certain rate of failure. You must protect against injury,
damage or loss from such failures by incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of over-current levels and other
abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain
restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior
authorization by Japanese government should be required for export of those products from Japan.

©1999 FUJITSU LIMITED Printed in Japan

READING THIS MANUAL

m Page organization

Each section in this document contains a summary of the section. Reading only the summaries
will give you an overview of the product.

In addition, the title of the section is also appears in subsections so that you always know which
section you are reading.

CONTENT

CHAPTER 1 OVERVIEW ..ottt et e e e e e raaaees 1
O o To 11 od @ 1Y =T V= PSR 2
1.2 FRAIUIES ettt ettt oo o oo oo e e e e e e e e et et ettt e ettt tebeeehEannnn e e e e r e e e e e et eeeeeeeennene 3
R T =1 o Tod 1 0 = o > o ST EPRPRPTPTPN 5
O A e I AN ST [o] 1= o | PP PUPRTR P 6
1.5 Package DIMENSIONSc.ccciiiiiiiiie e e e e s e e e e e e e e e e e e e et et et e eeeeaeteeeeaasas e s e seaaseeaaaeaaaaaaeeeeeeees 7
G I 1 I T £ o] TP PPPPPTPTTTN 8
O A 1] o1 | L @ U1 o 1U | o @ o U 1 £ RSP OTPPPRO 12
S T o = T o | T To TR g TSI BTV o SRR 15

CHAPTER 2 CPU oottt e et e et e e et e e et e e e e e e e eranneaees 17
P2 R O 11 1 1o TN o) @1 = O SRR 18
2.2 MEMOIY SPACE ...oeeeiieiieeiee ettt ettt e e e oottt e e e e e e s e e e b ettt e e e e e e e e e E e e et e e e e e e e a e n e et e e eaeeean e e 19
PG B |V 1= o o] YA o T= Tot 1Y = o PSPPI 20
A S W 1= Y= U AN [0 [=21 o [P 21
2.5 BanK AQAreSSING TYPES ...eieeiiiiiiitieeitiiie ettt ettt e sttt e e et e e e s ot bt e e e e aabb bt e e s e nbb e e e e e abbeeeeaannbe e e e e annes 22
2.6 Multi-byte Data in MEMOIY SPACEccceeieiii e e e e e e e s e s e e e e e e e e aaaaeaeeeeeeeeeeaeeeternrnrnnnnes 24
A (=0 1] (=] PRSP 25

R % R X ot ol U110 =1 (o G (o S TP PRPR 27
2.7.2 User Stack Pointer (USP) and System Stack Pointer (SSP) ... 28
2.7.3 ProCeSSOr STALUS (PS) ...uuiiiiiiii it r s s et et e e e e e aearraa 29
2.7.4 Program COUNLET (PC) ..oiiuuuiiiiiiiiiiiee ittt ettt ettt ettt e s et e e e s aabe bt e e e s abe e e e e e aanbbbe e e e e anenes 32
P < T (=0 1] (=] gl = 7= U | PSRRI 33
S B o = 1) QO oo [TP OPPPPPPPPPPPPTN 35
2.10 Interrupt DiSADIE INSIIUCTIONSeiiiiiiiiiie ettt et e et e e s s e e e e eneee 37

CHAPTER 3 INTERRUPTS oo e e e e e aas 39
G 70 R @ 10 111 0 T= TN i T 0] (=T 4 U o) O 40
I I [1 (=T (01 o Y4 =T od (o | PP 43
3.3 Interrupt Control REGISIEIS (ICR) ...coiiiiiiiiiii ittt ettt e et e e e s e sabeeeeeaes 44
G 20 101 (=1 1] 10 [47
G TN T o0 1V 2= T V) (=4 1 o) £ U 49

3.5.1 Hardware INterrupt OPEIALIONcioiiuiriiie ettt s et e e e s et bbe e e e ennnes 50
3.5.2 Occurrence and Release of Hardware INterruptecieiiiiiiiiiiii e 51
TR TR T Y/ [0 o] L= (=T U o 53
3.6 SOFWAIE INTEITUDPLS ...eeiiiiiiiie ettt ettt et e e s e s b bt e e e e abb bt e e e s e nbbe e e e e s e bbbeeeeseabbeeeaeaae 54
3.7 Extended Intelligent I/O Service (EIZOS) ... 56
3.7.1 Extended Intelligent I/O Service DeSCHPLOr (ISD)ccceieieiiiiiii i 58
3.7.2 EIPOS Status REGISIET (ISCS)oeuivieeeereeeieeeeeseeeeeeeseseeesessessesenessesenese s sessensesseseneeessenenen s, 60
3.8 Operation Flow of and Procedure for Using the Extended Intelligent I1/O Service (EIZOS) 61
G TR T (o= o 1[0 64

CHAPTER 4 DELAYD INTERRUP T .o 65

4.1 Outline of Delayed INterrupt MOGUIEooiiiiiiiiie ettt e e et eee e 66

4.2 Delayed INTErrupt REGISTETcooiiiiiiiii ittt s e e e sbb e e e e aabbbbe e e e s nbeeeeas 67

4.3 Delayed INterrupt OPEIAtIONiiiiiiii e i e ie i ettt e e s e s e s e s e s e e aeeaeaaaaaeseaesessnrnnnnns 68
CHAPTER S5 CLOCK AND RESET ..ottt aaa e 69
T R O (o Tox [1= g T=T = (o] ST U PP PPPPUPT 70
5.2 RESEL CAUSE OCCUITEINCEeeeeiiiiieientutitt e e aaaaaeeeaeaaaaaaaetateeeteee et ataeaeesetstsnnnnnnsaaaaasaeaeaaeeaeeeeeeeeeesesnnnnns 71
5.3 RESEECAUSES ...ttt iiiiie ettt a oot e o4 e e e e e e et et e e e ettt et et et et et e e e e e b b a b e oo et e e e e e e e eeeeeeerernrebnbnnnne 73
CHAPTER 6 LOW-POWER CONTORL CIRCUIT ..oiiiiiiiiiiiieii et 75
6.1 Outline of LOW-Power CONtrol CIrCUILuuueiiiiiieiie ettt e e e e e e e e e s e e e e e 76
A =T |1 (=] £ PP PRTPTPPRP 78
6.2.1 Low Power Mode Control Register (LPMCR)ooiiiiiiiieii s e e e e e e e e e e vaeaenans 79
6.2.2 Clock Selection Register (CKSCR)ccociiiiii s e e s e aeaaranns 81

6.3 LOW-POWET MOAE OPEIALIONeviiiiiiiiiii ettt ettt e e et e e s e st et e e e e aab e e e e e aebbe e e e e aneeee 83
L0 Tt R S == o 1 1Y o To [P 85

L 7 1 41T g Y/ o To [PP PP PR UPR TP 86
LR TR TS (o] o I 1V o To [PP PP S POP PP 87
6.3.4 Hardware Standby MOUEuiiiiiiii i e e e e e e e e e e e e e e —————— 89

6.4 INtermittent CPU OPEIALIONuuuiiieieitiiiiie i e i e ie s e e e e e e e ee e e e e et ee e et e e eeatae e e e e sesasaeaeaaeaaaaaesenseesssrnnnnns 90
6.5 SWitching MaChiNg CIOCKSoiuiiiiiiiiiiiii ettt e e st e e e e sibareee e e 91
6.6 Status Transition Of ClOCK SEIECHIONcouuiiiiiiiiiii e e e e e s 92
CHAPTER 7 MEMORY ACCESS MODES ... 93
7.1 Outline of MemOry ACCESS MOUESuuuiiiiii i et a e e e s e e e e e e e e e aaaaae s aanaanns 94
4072 | o o =N T o SRS 95
RS T |V oo [N B - | = LSOO PPPPPPPPTPN 96
CHAPTER 8 I/O PORTS ..ottt e e e e e e e e e e e e e e e e as 99
S T R V(@ 3 = o T PP T PP 100
8.2 /O POIM REQISIEIS ..eeiiiiiiiiiiiie ittt ettt ettt ettt e e e bt e e e e sh bttt e e e ebbb et e e e e et beeeeeabbbeeee e e sabaeeeeaae 101
T R o T D= L= B =0 1] (= U 102
8.2.2 POt DIr€CHON REQISIE ...iiiii i e e e e e e e e e e e e e e e e e et e ee e e e e ae e b eee e s ans 103
8.2.3 Analog INput ENable REGISIEreiiiiiiiiii e e 104
CHAPTER 9 TIME BASE TIMER ..o 105
9.1 Outling Of TIME BASE TIMEIeutiiiiiiiieaie ittt e ettt e e e e e e s et bbb e et e eee e e e e e s e abnbbeaeebreeeaaeaeaas 106
9.2 Time Base Timer CONrOl REQISIETuuuiiiiii e s e e e e e e e e e e e e e aaaeeeeaaannes 107
9.3 Operations Of TIME BASE TIMENcciiuiiiiiiiiiiiie ettt e ettt e e ettt e e sttt e e s sttt e e e s abbe e e e e aabbbeeeeeabbaeeeeees 109
CHAPTER 10 WATCH-DOG TIMERuiiiiiii e 111
10.1 Outline of WatCh-DOg TIMEIcoiiiiiiiiiiee et s ee e e e et e et e e e aa e e e aaaaeaaaees 112

O TZA VAV > o3 o BT [o o TN T ' 1= T G @ 01T r= L1 [0 o PSSR 115
CHAPTER 11 16-BIT /O TIMER ..oeeiieieee ettt 117
11.1 Outling Of 16-Bit 1/O TIMEI ...ueeeiiiiieeeeii ittt e e e e e et r e et e e e e e e se e aereaeeaeeeaasanneenbennneneeeaeaeeaans 118
11.2 16-Bit 1/O TIMEr REUISIEIS ...iiiiiiiiieeiiiiieiiiit i sisiae et et et e e e e e e e e e aeae et ee et aeeeaeateeaee e ae e e seseaaeaaeaeaeeeaeesneeees 120
11.3 16-Dit Free-running TIMEIccoiiiiiiieieeieee e s e et e e e e e e e e e e e e e et et e e e eeeee e tebaree s aae e e s e e seaaaaaaaaaees 121
I A B = = B L= 11 =T PP RPPTP 122

Vi

11.3.2 CONLrol StAtUS REGISTETeeiiiiiiiii ittt s et e e e s bbb e e et beee e e aneees 123

11.3.3 16-bit Free-running TIMErOPEratiONccceiiiiiiiiii et s e e e e e e e e e e e e e e aaaaaeeeeaananns 125
R A @ 101 o 11 | @0 1 T 0 T= 1 PSPPSRI 127
11.4.1 OUutput COMPATE REGISTENeiiiiiiiiiie ittt ettt e st e s bt e e e et et e e e e ebe b e e e e anneee 128
11.4.2 Control Status Register of QULPUt COMPAIEcooviiiiiiiiiiei e e e e e e e e e e e e e aaeaaaaaens 129
11.4.3 16-bit Output Compare OPEIAtiONcccoiiiiiiiiiiieeeeeeee s e a e e e e e e e aaaaaeaaaeeeeeeeerarann 132
L11.5 INPUE CAPLUIE .oeieeieiiiiei ettt ettt e e et e e e ettt e e e et e e e e et e et e e e e e e e e sas s e b e be e e eneeeeeeeeennnaas 135
11.5.1 Input Capture RegiSter DELAIlSccccoiiiiiii i e e e e e e e e e e e e e e e e e e e aaaraan 136
11.5.2 16-bit Input Capture OPEratiONcccccieiiiiii e e e e e e e e e e e e e e e e e aaraaaeann 138
CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION) 141
12.1 Outline of 16-Bit Reload Timer (with Event Count FUNCLION)cccviiiiiiiiiieiiiee e 142
12.2 16-Bit Reload Timer (with Event Count FUNCLION)coooiiiiii i 144
12.2.1 Timer Control Status Register (TMCSR)ccooiiiiiiiiieeeeeeeee s e e e e e e e e e e e e e eaaaaaaans 145
12.2.2 Register Layout of 16-bit Timer Register (TMR)/16-bit Reload Register (TMRLR)ccccocueee. 148
12.3 Internal Clock and External Clock Operations of 16-bit Reload Timerccccceevvviiiiiiiiiiiiiiieeeeeeee, 149
12.4 Underflow Operation of 16-bit Reload TiMer ... e 152
12.5 Output Pin Functions of 16-bit Reload TIMEercooiiiiiiiiiiii e 153
12.6 Counter OPEration SEALEcciiiiiiiiiiiiieie s e e e e e e e e e e ee e e e et ettt e e et ae st te e e e e aaaaaaaaaaas 154
CHAPTER 13 WATCH-DOG TIMERiiiiii et 155
13.1 OUutliNe OF WALCH TIMEIeiiiiiiiiiee ettt ettt et e et e e e e e e e e saa b bbb e e et e e e e eeeaeeeeeannnanes 156
13.2 WatCh-dog TimMer REGISIEISeiiiiiiiiiiie ettt et e ettt e e e ettt e e s bbb e e e e e enneaes 157
O Tt R o ¢ [T G 0] a1 {0 B L= 0 =3 (=] S 158
13.2.2 SUD-SECONU REUISLEIS ...uuiiiiiiiiieiiiiiiiais e ieie e e e e e e e e ee e e ettt et ettt et et aaaaeesta e e e s e seaeaeaeaeaeaeseessssennnens 160
13.2.3 Second/MINULE/HOUF REGISTEIScoiiiiiiiiiiiiiiiie ettt ettt e et e e e e e e nens 161
CHAPTER 14 8/16-BIT PPG ...ttt ettt ettt et e e e e e 163
14.1 OUutliNg OF 8/16-DIt PPGoeiiiiiiiiiiii ittt e e e e e e e e a bbbt e e e e eeeeeaeeeeeannnanes 164
14.2 Block Diagram Of 8/16-Bit PP Gocoiiiiiiiiiiiiiieiis s s e e et e e et ee e e e e e e eeaas 165
14.3 8/16-Bit PPG REQISIEIS ...ceiiiiitiiiei ittt ettt e bbb e e e e ettt e e e e et b e e e e e e anbeeee e anbbnes 167
14.3.1 PPGO Operation Mode Control Register (PPGCO)uuuuiuiiiiiiiiiiiii e 168
14.3.2 PPG1 Operation Mode Control Register (PPGCL)uuuuuiiiiiiiiiiiiiie e eeeeee e 170
14.3.3 PPGO, 1 Output Control RegiSter (PPGOL)ccoiuiiiiiiiiiiei et 172
14.3.4 Reload Register (PRLL/PRLHY)uuiiiiiiiiiiie et s s e s e e e e e e e e e e e e e e e eeanaeanns 174
14.4 Operations 0f 8/L6-DIt PP Gociiiiiiiiiiiiiiiei s s e e et e e e e e e e e e e e e e e et e et e e e et eaaes bttt e aeaaeaaaaaaaas 175
14.5 Selecting a Count CIOCK fOr 8/16-Bit PPGcccoiuiiiiiiiiiiie ettt 177
14.6 Controlling Pin Output of 8/16-Dit PPG PUISESccccooiiiiiiieieeeee e 178
A TSR oL o = R [T (=T 4 (U] o) £ 179
14.8 Initial Values of 8/16-bit PPG HArAWAarecceeoiiiiiiiiiiiiiiiiie ettt e e s e e e e e e e s ae e e ennnnes 180
CHAPTER 15 DTP/EXTERNAL INTERRUPTS ..ot 183
15.1 Outline of DTP/EXIErNal INTEITUDLScevviiiiiiiiieiiiiiieieis e s e e s e e e e e e e e e e e e et et e e e e e e e e aaee e rere e s e eaeeeeaaas 184
15.2 DTP/External INterrupt REQISIEIScoiiviiiiiiiiiiiei e e s e e et e e e e e e et et et et e et e e aaeaeaaaaaas 186
15.3 Operations of DTP/EXIErNal INTEITUDPLSuviiiiiiiiieie ittt e e e eeees 188
15.4 Switching between External Interrupt and DTP REQUESLESccooeiiiiiiiiiiiieeeeeeeeee e 190
15.5 Notes on Using DTP/EXternal INTEITUPLSuuuuueueiiiiiiie i ie et e e e e e 191

Vii

CHAPTER 16 A/D CONVEIET ..o 193

16.1 FeatUreS Of A/D CONVEITETooiiiiiiiiiiiitt ettt e ettt e e e e e e e e e s bbb et te e e e e e e e e e e e aanbbebreeeeeeeeaaeaeeaans 194
16.2 BIlOCK Diagram Of A/D CONVEITETuiiiiiiiieiee ettt ettt e ettt e e et e e e e s bbe e e s e bbeee e e aneees 196
16.3 A/D CONVEMEr REQISIEIScoiiiiiiiiiieeeeeee e st e e e e e e e e e e e e et e et e e e et ee e e tate e aen e e aaaeseeaaaaeaaaeas 197
16.3.1 Control Status RegiSters (ADCS0)uuuuuiuiiiiieie e e e e e e ettt e e e e e e e e aaaaes 198
16.3.2 Control Status REIStEr (ADCSL)uuiiiiiiiiiieeiiiie ittt sttt e e e e e e sbbe e e e snanneees 201
16.3.3 Data Registers (ADCR1 and ADCRO)uuuuuiuiiiiiiiiiiie ittt e e e aaeaee s 204
16.4 Operations Of A/D CONVEILETooviiiieeiieieeiiei e s e s e s e s e e e e e e e aaaaaeeeeeeteaaeaeeestsrerarararaaan e eeeaaeaaeeees 206
16.5 CONVErSION USING EI20Sooviieeeeiieeeeeeeeeeeeeeee e eeeeeeeees s ees s sess s en s senen s senenen s 208
16.5.1 Starting EI0Sin SINGIE MOAE oo e 209
16.5.2 Starting EI20S in CONNUOUS MOTE ...t ee et e e e e s er s s 211
16.5.3 Starting EI20S iN SIOP MOUEoouevrieieeeeeeeeeeeeee e e es s e een et en s enenens 213
16.6 CoNVErsion Data PrOTECHIONc.ooiiiiiiiiiiiiie ittt e e et e et e e e e e e e s e s bbb e e e e e e e aaaeeesaaaanes 215
CHAPTER 17 UARTO oottt e et e et e e bt e e e e e e e abn e e e aan s 217
17.1 FEALUIE OF UARTO ...ttt ettt ettt et e e e e oo s e b b et ettt e e e e e e ae s e bbbt b b e e e beeeeaaaeeesaaanne 218
A U 7 Y o B =] o Ted [B - To | = T PRSP PRRP 219
G T U 7Y G I =T [= SRR 220
17.3.1 Serial Mode Control RegiSter (UMGQC)iciiii i e e e e e e e e aaaaes 221
17.3.2 Status REGISIEr (USR)eiiiiiiiiiie ittt et et e e st e e e e e s anneee s 223
17.3.3 Input Data Register (UIDR) and Output Data Register (UODR)ouvuiiiiiiiiiiiiiiieieieieeeeeeeeee, 225
17.3.4 Rate and Data RegiSter (URD)ouviiiiiiiiiiiiiiiiiisis s s s s s e e e e e e e e e e e e e e e et et et e eeeeaaassane e s se e e eeaees 226
17.4 UARTO OPEIALION ..eiiiiiiiiiieeeiiieiee ettt ettt ettt e e st e e e e st b bt e e e e ab bt e e e e e bbbt e e e e bbe e e e e aabbeeee e e bbeeeeeannees 228
SR = - UH o I = - (SRS 229
17.6 Internal and EXIEINAl CIOCKooii ittt e e e e e e e e e e e e s e aaaes 232
17.7 Transfer DAta FOMMALouiiiiie it r e e e e e e e et r e e eeeeesessanssnnteaeeeeeeeeeaaeeesaaannes 233
R T == V13V = 11 SRR 234
17.9 Interrupt Generation and Flag Set TIMINGSuciiiiiiii i e e e e e e aa e e 235
17.9.1 Flag Set Timings for a Receive Operation (in Mode 0, 1, OF 3) ...ccovcuiiiiiiiiiiieiiiee e 236
17.9.2 Flag set timings for a receive operation (iN MOAE 2)covviviiiiiiiiiiiiiii e 237
17.9.3 Flag set Timings for a Transmit OPErationcccooviiiiiiiiiiii e e a e e e e 238
17.9.4 Status Flag During Transmit and Receive OPEerationccccceriieieiiiiiiieeeniieeeeesvseeee s 239
17.10 UARTO AppPliCation EXAMPIEcooviiiiiieiiiiiiiiiiiiese s e s s ss s e e s e e e e e e e e e e e e e e e et e e e eaeaeeeateaesstntntennnnnneeeeaeaeaees 241
CHAPTER 18 SERIAL /O ..ttt e e e e e e e e e e aeeeaeeaannnes 243
18.1 OULNE OF SEIAI IO ...ttt ettt e e e e e e e e s e e b bbb bbb e e e e e e e e e e s aananes 244
18.2 Serial IO REQISLEISuiieieiei ittt ettt e e e e bt e e e e bbbt e e e e bt e e e e aabe e ee e e e nbe e e e e annees 245
18.2.1 Serial Mode Control Status RegiSter (SMCS)oooiiiiiiiieeeeeee e e e e e e e e e e e e e e anaaees 246
18.2.2 Serial Shift Data REQISIEr (SDR)uuuuiiiiiiiii i it e eaaaaaae e 250
18.3 Serial I/O Prescaler (CDCRY)ccoiiiiiiiiiiiiee ettt ettt s ettt e ettt e e s e et e e e e st eb e e e e e eneees 251
18.4 Serial /O OPEIALIONccccciiiiiiiiiii e e s et e e e e e e e e e aaaeeaaeea et et et eeateae e s et re e aeaeaeaaaaaeaaaaas 252
R T TS 1 A O o o] PSR 253
18.4.2 Serial I/O OPEIALIONuveiieiiiiieie ettt ettt e bbbt e e st e e e s bb e et e e s sbb e e e s e anbb et e e e annneee s 254
18.4.3 Shift Operation Start/StOP TIMINGu.iiieiiir e e e e e e aaaaaaaaaes 256
18.4.4 Interrupt Function of the Extended Serial I/O INterfaceuvvvviiiiiiiiiiiiiiiiii e, 258
18.5 Negative CIOCK OPEIALIONeeiiiiiiiiie ittt e e e e s e et e e e s s eb e e e e e annnes 259
CHAPTER 19 CAN CONTROLLER ..ottt 261

viii

19.1 Features Of CAN CONIIOIBT ...oee ittt e e e et e et e e e eeeaa s e st ee st e eeat e seaaeereanes 262

19.2 Block Diagram of CAN CONIOIEEuuueiiiiieie e e r e e e e e e e e aeaeaeees 263
19.3 List of Overall CoNtrol REQISIEISovvuiiiiiiiiiiitesisis e s e i e e e e e e e e e e e e e e et et et et e e e eaee et e aaeaeeaeaaas 264
19.4 List of Message BUffers (ID REGISIEIS)uuiiiiiiiiiiie ittt ettt e e 266
19.5 List of Message Buffers (DLC Registers and Data ReQIStErs)covvvvivvieeviiiiieiiiiiirerees e 269
19.6 Classifying the CAN Controller REQISLEISuuuuuiiiiiiii it e e e e 273
19.6.1 Control Status REGISIEN (CSR)ciiiiiiiiiieiiiiie ettt ettt s bbb e s e ebbe e e e e e aneees 274
19.6.2 Bus Operation Stop Bit (HALT = 1) coooiiiiiiii s e et e e e e e e e e e e e e e e e eeeaaeanns 277
19.6.3 Last Event Indicator Register (LEIR)ccooooiii i e e e e e e e e e e e e e e e anaeaens 278
19.6.4 Receive and Transmit Error Counters (RTEC)oviiiiiiiiiiii it 280
19.6.5 Bit TIMING REQISIEN (BTR) ..uuuuiiiiiiiieii it s e s e s e e e e e e e e e aeaaaeaeeeaeerereearanes 281
19.6.6 Message Buffer Valid Register (BVALRY)ccoooiiiiiiiiieeeeeee s st e e e e e e e e e e e e e e aaaaaaaains 283
19.6.7 IDE regiSter (IDERY) ...cciiiuiiiiiiiiiiee ettt ettt ettt e skt e e s e et e e e et bt e e e e e e enbbe e e e e anneees 284
19.6.8 Transmission Request Register (TREQR)ooiiiiiiiiiiiii s e e e e e e e e e e e e e e e aaraaanaens 285
19.6.9 Transmission RTR RegiSter (TRTRR)ciiiiiiiiii et st e e e e e e e e e e e e e eeeaaaanns 286
19.6.10 Remote Frame Receiving Wait Register (RFWTR) ...ccooiiiiiiiiiiiiieiee e 287
19.6.11 Transmission Cancel Register (TCANR)coiiiiiiiiiii s e e e e e e e e e e e e e e e eeeaaraaarann 288
19.6.12 Transmission Complete RegIStEr (TCR)ccciiiiiiiiiieeeeeeeee s s eaeeeaeane 289
19.6.13 Transmission Interrupt Enable Register (TIER)uuiiiiiiiiiiiiiiie e 290
19.6.14 Reception Complete Register (RCR)ccooiiiiiiiiiceeeeee s s e e e e e e e e e e e e e e e eeee e aaeeeaeanns 291
19.6.15 Remote Request Receiving Register (RRTRR)oovviiiiiiiiiiiiiiiiiiis e e e e e e ee e e e e e eeeeeseeneeenens 292
19.6.16 Receive Overrun Register (ROVRR)oiiiiiiiiie ittt 293
19.6.17 Reception Interrupt Enable Register (RIER)oooviiiiiiiiiiii s e e e e e e e e e e e e e ee e ee e 294
19.6.18 Acceptance Mask Select Register (AMSR)coooiiiiiiiiieeeeeeeee s e e e e e e e e e e e e e e e e eeeearanns 295
19.6.19 Acceptance Mask Registers 0 and 1 (AMRO and AMRL)coiuiiiiiiiiiiieiiiee e 297
19.6.20 MESSAQE BUFFEIS ..ceieiieieeieiiieie sttt ettt e et e e e e e e a e e e e e e e e aarraaraaa 299
19.6.21 ID Register X (X = 010 15) (IDRX) .iieiiurrireiiiirireeiiieieeesaiieeesssiteeeessssteeessssreeaessnssseeesssnsseeeeessnssnes 300
19.6.22 DLC Register X (X = 0 10 15) (DLCRX) ..eeiiiiuuteieiiiiieeie ittt s sttt e ettt e e e sibbe e e s snbe e e e s e e 302
19.6.23 Data Register X (X = 0 10 15) (DTRX) .uuuiiiiiiiiieieie ettt e s e s e e e e e e e e e e sanaennns 303
19.7 Transmission Of CAN CONIIOIEE ... e e e r e e e e e e e e s e e e e anaanes 305
19.8 Reception 0f CAN CONIIOIEToiiiiiiiiiie et e s e e s eb e e e 307
19.9 Reception Flowchart of CAN CONLIOIETuuueeeiiiiiie e e e e 310
19.10 How to Use the CAN CONLIOHEE ...ttt e e e e e e e e e e e aaanes 311
19.11 Procedure for Transmission by Message BUFfer (X)coooiiiiiioiiiiie e 313
19.12 Procedure for Reception by Message BUfEr (X) ...ccoooeieiiiiii i 315
19.13 Setting Configuration of Multi-level Message BUFferoooo e 317
CHAPTER 20 STEPPING MOTOR CONTROLLERcovniee e 319
20.1 Outline of Stepping MotOr CONLIOIETcciiiiiiiie et sb e 320
20.2 Stepping Motor Controller REQISIEISccci oo e e e e e e e e e e e e e aaeanaeaee 321
20.2.1 PWM CONrol O FE0ISTOI ..iiiiiii e e s e s e e e e e e e e e e e e e e e e eeeeeeeeeeeetereaasanrnrnnnnnnannns 322
20.2.2 PWM1&2 COMPAre REGISIEIS ..iuiiiiiiiiiiiiee e ittt ettt sttt e e e et e e e s e rib e e e e ann e e e e anees 323
20.3 PWMLE&2 SEIECE REQISIEIS ...ottiiiiiuiiiiiiiiiii e eeis et et et e e ee e e et et et et eeeteeateaeetaaaeeessaaasasesaaaeeaaaasaaeesesnennnnnnes 324
CHAPTER 21 SOUND GENERATOR ...ttt 327
21.1 Outline Of SOUNG GENEIALONeeiiiiiiieeiiiitie ettt e e e e e e et e e e e e e e s s e bebeeateeaeeaeae s asbbbebsbeeeeeeaaeaeeas 328
21.2 SOUNd GENEIAtOr REGISIEISiiiiiiiiiiiiiie ettt e et e e e e st b et e e s sa b b et e e s e abbeee e e s e sanbeeeenees 329
3 N R S To U T o B @0 g 0] I =T 013 (= O 330

21.2.2 FrequeNCY Data FEOISIEIcoooiiiiiiiiiiiiie ettt ettt ettt e e e e s e et b e e e e ebb e e e e e annns 332

21.2.3 AMPIItUde Data REQISIEEvviiiiiiiiiieieeie ettt e s e s e s e e e e e e e e aaeeeernrnne 333
21.2.4 Decrement Grade REQISIENuu i ie ettt s e e e e e e e e e e aaaaaeaaeeaaaara—a 334
21.2.5 TONE COUNE REGISIET .ooiiiiiiiieiitie ettt e e s bt e e e et et e e e s ab et e e e e e bbe e e e e annes 335
CHAPTER 22 ROM CORRECTION ...ttt e e e an e e 337
22.1 OUutline Of ROM COITECLIONuiiiiiiiiiieeei ittt ettt e e e e e e s e st e b e et e e e aeeeaseanbbebbeeeesaeeaaeaeeaans 338
22.2 Application Example of ROM COITECHIONcccoeeiiiiiiiiiieeee et e e e e e e e e e e e e e aaaaaeeeeeeeeanannes 340
22.2.1 Correction Example of Program EFTOISc.uueiiiiiiiie et 341
22.2.2 Example of Correction PrOCESSINGcccceiiiiiiiiiie et s s e e e s et e e e e e e e aaaaaeaeeeeeaeaeeesanrnnes 342
CHAPTER 23 ROM MIRRORING MODULEcooiiiiiiiiiii e 345
23.1 Outline of ROM MirrOring MOAUIEueeiiiiii i e e e e e e e e e e e e e e e aeaeeaaeanes 346
23.2 ROM Mirroring Register (ROMM)ueiiiiiiiiiiie ittt ettt et e e e st e e e s e sabeeeeee e e 347
CHAPTER 24 2M/3M-BIT FLASH MEMORY ..ot 349
24.1 Outline of 2M/3M-Bit FIaSh MEMOIYcciiiiiiii i e e e e e e e e e e e e e eeeeeeaanaaees 350
24.2 Block Diagram of the Entire Flash Memory and Sector Configuration of the Flash Memory 351
P B4 (=7 = TSY =N 1V]Fo To [OOSR 353
24.4 Flash Memory Control Status Register (FIMCS)oooviiiiiiiiiiiics s e e e e e e e e e e e eeee e aveeeeeaanees 355
24.5 Starting the Flash Memory Automatic AIGONtRMoooiiiiiiiie e 357
24.6 Confirming the Automatic Algorithm EXeCUtion STateoooiiiiiiiiiiiiiiiie e 358
24.6.1 Data Polling FIAg (DQ7) ..uuuuuuiiiie i e ettt ettt s e s e s e e e e e aaaeaeaeaaaeaenrnrare 360
T e Te (o (N =T o F= Vo T (0L 1) PSP 362
24.6.3 Timing Limit Exceeded Flag (DQD5)uueiiiiiiiiieiiiiiite ettt e e 363
24.6.4 Sector Erase Timer Flag (DQ3) ..cccooiiiiiiiiiiice s s s e re e 364
24.7 Detailed Explanation of Writing to and Erasing Flash Memoryccccccceeeiiiiiieeeee e, 365
24.7.1 Setting The REAJ/RESEL STALEoooiiiiiiiiiiie et 366
W A VAV 1 (] o T - PR 367
24.7.3 Erasing All Data (Erasing ChiPS) ..cccceiiiiiiii e e e s e e e e e e e e e aaaeaaaeeananranes 369
24.7.4 Erasing Optional Data (EraSing SECLOIS)ueieiiiiriieaiiitiieeieitiee e e ettt e aiibee e sibee e e e snbbeee e eeens 370
24.7.5 SUSPENAING SECION EFASE ...uuuuiiiie ittt e s e s et e e e e e e e aaaaaeaeeaaenaeranes 372
24.7.6 ReStarting SECION EFASE ...uuuuuci ittt e e e e e s e e e e e e e aaaaaeeeeeeeaeaeaenrnrnees 373
24.8 Notes on using 2M-Bit FIaSh MEMOIYcoiiiiiiiiiiiiie e ee e 374
24.9 Reset Vector Address in FIash MeMOIY ... e e e e e e e e ee e nanees 376
24.10 Example of Programming 2M/3M-Bit FIash MEMOIYcevuuiiiiiiiiiiiiiiii i ee e e e e e eeeaens 377

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/MB90F594A SERIAL WRITE

CONNECTION it e et e e e e et e e era e aes 381
25.1 Basic Configuration of F2MC-16LX MB90F591/MB90F594A Serial Write Connection 382
25.2 Example of Serial Write Connection (User Power Supply Used)cccccviiiiiiiiiiiiiinieee e 385
25.3 Example of Serial Write Connection (Power Supplied from the Writer)cccccoooiiiiiiiiieeeeiees 387
25.4 Example of Minimum Connection to the Flash Microcomputer Programmer (User Power Supply
(0= | PSPPI 389
25.5 Example of Minimum Connection to the Flash Microcomputer Programmer (Power Supplied from the
LY (=T) I TP TSP OOPPTPPP 391

APPENDIX i e s 393

APPENDIDX A /O IMBPS itiiieiiiiiiite e sttt e e sttt e sttt e e s sttt e e s st e e e s aanba e e e e e st be e e e s asbeeeaeannbbeeeeeeeansbeeaeeannnees 394
APPENDIX B INSTRUCTIONSiiiiiiiiiiiee e e ettt et e e e e e e s s e st e e e e e ee e s e e e s nsataeeeraeaeeesssannsneennnrneeeees 404
2 I 1S3 (0 1o 1o T T 5/ 01 PP 405
2 Yo [0 [£ T PP 406
ST T B =Yoo [0 [(=25 o To PRSP PR 408
2 [o [T (=Y ox 7N [0 | =1 o PP 413
B.5 EXECULION CYCIE COUNL ..ot s e s s s e e e e e e e e e e e et et et et e e e e ettt e et a et s e s e aneeeeeaaeaeaeesnesennnnes 419
B.6 Effective AdAress FIeld ...t e e e e e e e e e e e e e e e ae s 422
B.7 How to Read the INSrUCHION LISTcoiiiiiiiiiiiiiiie et e e e e e e e e 424
B.8 F2MC-16LX INSIIUCTION LISTeeeiiieiiiiiieeiiiiittte ettt e e et r et e e e e e e e s e e nbeeeeeeaeas 427
ST I Y (U ol 1T g I - T o PP PPTP 438
APPENDIX C Timing Diagrams in Flash Memory MOAEccooviiiiiiiiiiii e 460
APPENDIX D List of MB90590 INtErrUPt VECIOISeveeiiiiiiiiiiiiiiiie s iese s ee e e e eeeeeeesenenrannanea s 465
IN D E X et ettt et et et e e et e et ettt e ea e e et eaaeena et e taaetaaataaraaenaans 469

Xi

FIGURES

Figure 1.3-1
Figure 1.4-1
Figure 1.5-1
Figure 1.8-1
Figure 1.8-2
Figure 2.2-1
Figure 2.3-1
Figure 2.4-1
Figure 2.4-2
Figure 2.5-1
Figure 2.6-1
Figure 2.6-2
Figure 2.7-1
Figure 2.7-2
Figure 2.7-3
Figure 2.7-4
Figure 2.7-5
Figure 2.7-6
Figure 2.7-7
Figure 2.7-8
Figure 2.7-9
Figure 2.7-10
Figure 2.8-1
Figure 2.10-1
Figure 2.10-2
Figure 2.10-3
Figure 3.1-1
Figure 3.1-2
Figure 3.1-3
Figure 3.3-1
Figure 3.4-1
Figure 3.4-2
Figure 3.5-1
Figure 3.5-2
Figure 3.6-1

Xii

2 oot QD = Ve = o SRR 5
T I =TT |1 1= o | PRSP 6
Package DIMENSIONSooiiiiiiiiiiiiiiit s e e e e et e e e e e e e e e e e e tetete e et e aeeateaeaeatete e aaaaaaaaa s aeaeaeaaaaaeereees 7
USING EXIEINAI CIOCK ..uuviiiiiiieiiie i s e e e s e s e e e e e e e e e aeaeeeeeeeaeeseeesnrnannns 15
Power SUPPIY PINS (VCCIVSS) it s e e s e e e e e e e e e e e e e e e e e aeataaaaaaes 16
Sample Relationship between F2ZMC-16LX System and Memory Mapcccccceevviiiieieiiieeeeeenn. 19
MEMOIY SPACE IMAP ..ttt e ettt e e e e e e et e e e e e s aebbaa e e eeeeeabb e e eeebennaeeeees 20
Example of Linear Method (24-bit Register Operand Specification)ccceevvvvvviviieeiiiinnnns 21
Example of Linear Method (32-bit Register Indirect Specification)cccevvvvvvviviiiiiiiiiinninnnnn. 21
Physical Addresses Of EQCh SPACEcccciiiiiii i e 23
Sample Allocation of Multi-byte Data in MeMOIY ... 24
Execution of MOVW A, OBOFFFFH ...ttt 24
] 0T T= L =T] (T £ 26
GENEral-pUrPOSE REQISIELSccii it e e e e e e e e e e et et et et et e et ae e b e as 26
32-Dit DALA TIANSTEI ..ot e e st e s e e e s e e e n e 27
AL-AH TTaNSTEI ittt e e s e e e s n et e e s e e e e e e 27
Stack Manipulation Instruction and Stack POINtErccooiiiiiiiiiiiii s 28
Processor Status (PS) STIUCKIUIEuuuei it e e e e e e e e e e e 29
Condition Code Register (CCR) Configurationcccceveeeee i 29
Register Bank POINIEN (RP) ...vvuuiiiiiiiiici ettt s e s e e e e e e e e e e e e 30
Interrupt Level REQISTEr (ILIM) ...uuuueeieice e ie it e e e e e e e eaae e 30
PrOgram COUNTEEouuiiiiiiiiiiis et e et e e e e e e et e e r e e e e et ae b r e e e e e e e e e e e eebb e s 32
Generating a Physical address in Direct Addressing Modecooovvvvviiiieviiiiiiiieiiie e, 34
Interrupt Disable INSIIUCTIONuueiiiiiie e e e e e e e e e aaaaae e 37
Interrupt Disable Instructions and Prefix Codes ... 37
COoNSECULIVE PrefiX COUES ..ottt 37
Overview Of Hardware INTEITUPLSovvvveeieiiiiiii i s s e e e e e e e e e e a e e e e e e e e 40
Overview Of Software INTEITUPLScooiiiiie et e e e s 41
Overview of the Extended Intelligent 1/O Service (EIZOS) .. 42
Interrupt Control REQISTEr (ICR)vuuriiiiieiciee e e e e e e e aaaaae e 44
L] =T U] o SRR 47
Register Saving during INterrupt PrOCESSINGcovvvviuiieiiiiiiiiieisisieieieseeeeeaeaeaeaeaaeeaeeeeeeeesennnnnn 48
Occurrence and Release of Hardware INErruUpRcccoeeeiiii i 51
Registers Saved iN STACKccooiiii i e —————— 53
Occurrence and Release of Software INterrupt ..o 55

Figure 3.7-1
Figure 3.7-2
Figure 3.7-3
Figure 3.7-4
Figure 3.7-5
Figure 3.8-1
Figure 3.8-2
Figure 4.1-1
Figure 4.3-1
Figure 5.1-1
Figure 5.2-1
Figure 5.3-1
Figure 5.3-2
Figure 6.1-1
Figure 6.4-1
Figure 6.6-1
Figure 7.3-1
Figure 7.3-2
Figure 8.1-1
Figure 8.2-1
Figure 8.2-2
Figure 8.2-3
Figure 8.2-4
Figure 9.1-1
Figure 10.1-1
Figure 10.2-1
Figure 11.1-1
Figure 11.3-1
Figure 11.4-1
Figure 11.4-2
Figure 11.4-3
Figure 11.5-1
Figure 11.5-2
Figure 12.1-1
Figure 12.3-1
Figure 12.3-2
Figure 12.3-3
Figure 12.4-1

Outline of Extended Intelligent 1/O SEIVICEoociiiiiiiiiiie e 57
Extended Intelligent I/O Service Descriptor Configurationcccceeiiieeeeniieeeeeniieee e, 58
Data Counter CONFIQUIALIONcoiiiiiiieiiiiiiiie ittt sttt e e e e e e e 58
I/O Register Address Pointer CoONfIQUIAtioNc..ooiiiiiiiiiiiiiie e 59
ISCS CONTIGUIALION ..ottt et e s bbb e e e et e e e e e ebb b e e e e nnens 60
EI20S OPEIALION FIOWvviveveceeeeeeeeeeeeee s s s sse s ese s seses et ene e eese s sessan s eseneneeseneneeeaes 61
EIZOS USE FIOW ...oovoveeceeeeeeees et eeee e tee e s et s e ne st s s s e seneseneneesene s eanneneeens 62
(2] [oTot QB T To | =t o PP PU PR 66
Delayed INTEITUPL ISSUBNCEueeiiii ittt e e s e e e e e eneee 68
Clock Generator Circuit BIOCK DIBQIAIMueiiiiiiiiiiieiiiiiiee et 70
Source and Destination of Reset Vector and Mode Dataccocveeriieriiieniie s 72
Reset Cause Dit BIOCK DIBGIAMuuiiiiiiiiiiie ittt e e e 74
WDTC (Watch-Dog Timer Control) REGISLETcoiiuiiiiiiiiiiiie ittt 74
Low-power Control Circuit and CIOCK GENEIALONccuuveiiiiiiiiie it 77
INterMittent CPU OPEIAtIONoiiiiiiiiiieiiiieee ettt e e e e nb e e e 20
Status Transition of CIOCK SEIECHONcooiiiiiiiiiii e 92
MOAE DALA STIUCTUIEeeiiiiiiieiiee ittt et e e e ettt e e e e b e e e e e e aabbb e e e e s enens 96
Access Areas and Physical Addresses in each BuS MOUEc.cooviiiiiiiiiiiieeiee e 97
1/O POt BIOCK DIGQIAIM ...ceiiiiiiiiiie ittt ettt ettt e e e bbb e e e e s b ee e e ennens 100
1/O POIM REISLEIS ..oeiiiiiiiee ettt e bbbt e e e bt e e e e ea b et e e e e bbbt e e e e ebbeeeeeannenes 101
POrt Data REQISEISviiiiiiiiii ettt e ekt e e e et e e e e st e e e e e e nbeeeeeannenes 102
POrt DIreCtION REGISLEIS ...eiiiiiiiiie ittt st et e e e st e e e e e nbeeee e ennnes 103
AnNalog INPUt ENADIE REGISTETooiiiiiiieiiiii et 104
Block Diagram of TiMe Base TIMENcccoiuiiiiiiiiiiiee ettt 106
Watch-dog Timer BIOCK DIGQIAIMoioiiiiiiiieiiiiiii ettt 112
Watch-dog TIMEr OPEIALIONoocueiiiiiiiiiiie ettt s st e e s b e s e asbre e e e e aneenes 115
Block Diagram of 16-Dit 1/O TIMEIccoiiiiiiiiiiiiiie e 119
16-bit Free-running Timer BlOCK DIiagramcc..oooiiiiiiiiiiiiiiiee e 121
Output Compare BIOCK DIAGIAMouuiriiiiiiiiie sttt e st et e e et e e e e sbneee e e 127
Sample of Output Waveform when Compare Registers 0 and 1 are Usedccccccvevveeeennnne 132

Sample of a Output Waveform with Two Compare Registers (The Initial Output Value is '0") 133

Input Capture BIOCK DIAGIamocuuuiiiiiiiiieeee ittt et ee e e 135
Sample of Input Capture Fetch TimMiNgooiiiiiiiiiiiii e 138
Block Diagram of 16-bit Reload TIMeroooiiiiiiiiiiii e 143
Activation and Operation of 16-bit Reload Timer COUNLENcccovveeiiiiiiiiiiiiirieie e 149
Trigger Input Operation of 16-bit Reload TIMEercooiiiiiiiiiiiii e 150
Gate Input Operation of 16-bit Reload TimMer ..o 150
Underflow Operation of 16-bit Reload Timercccooiiiiiiiiiiii e 152

Figure 12.5-1 Output Pin Function of 16-bit Reload Timer (1)cccciiiiiiiiiiiiie e 153

Figure 12.5-2 Output Pin Function of 16-bit Reload Timer (2) ..o 153
Figure 12.6-1 Counter State TranSItIONSoiuueiiiiiiiiit ettt b e e abbe e e e e snaeeeens 154
Figure 13.1-1 Block Diagram of WatCh-d0g TIMEIcoiiiiiiiiiiiiiiie et 156
Figure 14.2-1 8-bit PPG ChO BIOCK DIBOIAIMeiiiiiiiiiiieiiiiiie ettt e e e 165
Figure 14.2-2 8-bit PPG Ch1 BIOCK DIBOIAIMeiiiiiiiiiiieiiiiiie ettt e e e e e s 166
Figure 14.4-1 PPG Output Operation, Output WavefOrMm ... 176
Figure 14.6-1 8+8 PPG Output Operation WavefOrmMc...oioiiiiiiiiiiiie et 178
Figure 14.8-1 Write Timing for 8/16-bit PPG Reload Registers (PRLL and PRLH)coooiiiiiiiiiiiiiieen, 180
Figure 14.8-2 PRL Write Operation BIOCK DIGQIamcooiiiiiiiiiiiiie ettt 181
Figure 15.1-1 Block Diagram of DTP/EXternal INtEITUPLSeeiiiiiiiiiieiiiiiee et 184
Figure 15.3-1 EXIEIrNAl INTEITUPTeeiiiii ittt e ettt e e s bt e e e e sbbe e e e annnbeee s 188
Figure 15.3-2 Timing to Cancel the External Interrupt at the End of DTP Operationccccccoovviveeeninnnenn. 189
Figure 15.3-3 Sample Interface to the External Peripheral ..o 189
Figure 15.4-1 Switching Between External Interrupt and DTP REQUESESccvveiieiiiiiiieiiiiiee e 190
Figure 15.5-1 Clearing the Cause Hold Circuit Upon LeVel Set ... 192
Figure 15.5-2 Interrupt Cause and Interrupt Request to the Interrupt Controller While Interrupts

ArE ENADIEA ..ot e e bbb e e eeee e 192
Figure 16.2-1 Block Diagram Of A/D CONVEITEToiuuiiiiiiiiiiee ittt aiee ettt et e st e e sabn e e e s annneeeas 196
Figure 16.3-1 A/D Converter Register CONfIQUrationc...oooiiiiiiioiiiiiie e 197
Figure 16.5-1 A/D conversion processing flow from the start to converted data transfer (in continuous

(40100 = IO PP PR TR OPPRPPP 208
Figure 17.2-1 UART BIOCK DIQQIAM ...cciiiiiiiiiiiiiiie ettt ettt ettt e st e e s sbbn e e e e sninreens 219
Figure 17.7-1 Transfer Data FOMMALcooiiiiiiiiiiiiiie ettt et e e e e e e sannree s 233
Figure 17.8-1 Serial Data with Parity EN@DIEdcooiiiiiiiiiii e 234
Figure 17.9-1 RDRF Set Timing (Mode 0, 1, OF 3) .uuiiiiiiiiiiiiieiiiiee ettt e e e e sneennneees 236
Figure 17.9-2 ORFE Set Timing (Mode 0, 1, OF 3) ..iiiiiiiiiiiie ittt e e 236
Figure 17.9-3 PE Set Timing (Mode 0, 1, OF 3) ..ottt ettt e s e e e e e annnneeas 236
Figure 17.9-4 RDRF Set TimiNg (MOAE 2)uueiiiiiiiiiie ettt ittt a e e saiareeas 237
Figure 17.9-5 ORFE Set TiIMING (MOOE 2) ...coiuiiiiiiiiiiiie ettt ettt e e e 237
Figure 17.9-6 TDRE Set TiMiNG (MOUE 0) ...ooiuiiiiiiiiiiiie ettt ettt e s e e e e annnnee s 238
Figure 17.9-7 RBF Set TimMiNG (MOAE 0)coiiiiiiiiiiiiiiiii ettt ettt ettt ettt e e e e e sbae e e e annneeeas 239
Figure 17.9-8 TBF Set Timing (MOGE 0)ooiiiiuiiiiiaiiiiiitie ittt ettt et e e st e e e s b e e e e e snnnreeas 239
Figure 17.10-1 RBF Set Timing (MOGAE 0)ccooiuiiiiiiiiiiiie ettt ettt e ettt e stibe e e e s ibe e e e e sbbbr e e e s snneeseeesnnnreens 241
Figure 17.10-2 Example System Configuration USINg MOTE 2oiiiiiiiiiiiiiiiii e 241
Figure 17.10-3 Communication Flowchart for Mode 2 Operationccceeeiiiiieiieiniiiiee i 242
Figure 18.1-1 Extended Serial I/O Interface BIOCK DIiagramcccceeiiiiiieiiiiiieeeiiiiiee e sieee e e 244
Figure 18.4-1 Extended I/O Serial Interface Operation TransitioNScccoceveiiiieiiicnii e 255
Figure 18.4-2 Serial Data RegiSter REAAMIIIEocuiiiiiiiiiiii et 255

Xiv

Figure 18.4-3
Figure 18.4-4
Figure 18.4-5
Figure 18.4-6
Figure 18.4-7
Figure 18.4-8
Figure 19.2-1
Figure 19.6-1
Figure 19.6-2
Figure 19.6-3
Figure 19.7-1
Figure 19.8-1
Figure 19.9-1
Figure 19.12-1
Figure 19.13-1
Figure 20.1-1
Figure 21.1-1
Figure 21.2-1
Figure 21.2-2
Figure 22.1-1
Figure 22.2-1
Figure 22.2-2
Figure 22.2-3
Figure 22.2-4
Figure 23.1-1
Figure 24.2-1
Figure 24.2-2
Figure 24.7-1
Figure 24.7-2
Figure 25.2-1

Figure 25.3-1

Figure 25.4-1

Figure 25.5-1

Figure B.3-1
Figure B.3-2

Shift Operation Start/Stop Timing (Internal CIOCK)cceeviiiiiiiiiiiiie e
Shift Operation Start/Stop Timing (External CIOCK)ccooiiiiiiiiiiiiiiiiiiiee e
Shift Operation Start/Stop Timing (External Shift Clock Mode with Instruction Shift)
Stop Timing when '1" is Written to the STOP Bilccoiiiiiiiiiiiiiie e
Serial Data I/O Shift TIMING ..oo.vveiieiiie et e e e s e e e e s
Interrupt Signal Output Timing of the Extended Serial I/O Interfacecccccccevveeviiiiiiiiinnnen.
Block Diagram of CAN CONIOIETcooiiiiiiiiiiiiiiie e
Node Status TranSition DIAGIAMccooiiiiiiiiiiiiie et e e e sbe e e e e e annnes
Bit Time Segment in CAN SPeCIfiCatioNcoouiiiiiiiiii e
Bit Time Segment in CAN CONIOIENuuiiiiiiiiie e
Transmission Flowchart of the CAN CONrOllErooiiiiiiiiiiii e
Flowchart Determining Message Buffer (x) where Received Messages Stored
Reception Flowchart of the CAN CONtrOlEreiiiiiiiiiie e
Example of Receive Interrupt HaNAINGooooiiiiiiiii e
Examples of Operation of Multi-level Message BUffer ...
Block Diagram of Stepping Motor CONrOlEITccooiiiiiiiiiiiie e
Block Diagram of SOUNT GENETALONcoiuuiiiiiiiiiiee ettt
Relationship between Tone Signal and Register Valuecccovviiiiiiiiiniiee e
Relationship between Register Value and PWM PUISEcccooviiiiiiiniiiiie e
Block Diagram of ROM COITECLIONccoiiiuiiiiiiiiiiiee ettt e e e
SyStem SrUCIUIE EXAMPIE ot e e e e
ROM Correction Processing EXamPIecooiiiiiiiiiiiiiiieiie e
Processing FIOW of ROM COITECHIONc.uviiiiiiiiiie ettt
ROM Correction Processing FIOW DIiagrameeoiiiiiiiieiiiiiie it
Block Diagram of ROM Mirroring MOGUIEc.uiiiiiiiiiiiiie e
Block Diagram of the Entire FIash MEMOIYc..oooiiiiiiiiiiiiii e
Sector Configuration of the 2M/3M-Bit Flash MemOryccocoviiiiiiiiiiiiiieee e
Example of the Flash Memory Write ProCeaUrecceeiiiiiiiiiei it
Example of the Flash Memory Sector Erase ProCedurecccooocveeeiniieieeniiien e

Example of Serial Write Connection for MBOOF591/MB90F594A Internal Vector Modes
(User POwer SUPPIY USEA) ..oooiiiiiiie ittt ettt e et e e e s eee s eaes

Example of Serial Write Connection for MBOOF591/MB90F594A Internal Vector Modes
(Power Supplied from the WIILEE)eeiiiie e e e e e e s

Example of Minimum Connection to the Flash Microcomputer Programmer
(User POWer SUPPIY USEA) ..cooiiiiiiieiiiiiiee ettt ettt et e e e e e e s e

Example of Minimum Connection to the Flash Microcomputer Programmer
(Power Supplied from the WIILEE)ciiiiiei e er e e e e e e s

Example of immediate addressing (FiMmM) ...

Example of Register DireCt AdAIrESSINGcoeiiiiiiiiiiiiiiiie et

XV

Figure B.3-3
Figure B.3-4
Figure B.3-5
Figure B.3-6
Figure B.3-7
Figure B.3-8
Figure B.3-9
Figure B.3-10
Figure B.3-11
Figure B.4-1
Figure B.4-2
Figure B.4-3

Figure B.4-4
Figure B.4-5
Figure B.4-6
Figure B.4-7
Figure B.4-8
Figure B.4-9
Figure B.4-10
Figure B.4-11
Figure B.4-12
Figure B.4-13
Figure B.9-1
Figure B.9-2
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure C-6
Figure C-7
Figure C-8
Figure C-9
Figure C-10

XVi

Example of Direct Branch Addressing (Addrl6)cccccoieieiiiiiieiiiiee e 409
Example of Direct Branch Addressing (Addr24) ... 409
Example of I/O DireCt AddreSSing (10)eeeeiiiueieeeiiiiiie ettt e e 410
Example of Abbreviated Direct ADdresSing (dir)ccueeieiiiiieriiiiie e 410
Example of Direct AAdressing (AArLB)ccceeeeiiiiiiiieiiiiiie et 410
Example of I/O Direct Bit Addressing (10:0P)oveiiiii 411
Example of Abbreviated Direct Bit Addressing (dir:bp)cccceeiiiiiiiiii e, 411
Example of Direct Bit addressing (addrL6:DP)ooouiiiiiiiiieiie e 411
Example of Vector AAdreSSing (FVCL) ..ooueeeiiiiiiiie et e 412
Example of Register Indirect Addressing (@RW] j =010 3) ..ccooviiiiieiiiiiiieeiiiieeee e 413
Example of Register Indirect Addressing with Post Increment (@RWj + j=010 3) 413
Example of Register Indirect Addressing with Offset

(@RWi +disp8 i=01t0 7, @RW] + diSP16 j =010 3) .eoeicerreiiieiiiiieiieeeiieeeieeeeeee s siee e 414
Example of Long Register Indirect Addressing with Offset (@RLi + disp8 i =010 3) 414
Example of Program Counter Indirect Addressing with Offset (@PC + disp16) 415
Example of Register Indirect Addressing with Base Index (@RWO + RW7, @RW1 + RW7) 415
Example of Program Counter Relative Branch Addressing (rel)cccoooovoeiiiiiiiiiniiieenen, 416
Configuration of the RegISIEr LISteiiiiiiiiii et 416
Example of RegiSter LISt (FlISt)ueeiiiiiieiiiei e 416
Example of Accumulator Indirect AAdressing (@A)ooeiiiuieiieiiiiiie e 417
Example of Accumulator Indirect Branch Addressing (@A)coocuveveiiiiiieieiiieie e 417
Example of Indirect Specification Branch Addressing (@ear)cccccoevvveeiiiiiiiienniiiee e 418
Example of Indirect Specification Branch Addressing (@eam)ccccoecveeeiiiiiiieiniiieeen e, 418
Structure of INSIFUCHION IMBPeeeiie ettt e et e e e e e e e e e e 438
Correspondence between Actual Instruction Code and Instruction Mapccccceveeviieeeens 439
Timing Diagram fOr REAI ACCESScoiiuiiiiieiiiiiie ettt ettt e e 460
Write Data polling Read (WE CONLIOI)eviiiiiiiiii et 460
Timing Diagram for Write AcCess (CE CONIOI)ccuevviiiiiiiiieiiiiee et 461
Timing Diagram for Write Access (Chip Erasing/Sector Erasing)cccccccvveveeinniiieeeininnenn. 461
Timing Diagram for Data POIINGoccueeiiiiiii e 462
Timing Diagram for TOGQIe Bilcoiiiiiiiiiiiii e 462
Timing Diagram for Output of RY/BY Signal during Writing/Erasingcccccceeevvuiieeeninnneen. 462
Timing Diagram for Output of RY/BY Signal at Hardware ReSetccccccovviiiieiiiiiieeeiiiieenn. 463
Enable Sector Protect/Verify SECtOr ProteCtccooiiviiiiiiiiiiiiiiiee e 463
Temporary Sector Protect CanCellationoooiiiiiioiiiiiiiee e 464

TABLES

Table 1.1-1
Table 1.2-1
Table 1.6-1
Table 1.7-1
Table 2.5-1
Table 2.7-1
Table 2.8-1
Table 2.8-2
Table 2.9-1
Table 3.2-1
Table 3.3-1
Table 3.3-2
Table 3.3-3
Table 3.5-1
Table 3.8-1
Table 3.8-2
Table 5.3-1
Table 5.3-2
Table 6.2-1
Table 6.2-2
Table 6.2-3
Table 6.3-1
Table 6.3-2
Table 7.2-1
Table 7.3-1
Table 7.3-2
Table 7.3-3
Table 9.2-1
Table 10.1-1
Table 10.1-2
Table 12.2-1
Table 12.2-2
Table 12.2-3
Table 12.2-4
Table 14.4-1

PrOUCT OVEIVIEW ..ottt ettt e et e e e e e s e e et e e s e e e e s e ennne s 2
MBOO0S590 FEAIUINES ...ttt e e e e s s e e 3
PIN FUNCHIONS .ttt et s et e e st e e s e e e e s e b e e s e ennne s 8
T o o 10 11 01U | T o U £ PP PRI 12
1] =T T 0= T = PRI 22
Levels Indicated by the Interrupt Level Mask (ILM) Registerccccceiiiiiiiiieeeeeeins 30
T 1553 (T g U od 0] o PRIt 33
Relationship between REQISIEISccocii i s e e e e e e e e e e e e e aeaenraaes 33
BaNK SEIECT PrefiX .ooiiiieiii ettt 35
QY] g (0] oY AT o1 (o] £ PSPPSR 43
Interrupt Level Setting Bits and INterrupt LEVEISvvvvieiiiiiiiiiiiiiii e 44
ICS bits, Channel Numbers, and Descriptor AdAreSSEScoceveeiiiiiiiiee e 46
S BitS and ENd CONAItIONS ...ccoiiiiiieeiiiiiie ettt s e e s e e 46
Compensation Values for Interrupt Processing Cycle Countcooovvviiiiiiiiiiiieiieiiiienn 52
Execution Time when the Extended EI?0S CONNUESco.veveerveeerereseesessenneenssenesnenens 62
Data Transfer Compensation Values for Extended EI20S Execution TiMecococoveveeereenen. 62
RESEE CABUSES ..ottt e e et e e 73
RESEE CAUSE BiLS ...eiiiiiiiie ittt s e s a e 74
LOL CT =) BT~ 1 1T 80
WS Bt SELNG coiiiiiiieeiiiiiii e e e e e e e e e e e e et e et e et ettt a e e e e e e e e e e aaaaaaeataeeeerararreara—n 81
(O30T ST 8= 1 1] Vo 82
LOW-POWET MOAE STALUS ..vuuiiiiiiiiieie i e i e i e e e e e ettt s s e s s e s e e e e e e e e e e aaeaeeaessaeaneesrnees 83
List of Instructions Used for Transition to Low-power Modeccoovvriiiiiiiieiiieiiiviiice e, 84
Mode PINS @Nd MOUESocoiiiiiiiiieii ettt e e e e e e e e 95
Mode Setting Bits and FUNCLIONSoooiiiiiiiiiiiiieee s e e e e e e e e e e e e e eeaeee e e e e eeesaraeeesrnne 96
Bus Mode Setting Bits and FUNCLONSccoiiiiiiiiiiiiiiiiisiriss s s s e e e e e e e e e e e e e eeee e e e eeeeeesaraneenenne 96
Sample Recommended Setting of Mode Pins and Mode Datacccvvvvivviiviiiiiiiiiiiiceeeenn, 97
Selecting the Time Base Timer INterval ... 107
RESEt CAUSE REQISIEIS ..uuiiiiiiiii ittt s s e s e s e e e e e e e e e e e aeeaararaeaee 113
Watch-dog Timer Interval Selection Bitoooiiiiiiiiiiiis e e e e e e e e e e e e e 113
Clock Sources for CSL Bit SEtHNGS .ovvvvvviieiiiiiiiiiiie e isis s e s e e e e e e e e e e e e e e e e ae s 145
MOD2, 1, 0 Bit SEHNGS (1) vveveveveeeeeeeeereeeeeeeeeeseeeeeeesesesesseeeeeseseeeseseseseseseseeeeeeeeeeeseseseneseees 146
MOD2, 1, 0 Bit SEHNGS (2) v.veveveveeeeeeeeereeeeeeeeeeeee e es et s ee e e ees et e ee et et et es s eeeeeeeeeeeeseseseneneeen 146
OUTE, RELD, and OUTL SEHINGS ...uttttttiiaiaiiiiiiiiiiiie e ae e e et e e e e e s s e s stiibae e eee e e e e e e s e aan 146
Reload Operation and PulsSe OULPULooiiiiiiiiieieeiiieeii s s s s s e e e e e e e e e e e e e e e aeeeseeeeeaenens 175

Table 15.2-1
Table 16.3-1
Table 17.3-1
Table 17.3-2
Table 17.3-3
Table 17.3-4
Table 17.4-1
Table 17.5-1
Table 17.6-1
Table 18.2-1
Table 18.2-2
Table 18.2-3
Table 18.2-4
Table 18.2-5
Table 18.2-6
Table 18.2-7
Table 18.2-8
Table 18.3-1
Table 18.5-1
Table 19.3-1
Table 19.4-1
Table 19.5-1
Table 19.5-2
Table 19.6-1
Table 19.6-2
Table 24.3-1
Table 24.5-1
Table 24.6-1
Table 24.6-2
Table 24.6-3
Table 24.6-4
Table 24.6-5
Table 24.6-6
Table 24.6-7
Table 24.6-8
Table 24.6-9
Table 24.6-10
Table 25.1-1

XViii

Interrupt Request Detection Factor for LBX and LAX PINSccooiviiiiciiiiiiiieeeee e 187
Operation MOOE SEINGeiiiiiiiiiie ettt e st e e e e snnaree s 198
UART Operation MOGES uuiiiiiiiiii ettt ettt ettt s et e e e sib e e e e e e ennes 221
UIDR State after Receive COMPIELION iiiiiiiiiiieiiiie e 223
ClocK INPUL SEIBCLION ...ttt e e e e e sbe e e e e e 226
CloCK INPUL SEIBCLION ...ttt e e e e e sbeeeee e 226
UARTO Operating MOUES ooiiiiiiiiiie ittt ettt et e e e et e e e bbb e e e e e enens 228
2= TH o = 1 L= O PP PRP 230
Baud Rate and Reload ValUeoooiiiiiiiiii et 232
Setting the Serial Mode Selection Bitcueiiiiiiiiiiiiii e 246
Setting the Transfer Direction Selection Bitcccoooiiiiiiiiiii e 246
Setting the Serial Output ENable Bitcooiiiiiiii e 247
Setting the Shift Clock Output ENable Bitcocuviiiiiiiiiiiiiiiiee e 247
Setting the Serial Shift CIOCK MOUEcouiiiiiiiii e 247
Setting the Interrupt Request Enable Bit ... 248
Setting the Transfer Status Bitoooiiiiiiii e 248
SEttiNg the STOP Bit ..eeiiieiiiii ittt e e st e e e e e e e e e ae 249
Machine ClOCK DiVISION RAO ueiiiiiiiiiieiiie et e 251
Setting the NEG Bil ...ccoiiiiiiiiiiiieie ettt e e bbb e e e e snnneee s 259
List of Overall Control REQISIEISoiiiiiiiiiiei it 264
List of Message BUffers (ID REQISIEIS)eiiiiiiiiiiiiiiiiee et 266
List of Message Buffers (DLC Registers and Data RegiSters)cccovcvveieniiiiieinniieeenenne, 269
List of Message Buffers (Data REJISIEIS)ccoiiiiiiiiiiiieec e 271
Correspondence between NS1 and NSO and NOde Statusccccccveveeeeiiiiiiiiiiiiieneeee s 275
Selection of ACCEPLIANCE MASKooiiiiiiiiiei it e e ee e 295
Flash Memory Control SIgNalSoviiiiiiiiii e 353
Command SeqUENCE TabIEoiiiiii e 357
Bit Assignments of Hardware Sequence FIagsccccciiieiiiiiiie e 358
Hardware Sequence Flag FUNCHONS oiiiiiiiiieeiee e 359
Data Polling Flag State Transitions (State Change for Normal Operation)ccccccveeennee. 360
Data Polling Flag State Transitions (State Change for Abnormal Operation)cc.ccce...... 360
Toggle Bit Flag State Transitions (State Change for Normal Operation)ccccccvvveeereennnn. 362
Toggle Bit Flag State Transitions (State Change for Abnormal Operation)cccccceeveenn.. 362
Timing Limit Exceeded Flag State Transitions (State Change for Normal Operation) 363
Timing Limit Exceeded Bit Flag State Transitions (State Change for Abnormal Operation) . 363
Sector Erase Timer Flag State Transitions (State Change for Normal Operation) 364
Sector Erase Timer Flag State Transitions (State Change for Abnormal Operation) 364
Pins Used for Fujitsu Standard Serial Onboard WHtiNGc.coooiiiiiiiiiiiiiieieeee e 382

Table 25.1-2

Table A-1
Table A-2
Table B.2-1
Table B.3-1
Table B.3-2
Table B.5-1
Table B.5-2
Table B.5-3
Table B.6-1
Table B.7-1
Table B.7-2
Table B.8-1
Table B.8-2
Table B.8-3
Table B.8-4
Table B.8-5
Table B.8-6
Table B.8-7
Table B.8-8
Table B.8-9
Table B.8-10
Table B.8-11
Table B.8-12
Table B.8-13
Table B.8-14
Table B.8-15
Table B.8-16
Table B.8-17
Table B.9-1
Table B.9-2
Table B.9-3
Table B.9-4
Table B.9-5
Table B.9-6
Table B.9-7
Table B.9-8

AF200 Flash Microcomputer Programmer System Configuration (Manufactured by

Yokogawa Digital COMPULET LTA.) ..oeoiiiiiiieiiiiiie ettt e e e e 383
7@ 1 =T o PP PP PR 394
[/O MaAP (LOXX AGAIESS) ieieeiie ittt ettt ettt s bt e et e e e e b e e e e enbbeee e e ennees 399
Effective AdAress FIlU ... 407
Direct ADAresSsing REJISIEIS eiii ittt ee e e 408
CALLY VECEOE LISt ..eeiiiiiiitie ettt ettt ettt ettt e e e sttt e e e s bbb e e e s aba e e e e eeesanbeeeeeaes 412
Execution Cycle Counts in Each Addressing MOOecoociiiiiiiiiiiiiiiee e 419
Cycle Count Correction Values for Counting Execution CYCleSccccovviieeiiiiiiieiniiiieeene 420
Cycle Count Correction Values for Counting Instruction Fetch Cyclesccccciiiiiiennne 420
Effective AdAreSs FIElU ... e 422
Description of Items in the INSrUCION LIStc.ueviiiiiiiiiiiii e 424
Explanation on Symbols in the INStruction LIStccciiiiiiiiiiii e 425
41 Transfer INStruCtioNS (DY)eiiii i 427
38 Transfer INSruCtioNS (DY)ooi it 428
42 Addition/subtraction Instructions (byte, word, long Word)cccoviiiiiiiniii s 429
12 Increment/decrement Instructions (byte, word, 10Ng WOrd)ccccceeviiiiieniniiineenniiiee e 429
11 Compare Instructions (byte, word, 10ng WOrd)c.ccooiiiiiiiiiiii e 430
11 unsigned multiplication/division instructions (word, long word)cccccevviiieeiniiieeennnnn, 430
39 Logic 1 INStructions (DYLe, WOI)ccoiiiiiiiiiiiiie ettt 431
Six Logic 2 INStructions (I0NG WOI)cooiiiiiiieiiiiiiee ettt e et e e 432
Six Sign Inversion Instructions (Dyte, WOrd)cccoiiiiiiiiiiii e 432
One Normalization Instruction (I0Ng WOId)c..ooiiiiiiiiiiiie e 432
18 Shift Instructions (byte, word, 10Ng WOId)cooiiiiiiiiii e 432
31 Branch L INSIUCHONSeiiiiiiiiiieiiiiei ettt ettt e e e e e e sanneee s 433
19 Branch 2 INSIIUCLIONSveiiiiiiiiiiee ettt ettt st e e e e e e 434
31 28 Other Control Instructions (byte, word, 10Ng WOrd)ccceeiiiiiiiieiiiiiiee e 435
21 Bit Operand INSIUCHIONSuuiiiiiiiiiiie ettt e e e e bbb e e e e e sanreeeas 435
Six Accumulator Operation Instructions (byte, Word) ..o 436
Ten StriNG INSIIUCHIONS ..cooiiiiie ittt e e et e e e e eanees 436
Example of an INStrUCtiON COUE ooiiiiiiiiie e 439
BASIC PAGE IMAP ..ottt 440
Bit Operation Instruction Map (first byte = BCH)ccoooiiiiiiiiiiii e 441
Character String Operation Instruction Map (first byte = 6EH)cccoveiiiiiiiiiiiiiiieeeeee 442
2-byte Instruction Map (first byte = BFH) ...ouvviiiiiiiie e 443
ea Instruction 1 (first DYte = TOH)iiuiiiiiiiiie e 444
ea Instruction 2 (firsSt DYte = TLH) ..ooiouiiiiiiiiiee e 445
ea Instruction 3 (firsSt DYte = T2H) ...oouiiiiiiiie e 446

XiX

Table B.9-9
Table B.9-10
Table B.9-11
Table B.9-12
Table B.9-13
Table B.9-14
Table B.9-15
Table B.9-16
Table B.9-17
Table B.9-18
Table B.9-19
Table B.9-20
Table B.9-21
Table D-1
Table D-2

XX

ea Instruction 4 (first DYte = 73H) .ooeeiiiiii e 447
ea Instruction 5 (first DYte = 74H) ..o 448
ea Instruction 6 (first DYte = 75H) ..o 449
ea Instruction 7 (first DYte = 76H)eeviiiiii e 450
ea Instruction 8 (first DYte = 77H) oo e 451
ea Instruction 9 (first DYyte = 78H) ...ueiiiiii e 452
MOVEA RWi, ea Instruction (first byte = 79H)cooiiiiiiiii e 453
MOV Ri, ea Instruction (first BYte = 7AH)oiiiiii e 454
MOVW RWi, ea Instruction (first byte = 7BH)ccooiiiiiiiiii e 455
MOV ea, Ri Instruction (first Dyte = 7CH) ...oooiiiiiiiiiii e 456
MOVW ea, Rwi Instruction (first byte = 7DH)oooiiiiiiii e 457
XCH Ri, ea Instruction (first byte = 7EH)ooiiiiiiii e e 458
XCHW RWi, ea Instruction (first byte = 7TFH)oouriiiiii e 459
MBO0590 INTEITUPE VECIOIS ...eeiieiieeiiei ittt ettt e e e e e e e e e e e s e e e e e e s 465
Interrupt Causes, Interrupt Vectors, and Interrupt Control Registerscccocceeviiieenenne. 467

CHAPTER1 OVERVIEW

The MB90590 Series is a family menber of the F

2MC-16LX micro controllers.

11
1.2
13
1.4
1.5
1.6
1.7
1.8

Product Overview
Features

Block Diagram

Pin Assignment
Package Dimensions
Pin Functions

Circuit

Handling the Device

CHAPTER 1 OVERVIEW

1.1

Product Overview

Table 1.1-1 provides a quick outlook of the MB90590 Series.

m Product Overview

Table 1.1-1 Product Overview

Features MB90V590A MB90F594A/F591 MB90594/591
Product type Evaluation sample Flash version Mask ROM version
CPU F2MC-16LX CPU
System On-chip PLL clock multiplier (x1, x2, x3, x4, 1/2 when PLL stop)
clock Minimum instruction execution time: 62.5 ns (4 MHz osc. PLL x4)
ROM/Flash | External Boot-block Mask ROM 256K/384K bytes
memory Flash memory 256K/384K
bytes with Hard-wired reset
vector
RAM 8Kbytes 6K/8K bytes
Technology | 0.5 um CMOS with on-chip 0.5 um CMOS + Flash 0.5 um CMOS with on-chip
voltage regulator for internal | memory with on-chip voltage | voltage regulator for internal
power supply regulator for internal power power supply
supply and on-chip charge
pump for programming
voltage
Package PGA-256 QFP100

1.2 Features

1.2 Features

Table 1.2-1 lists the features of the MB90590 series.

m Features

Table 1.2-1 MB90590 Features

Function Feature
UART Full duplex double buffer
(3 channels) Supports asynchronous/synchronous(with start/stop bit) transfer

Baud rate : 4808/5208/9615/10417/19230/38460/62500/500000bps (asynchronous)
500K/1M/2Mbps (synchronous) at System clock = 16MHz

Serial 10 Transfer can be started from MSB or LSB

Supports internal clock synchronized transfer and external clock synchronized
transfer

Supports positive-edge and negative-edge clock synchronization

Baud rate : 31.25K/62.5K/125K/500K/1Mbps at System clock = 16MHz

A/D 10 or 8-bit resolution
Converter 8 input channels
Conversion time : 26.3us (per one channel)

16-bit Reload Timer | Operation clock frequency : fsys/2?, fsys/23, fsys/2° (fsys = System clock
(2 channels) frequency)
Supports External Event Count function

Watch Timer Directly operates with the oscillation clock

Facility to correct oscillation deviation

Read/Write accessible Second/Minute/Hour registers
Signals interrupts

16-bit Signals an interrupt when overflow
IO Timer Supports Timer Clear when a match with Output Compare(Channel 0)
Operation clock frequency : fsys/22, fsys/2? fsys/28, fsys/28(fsys = System clock
frequency)
16-bit Signals an interrupt when a match with 16-bit IO Timer
Output Compare Six 16-bit compare registers
(6 channels) A pair of compare registers can be used to generate an output signal
16-bit Rising edge, falling edge or rising & falling edge sensitive
Input Capture Six 16-bit Capture registers
(6 channels) Signals an interrupt upon external event

CHAPTER 1 OVERVIEW

Table 1.2-1 MB90590 Features (Continued)

Function

Feature

8/16-bit

Generator
(6 channels)

Programmable Pulse

Supports 8-bit and 16-bit operation modes

Twelve 8-bit reload counters

Twelve 8-bit reload registers for L pulse width

Twelve 8-bit reload registers for H pulse width

A pair of 8-bit reload counters can be configured as one 16-bit reload counter or as
8-bit prescaler plus 8-bit reload counter

6 output pins

Operation clock frequency : fsys, fsys/21, fsys/2?, fsys/22, fsys/2* or
128us@fosc=4MHz

(fsys = System clock frequency, fosc = Oscillation clock frequency)

CAN Interface
(2 channels)

Conforms to CAN Specification Version 2.0 Part A and B
Automatic re-transmission in case of error

Automatic transmission responding to Remote Frame
Prioritized 16 message buffers for data and ID's
Supports multiple messages

Flexible configuration of acceptance filtering :

Full bit compare / Full bit mask / Two partial bit masks
Supports up to 1Mbps

Stepping Motor
Controller
(4 channels)

Four high current outputs for each channel
Synchronized two 8-bit PWM*s for each channel
Succeeds to MB89940 design resource

External
Interrupt
(8 channels)

Can be programmed edge sensitive or level sensitive

Sound Generator

8-bit PWM signal is mixed with tone frequency from 8-bit reload counter
PWM frequency : 62.5K, 31.2K, 15.6K, 7.8KHz at System clock = 16MHz
Tone frequency : PWM frequency / 2 / (reload value + 1)

10 Ports

Virtually all external pins can be used as general purpose 10
All push-pull outputs and schmitt trigger inputs
Bit-wise programmable as input/output or peripheral signal

Flash Memory

Supports automatic programming, Embedded AlgorithmTM *1
Write/Erase/Erase-Suspend/Resume commands

A flag indicating completion of the algorithm

Hard-wired reset vector available in order to point to a fixed boot sector in Flash
Memory

Flash Writer from Minato Electronics Inc.

Boot block configuration

Erase can be performed on each block

*1. Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

1.3 Block Diagram

1.3 Block Diagram

Figure 1.3-1 shows a block diagram of the MB90590 series.

m Block Diagram

X0,X1
RSTX
HSTX

SOT[2:0]
SCK[2:0]
SIN[2:0]

SOT3
SCK3
SIN3

AvVCC
AVSS
AN[7:0]
AVRH
AVRL
ADTG

TIN
TOT/WOT

Figure 1.3-1 Block Diagram

P ok - 16LX
» Controller | egg— CPU
— >
RAM 6K/8K [—»
ROM/Flash < >
256K/384K
-
<> UART 3ch ¢ —-
—>
4
-)
©
P scriallio [P (‘3'
—> z
—>
—>
—P»{ 10-bit ADC
P
—> 8ch
—>
—>
—P»|16-bit Reload
P
Timer 2ch
Watch
P

Timer

10 Timer

Input
Capture
6ch

Output
Compare
6ch

8/16-bit
PPG
6ch

CAN
2ch

SMC
4ch

External
Interrupt

Sound
Generator

IN[5:0]

OUT[5:0]

PPGI[5:0]

RX[1:0]
TX[1:0]

PWM1M[3:0]
PWM1P[3:0]
PWM2M[3:0]
PWM2P[3:0]
DVCCI[1:0]
DVSS[2:0]

INT[7:0]

SGO
SGA

CHAPTER 1 OVERVIEW

1.4 Pin Assignment

Figure 1.4-1 shows the pin assignments for the MB90590 series.

m Pin Assignment

Figure 1.4-1 Pin Assignment

S£S2% 2858 E3sz ESg8EE%
PEg Bgg 5555 S535 Ss555 sss52
£22 SCSEQEZEEQEREEgEEEEQgEEEEg o
§eEleRr e rE2aR s rBaEEEE8EEEEEES
OO0000O00000000O000000000000000000
BRRRECRRRNNR3BLEB3BEUCRBLEBIBY Y
vss[]81 50 [JMD1
X082 49 [JMDO
X1 E 83 48 :| P57/TOT/WOT
Vee[] 84 47 []PS6ITIN
P00/INO [] 85 46 [P67IAN7
POL/INL [] 86 45 [T]P66IANG
P02/IN2 87 44 1 P65/ANS
PO3IN3 [] 88 Q FP-1 OO 43 [T]P64IANS
PO4/IN4] 89 42 [Vss
PO5/INS E 90 41 :| P63/AN3
POGIOUTO [] 91 40 []P62/AN2
P07/0UT1 092 39 O P61/AN1
P10/OUT2] 93 Package code (mold) 38 []P60/AND
P11/0UT3 [94 FPT-100P-M06 37 [JAVss
P12/0UT4 O 95 36 | AVR-
P13/0UT5 [96 35 [JAVR+
P14/RX1 [97 34 [Avee
P15/TX1 I 98 33 | P55/PPG5/ADTG
P16/SGO] 99 32 M P54/PPG4
P17/SGA E 100 31 :| P53/PPG3
NP TLer®og TR R3RNARIRANRRR
OOO0O00000000000000 00000000000 on

P20

P21

P22

P23
P24/INT4
P25/INTS
P26/INT6
P27/INT7
P30

P31

Vss

P32

P33
P34/SOT0
P35/SCKO

P36/SINO

P37/SIN1
P40/SCK1
P41/SOT1
P42/S0T2
P43/SCK2

P44/SIN2

Vee

P45/SCIN3

P46/SCK3
P47/SOT3

C

P50/PPGO
P51/PPG1
P52/PPG2

1.5 Package Dimensions

1.5 Package Dimensions

Figure 1.5-1 shows the package dimensions of the MB90590 series.

m Package Dimensions

Figure 1.5-1 Package Dimensions

FPT-100P-MO6

EIAJ Code: OQFP100-P-1420-4

Lead pitch 0.65mm
Plastic QFP, 100 pins Package width x 14 x 20mm
package length
Lead configuration Gull wing
Sealing Plastic mold
Flat portion length 0.80mm
(FPT-100P-MO06)
Plastic QFP, 100 pins
(FPT-100P-M06)
23.90 +0.40(.941 +.016) 3.35(.132)MAX (Mounting height)
20.00 +0.20(.787 +.008) @ 0.05(.002)MIN
A AR AR AR R A A AAT _® =
= O O E o o nges unan
% INDEX %
R OB | RGLEGLEEGEG M)
. 0.65(.0256)TYP 0.30 +0.10 @ 0.15 +0.05(.006 +.002)
(.012 +.004)
loeisorapan N ,
: 025(010) : } Details of "B" part :
[
‘ : U 0.30(.012) : : \} oo :
18.85(.742)REF | : ‘ 0.18(.007)MAX : : 0,80 0.20 :
22.30 +0.40(.878 +.016) : . : : (0312008)

© 1992 FUJITSU LIMITED F100008-3C-1 Units: mm (inches)

CHAPTER 1 OVERVIEW

1.6 Pin Functions

Table 1.6-1 describes the pin functions of the MB90590 series.

m Pin Functions

Table 1.6-1 Pin Functions

No. Pin name Circuit type Function
82 X0 Oscillation input
A
83 X1 Oscillation output
77 RST Reset input
52 HST C Hardware standby input
P00 to P05 General purpose 10
85t0 90 D
INO to IN5 Inputs for the Input Captures
P06 to PO7 General purpose 10
P10 to P13
9110 96 OUTO to D Outputs for the Output Compares.
OuUT5 To enable the signal outputs, the corresponding bits of the
Port Direction registers should be set to "1".
P14 General purpose 10
97 D
RX1 RX input for CAN Interface 1
P15 General purpose 10
08 TX1 D TX output for CAN Interface 1.
To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P16 General purpose 10
99 SGO D SGO output for the Sound Generator.
To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P17 General purpose 10
100 SGA D SGA output for the Sound Generator.
To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
lto4 P20 to P23 D General purpose 10
P24 to P27 General purpose 10
Sto8 INT4 to INT7 D External interrupt input for INT4 to INT7

These pin functions are not supported by MB90V590

Table 1.6-1 Pin Functions (Continued)

1.6 Pin Functions

No. Pin name Circuit type Function
9to 10 P30 to P31 D General purpose 10
12t0 13 P32 to P33 D General purpose 10
P34 General purpose 10
14 SOTO D SOT output for UART 0.
To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P35 General purpose 10
15 SCKO D SCK input/output for UART 0.
To enable the signal output, the corresponding bit of the Port
Direction register should be set to "1".
P36 General purpose 10
16 D
SINO SIN input for UART 0
P37 General purpose 10
17 D
SIN1 SIN input for UART 1
P40 General purpose 10
18 D
SCK1 SCK input/output for UART 1
P41 General purpose 10
19 D
SOT1 SOT output for UART 1
P42 General purpose 10
20 D
SOT2 SOT output for UART 2
P43 General purpose 10
21 D
SCK2 SCK input/output for UART 2
P44 General purpose 10
22 D
SIN2 SIN input for UART 2
P45 General purpose 10
24 D
SIN3 SIN input for the Serial 10
P46 General purpose 10
25 D
SCK3 SCK input/output for the Serial 10
P47 General purpose 10
26 D
SOT3 SOT output for the Serial IO
P50 to P55 General purpose 10
28 to 33 PPGO to D Outputs for the Programmable Pulse Generators.
PPG5, Pin number 33 is also shared with ADTG input for the
ADTG external trigger of the A/D Converter.

CHAPTER 1 OVERVIEW

Table 1.6-1 Pin Functions (Continued)

No. Pin name Circuit type Function
P60 to P63 General purpose 10
38to 41 E
ANO to AN3 Inputs for the A/D Converter
P64 to P67 General purpose 10
43 to 46 E
AN4 to AN7 Inputs for the A/D Converter
P56 General purpose 10
47 D
TIN TIN input for the 16-bit Reload Timers
P57 General purpose 10
TOT/WOT TOT output for the 16-bit Reload Timers and WOT output for
48 D the Watch Timer. Only one of three output enable flags in
these pheripheral blocks can be set at a time. Otherwise the
output signal has no meaning.
P70 to P73 General purpose 10
PWM1PO Output for Stepping Motor Controller channel 0.
54 to 57 PWM1MO F
PWM2PO
PWM2MO
P74 to P77 General purpose 10
PWM1P1 Output for Stepping Motor Controller channel 1.
PWM2P1
PWM2M1
P80 to P83 General purpose 10
PWM1P2 Output for Stepping Motor Controller channel 2.
PWM2P2
PWM2M2
P84 to P87 F, GGeneral purpose 10
PWM1P3 Output for Stepping Motor Controller channel 3.
69 to 72 PWM1M3 F
PWM2P3
PWM2M3
P90 General purpose 10
74 D
TXO0 TX output for CAN Interface 0
PI1 General purpose 10
75 D
RXO0 RX input for CAN Interface 0
P92 General purpose 10
76 D
INTO External interrupt input for INTO

10

Table 1.6-1 Pin Functions (Continued)

1.6 Pin Functions

No. Pin name Circuit type Function
P93 General purpose 10
78 D
INT1 External interrupt input for INT1
P94 General purpose 10
79 D
INT2 External interrupt input for INT2
P95 General purpose 10
80 D
INT3 External interrupt input for INT3
58 DVCC Dedicated power supply pins for the high current output
68 buffers (Pin No. 54 to 72)
53 DVSS Dedicated ground pins for the high current output buffers
63 (Pin No. 54 to 72)
73
34 AVCC Dedicated power supply pin for the A/D Converter
37 AVSS Dedicated ground pin for the A/D Converter
35 AVR+ Upper referance voltage input for the A/D Converter
36 AVR- Lower reference voltage input for the A/D Converter
49 MDO Test mode inputs. These pins should be connected to VCC
C
50 MD1
51 MD2 H Test mode input. This pin should be connected to VSS
27 C External capacitor pin. A capacitor of 0.1uF should be
connected to this pin and VSS.
23 VCC Power supply pins
84
11 VSS Ground pins
42
81

11

CHAPTER 1 OVERVIEW

1.7

Input-Output Circuits

Table 1.7-1 lists the input-output circuits.

Input-output Circuits

Table 1.7-1 Input-output Circuits

Class Circuit Remarks
A » 2O0scillation feedback resistor: 1 Mohm
X1 approx.
s Hl>o—
X0
-
j Standby control signal
B » Hysteresis input with pull-up Resistor: 50
Kohm approx.
HYS
C » Hysteresis input
HYS

12

Table 1.7-1 Input-output Circuits (Continued)

1.7 Input-Output Circuits

High current

HYS

L —{>o—

Class Circuit Remarks
D ¢ CMOS output
e Hysterisis input
[HYS
E ¢ CMOS output
e Hysterisis input
¢ Analog input
Analog input
—_
. g HYS
F ¢ CMOS high current output

Hysterisis input

13

CHAPTER 1 OVERVIEW

Table 1.7-1 Input-output Circuits (Continued)

Class Circuit Remarks
G » CMOS high current output
» Hysterisis input
* Analog input
E— High current
Analog input
— VV\H: >O— HYs
H

HYS

» Hysteresis input with pull-down
Resistor: 50 Kohm approx.

Flash version does not have pull-down
register.

14

1.8 Handling the Device

1.8 Handling the Device

Special care is required for the following when handling the device:

Preventing latch-up
Handling unused input pins
Using external clock

Power supply pins (Vcc/Vss)
Pull-up/down resistors

Handling the Device

O Preventing latch-up
CMOS IC chips may suffer latch-up under the following conditions:
« A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
« A voltage higher than the rated voltage is applied between Vcc and Vss.
* The AVcc power supply is applied before the Vcc voltage.
Latch-up may increase the power supply current drastically, causing thermal damage to the
device.
O Handling unused input pins
Do not leave unused input pins open, as doing So may cause misoperation of the device. Use a
pull-up or pull-down resistor.
O Using external clock
To use external clock, drive the X0 and X1 pins in reverse phase.

Figure 1.8-1 is a diagram of how to use external clock.

Figure 1.8-1 Using External Clock
— MB90590 Series

D@ X0
DO X1

O Power supply pins (Vcc/Vss)

Ensure that all Vcc-level power supply pins are at the same potential. In addition, ensure the
same for all Vss-level power supply pins. (See the figure 1.8-2.) If there are more than one Vcc
or Vss system, the device may operate incorrectly even within the guaranteed operating range.

15

CHAPTER 1 OVERVIEW

16

Figure 1.8-2 Power Supply Pins (Vcc/Vss)

oVcce
©Vss

[]

]

Vss

Vcce

WTTHT

Vcce

MB90590
Series

ﬂﬂd]s

Vcc

Vss

HJLJM

?uuﬁu

O Pull-up/down resistors

The MB90590 Series does not support internal

components where needed.

pull-up/down

resistors.

Use external

CHAPTER 2 CPU

This chapter explains the memory space of the MB90590.

2.1 Outline of CPU

2.2 Memory Space

2.3 Memory Space Map

2.4 Linear Addressing

2.5 Bank Addressing Types

2.6 Multi-byte Data in Memory Space
2.7 Registers

2.8 Register Bank

2.9 Prefix Codes

2.10 Interrupt Disable Instructions

17

CHAPTER 2 CPU

2.1 Outline of CPU

The F2MC-16LX CPU core is a 16-bit CPU designed for applications that require high-
speed real-time processing, such as home-use or vehicle-mounted electronic

appliances. The F 2MC-16LX instruction set is designed for controller applications, and
is capable of high-speed, highly efficient control processing.

= Outline of CPU

In addition to 16-bit data, the FPMC-16LX CPU core can process 32-bit data by using an internal
32-bit accumulator. (32-bit data can be processed with some instructions.) Up to 16 Mbytes of
memory space (expandable) can be used, which can be accessed by either the linear pointer or

bank method. The instruction system, based on the F°MC-8 A-T architecture, has been
reinforced by adding instructions compatible with high-level languages, expanding addressing
modes, reinforcing multiplication and division instructions, and enhancing bit processing. The

features of the FPMC-16LX CPU are explained below.

O Minimum instruction execution time: 62.5 ns (at 4-MHz oscillation, 4 times clock
multiplication)

O Maximum memory space: 16 Mbytes, accessed in linear or bank mode

O Instruction set optimized for controller applications
* Rich data types: Bit, byte, word, long word
» Extended addressing modes: 23 types

» High-precision operation (32-bit length) based on 32-bit accumulator

O Powerful interrupt functions

Eight priority levels (programmable)

0 CPU-independent automatic transfer

Up to 16 channels of the extended intelligent I/O service

O Instruction set compatible with high-level language (C)/multitasking

System stack pointer/instruction set symmetry/barrel-shift instructions

O Improved execution speed: 4-byte queue

18

2.2 Memory Space

2.2 Memory Space

An F°MC-16LX CPU has a 16-Mbyte memory space. All data program input and output

managed by the F 2MC-16LX CPU are located in this 16-Mbyte memory space. The CPU
accesses the resources by indicating their addresses using a 24-bit address bus.

m Outline of CPU Memory Space

Figure 2.2-1 shows a sample relationship between the F2MC-16LX system and memory map.

Figure 2.2-1 Sample Relationship between F 2MC-16LX System and Memory Map

7777777777777777777777777 _/_> { FFFFFFY Program area

! — Program : FF8000y

" |FAvc-16LX |

1 { Data area

! — Interrupt [800000

| _> { 0000COH

! | Peripheral L Interrupt controller
‘ circuits _> 0000BOH

! 1 { Peripheral circuits
| || General- ' 000020y

! [Device] [PUrpose portsyy { General-purpose ports
——————————————————————————— 000000y

m Address Generation Types

The F2MC-16LX has the following two addressing:

O Linear addressing

An entire 24-bit address is specified by an instruction.

O Bank addressing

The eight high-order bits of an address are specified by an appropriate bank register, and the

remaining 16 low-order bits are specified by an instruction.

19

CHAPTER 2 CPU

2.3 Memory Space Map

The memory space of the MB90590 Series is shown in Figure 2.3-1.

m Memory Space Map

The high-order portion of bank 00 gives the image of the FF bank ROM to make the small
model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM
can be referenced without using the far specification in the pointer declaration.

For example, an attempt to access 00C000y accesses the value at FFC000 in ROM.

The ROM area in bank FF exceeds 48 Kbytes, and its entire image cannot be shown in bank
00.

The image between FF4000, and FFFFFFy is visible in bank 00, while the image between
FFO0000y and FF3FFF is visible only in bank FF.

Figure 2.3-1 Memory Space Map

MB90V590A MB90F594A/MB90594 MB90F591/MB90591
FFFFFFH FFFFFFH FFFFFFH
ROM (FF bank) ROM (FF bank) ROM (FF bank)
FFOOO00OH FFOOO00OH FFOO00H
FEFFFFH FEFFFFH FEFFFFH
ROM (FE bank) ROM (FE bank) ROM (FE bank)
FEOOOOH FEOOOOH FEOOOOH
FDFFFFH FDFFFFH FDFFFFH
ROM (FD bank) ROM (FD bank) ROM (FD bank)
FDOOOOH FDOOOOH FDOOOOH
FCFFFFH FCFFFFH FCFFFFH
ROM (FC bank) ROM (FC bank)
FCOO000H FCOO000H FCO000H
FBFFFFH FBFFFFH
ROM (FB bank) ROM (FB bank)
FBOOOOH FBOOOOH
FAFFFFH FAFFFFH
ROM (FA bank) ROM (FA bank)
FAO0000H FAO000H
FOFFFFH FOFFFFH
ROM (F9 bank
FS0000H () F90000H ROM (F9 bank)
O0FFFFH ROM (Image of 00FFFFH ROM (Image of O0FFFFH ROM (Image of
004000H FF bank) 004000H FF bank) 004000H FF bank)
0028FFH 0028FFH
RAM 2K
002100H 002100H RAM 2K
0020FFH 0020FFH
001FFFH 001FFFH 001FFFH
Peripheral Peripheral Peripheral
001900H 001900H 001900H
0018FFH 0018FFH 0018FFH
RAM 6K RAM 6K RAM 6K
000100H 000100H 000100H
0000BFH Perioheral 0000BFH Perioheral 0000BFH Perioheral
000000H eriphera 000000H eriphera 000000H erphera

20

2.4 Linear Addressing

2.4 Linear Addressing

There are two types of linear addressing:

» 24-bit operand specification: Directly specifies a 24-bit address using operands.
» 32-bit register indirect specification: Indirectly specifies the 24 low-order bits of a

32-bit general-purpose register value as the address.

m 24-bit Operand Specification

Figure 2.4-1 shows an example of 24-bit operand specification. Figure 2.4-2 shows an example
of 32-bit register indirect specification.

Figure 2.4-1 Example of Linear Method (24-bit Register Operand Specification)

Old program counter

+ program bank

17

| = sy
452D

New program counter

—— 123456 4

+ program bank

12

3456

JMPP 123456 4

Next instruction

Figure 2.4-2 Example of Linear Method (32-bit Register Indirect Specification)

Old AL

New AL

XXXX

090700

RL1
(The high-order eight bits are ignored.)

003A

3A

240906F9

21

CHAPTER 2 CPU

2.5 Bank Addressing Types

In the bank method, the 16-Mbyte space is divided into 256 64-Kbyte banks. The
following five bank registers are used to specify the banks corresponding to each

space:

* Program bank register (PCB)

» Data bank register (DTB)

» User stack bank register (USB)

e System stack bank register (SSB)
» Additional bank register (ADB)

m Bank Addressing Types

O Program bank register (PCB)

The 64-Kbyte bank specified by the PCB is called a program (PC) space. The PC space
contains instruction codes, vector tables, and immediate value data, for example.

Data bank register (DTB)

The 64-Kbyte bank specified by the DTB is called a data (DT) space. The DT space contains
readable/writable data, and control/data registers for internal and external resources.

User stack bank register (USB)/system stack bank register (SSB)

The 64-Kbyte bank specified by the USP or SSP is called a stack (SP) space. The SP space is
accessed when a stack access occurs during a push/pop instruction or interrupt register saving.
The S flag in the condition code register determines the stack space to be accessed.

Additional bank register (ADB)

The 64-Kbyte bank specified by the ADB is called an additional (AD) space. The AD space, for
example, contains data that cannot fit into the DT space.

Table 2.5-1 lists the default spaces used in each addressing mode, which are pre-determined to
improve instruction coding efficiency. To use a non-default space for an addressing mode,
specify a prefix code corresponding to a bank before the instruction. This enables access to the
bank space corresponding to the specified prefix code.

After reset, the DTB, USB, SSB, and ADB are initialized to OOH. The PCB is initialized to a value
specified by the reset vector. After reset, the DT, SP, and AD spaces are allocated in bank O0H
(OO0000H to O0OFFFFH), and the PC space is allocated in the bank specified by the reset vector.

Table 2.5-1 Default Space

Default space Addressing mode

Program space PC indirect, program access, branch

Data space Addressing mode using @RWO0, @RW1, @RW4, or @RW5, @A, addrl6,

and dir

22

2.5 Bank Addressing Types

Table 2.5-1 Default Space (Continued)

Default space

Addressing mode

Stack space

Addressing mode using PUSHW, POPW, @RW3, or @RW7

Additional space

Addressing mode using @RW2 or @RW6

Figure 2.5-1 is an example of a memory space divided into register banks.

Figure 2.5-1 Physical Addresses of Each Space

FFFFFF
T Program space
FFOOOO | f-------------4 - FFH . PCB (Program bank register)
B3FFFF f-------------1
Additional space - .
B30000 |-------------- - B3H . ADB (Additional bank register)
@
© 92FFFFy [~~~ """
3 User stack space
© 920000 f------------- - 92y : USB (User stack bank register)
[
Q
% B8FFFF f-------- o]
o Data space
680000 |- ------------| - 68H . DTB (Data bank register)
ABFFFFy |- oo ...
System stack space
4B0000 |-------------- D 4B . SSB (System stack bank register)
AL 000000y

23

CHAPTER 2 CPU

2.6 Multi-byte Data in Memory Space

Data is written to memory from the low-order addresses. Therefore, for a 32-bit data
item, the low-order 16 bits are transferred before the high-order 16 bits.

If a reset signal is input immediately after the low-order bits are written, the high-order
bits might not be written.

m Multi-byte Data Allocation in Memory Space
Figure 2.6-1 is a diagram of multi-byte data configuration in memory. The low-order eight bits of
a data item are stored at address n, then address n+1, address n+2, address n+3, etc.
Figure 2.6-1 Sample Allocation of Multi-byte Data in Memory

MSB LSB
| 01010101 | 11001100 11111111 00010100

— T

ot T
11001100
111111
Address n - 790,0}91,09, _ .
L

m Accessing Multi-byte Data

Fundamentally, accesses are made within a bank. For an instruction accessing a multi-byte
data item, address FFFFH is followed by address 0000H of the same bank. Figure 2.6-2 is an
example of an instruction accessing multi-byte data.

Figure 2.6-2 Execution of MOVW A, 080FFFFH

H
T AL before execution ?? ??
80FFFF 01 —
800000 234 AL after execution 23H 01y
L

24

2.7 Registers

2.7 Registers

The F2MC-16LX registers are largely classified into two types: special registers in the
CPU and general-purpose registers in memory. The special registers are dedicated
internal hardware of the CPU, and they have specific use defined by the CPU
architecture. The general-purpose registers share the CPU address space with RAM.
The general-purpose registers are the same as the special registers in that they can be
accessed without using an address. The applications of the general-purpose registers
can be specified by the user however, as is ordinary memory space.

m Special Registers

The F2MC-16LX CPU core has the following 13 special registers:

¢ Accumulator (A=AH:AL): Two 16-bit accumulators (Can be used as a single 32-bit
accumulator.)

e User stack pointer (USP): 16-bit pointer indicating the user stack area

e System stack pointer (SSP): 16-bit pointer indicating the system stack area

¢ Processor status (PS): 16-bit register indicating the system status

¢ Program counter (PC): 16-bit register holding the address of the program

¢ Program bank register (PCB): 8-bit register indicating the PC space

« Data bank register (DTB): 8-bit register indicating the DT space

e User stack bank register (USB): 8-bit register indicating the user stack space

e System stack bank register (SSB): 8-bit register indicating the system stack space
« Additional bank register (ADB): 8-bit register indicating the AD space

« Direct page register (DPR): 8-bit register indicating a direct page

Figure 2.7-1 is a diagram of the special registers.

25

CHAPTER 2 CPU

Figure 2.7-1 Special Registers

AH 1 AL

uspP

SSP

PS

PC

PCB

DTB

USsSB

SSB

ADB

— 16 bit

— 8 bit —

32 bit

m General-purpose Registers

26

The F2MC-16LX general-purpose registers are located from addresses 000180H to 00037FH
(maximum configuration) of main storage. The register bank pointer (RP) indicates which of the
above addresses are currently being used as a register bank. Each bank has the following three
types of registers. These registers are mutually dependent as described in Figure 2.7-2.

* RO to R7: 8-bit general-purpose register

 RWO to RW7: 16-bit general-purpose register

» RLO to RL3: 32-bit general-purpose register

Figure 2.7-2 General-purpose Registers

MSB LSB
16 bit
000180 +RP*10y [----------- —
Low-order RWO
First address of
general-purpose register Rwi
RwW2
RW3
R1 RO
R3 R2
R5 R4
R7 R6
High-order

The relationship between the high-order and low-order bytes of a byte or word register is

expressed as follows:
RW (i+4) = R (i*2+1)*256+R (i*2) [i=0 to 3]

The relationship between the high-order and low-order bytes of Rli and RW can be expressed

as follows:

Accumulator

User stack pointer

System stack pointer

Processor status

Program counter

Direct page register

Program bank register

Data bank register

User stack bank register

System stack bank register

Additional data bank register

RL () = RW (jxp41)*65536+RW (jep) [i=0 to 3]

RLO

RL1

RL2

RL3

2.7 Registers

2.7.1 Accumulator (A)

The accumulator (A) register consists of two 16-bit arithmetic operation registers (AH
and AL), and is used as a temporary storage for operation results and transfer data.

m Accumulator (A)

The A register consists of two 16-bit arithmetic operation registers (AH and AL). The A register
is used as a temporary storage for operation results and transfer data. During 32-bit data
processing, AH and AL are used together. Only AL is used for word processing in 16-bit data
processing mode or for byte processing in 8-bit data processing mode (see Figures 2.7-3 and
2.7-4). The data stored in the A register can be operated upon with the data in memory or
registers (Ri, Rwi, or RIi). In the same manner as with the F°MC-8L, when a word or shorter
data item is transferred to AL, the previous data item in AL is automatically sent to AH (data
preservation function). The data preservation function and operation between AL and AH help
improve processing efficiency.

When a byte or shorter data item is transferred to AL, the data is sign-extended or zero-
extended and stored as a 16-bit data item in AL. The data in AL can be handled either as word
or byte long.

When a byte-processing arithmetic operation instruction is executed on AL, the high-order eight
bits of AL before operation are ignored. The high-order eight bits of the operation result all
become zeroes.

The A register is not initialized by a reset. The A register holds an undefined value immediately
after a reset.

Figure 2.7-3 32-bit Data Transfer

MQVLA@R_ W1+6 MSB LSB
Old A | XXXX 1 XXXX | AB1540 8F 4 T4y
AB153E 1 2B 52
I om .
+6
New A | 8F74 ' 2B52 |y | L RW1 15y 38
AH AL

Figure 2.7-4 AL-AH Transfer

MO VW A,@R_ W1+6 _ MSB LSB
Old A | XXXX H : 1234 H | A61540 H 8F H 74 H
AB153E 2B 52
L1 o -
+6
New A | 1234, ' 12344 | (i RW1 15 384

27

CHAPTER 2 CPU

2.7.2 User Stack Pointer (USP) and System Stack Pointer (SSP)

USP and SSP are 16-bit registers that indicate the memory addresses for saving and
restoring data when a push/pop instruction or subroutine is executed.

m User Stack Pointer (USP) and System Stack Pointer (SSP)

28

USP and SSP are 16-bit registers that indicate the memory addresses for saving and restoring
data in the event of a push/pop instruction or subroutine execution. The USP and SSP registers
are used by stack instructions. The USP register is enabled when the S flag in the processor
status register is '0,' and the SSP register is enabled when the S flag is '1' (see Figure 2.7-5).
Since the S flag is set when an interrupt is accepted, register values are always saved in the
memory area indicated by SSP during interrupt processing. SSP is used for stack processing in
an interrupt routine, while USP is used for stack processing outside an interrupt routine. If the
stack space is not divided, use only the SSP.

During stack processing, the high-order eight bits of an address are indicated by SSB (for SSP)
or USB (for USP). USP and SSP are not initialized by a reset. Instead, they hold undefined
values.

Figure 2.7-5 Stack Manipulation Instruction and Stack Pointer

Example 1 PUSHW A when the S flag is '0' MSB LSB

Before execution => AL A624 UsSB CéH USsP F328 4 C6F326 H XX XX
S flag IZI SsB 56 4 sSSP | 1234y

) User stack is used because
After execution —> AL AG24 UsB CéH UsP F326 4 | <= thes flag is '0."
IZI SSB 56 4 SSP 1234 C6F326 H A6 4 ‘ 244

Example 2 PUSHW A when the S flag is '1'
—> AL A624 4y usB USP F328 |y | 561232 XX ‘ XX
SSP 1234 H

—=> AL A624 4y usB USP F328 4 | 561232 4 A6 24y
ssp 1232 | <= System stqck is used because
the S flag is '1.'

(@]
o
T

@]
& &
T T

Note: Specify an even-numbered address in the stack pointer whenever possible.

ol
=2}
I

2.7 Registers

2.7.3 Processor Status (PS)

The PS register consists of the bits controlling the CPU Operation and the bits
indicating the CPU status.

m Processor Status (PS)

As shown in Figure 2.7-6, the high-order byte of the PS register consists of a register bank
pointer (RP) and an interrupt level mask register (ILM). The RP indicates the start address of a
register bank. The low-order byte of the PS register is a condition code register (CCR),
containing the flags to be set or reset depending on the results of instruction execution or
interruptoccurrences.

Figure 2.7-6 Processor Status (PS) Structure

15 <—=1312 =—> 817 0

PS ILM RP CCR

m Condition Code Register (CCR)

O

Figure 2.7-7 is a diagram of condition code register configuration.

Figure 2.7-7 Condition Code Register (CCR) Configuration

7 6 5 4 3 2 1 0
Il | s| T|N|Z]|V]|C - CCR
Initial value - 0 1 * * * * * *: Undefined

I: Interrupt enable flag:

Interrupts other than software interrupts are enabled when the | flag is 1 and are masked when
the I flag is 0. The | flag is cleared by a reset.

S: Stack flag:

When the S flag is 0, USP is enabled as the stack manipulation pointer.

When the S flag is 1, SSP is enabled as the stack manipulation pointer.

The S flag is set by an interrupt reception or a reset.

T: Sticky bit flag:

1 is set in the T flag when there is at least one '1' in the data shifted out from the carry after
execution of a logical right/arithmetic right shift instruction. Otherwise, 0 is set in the T flag. In
addition, '0' is set in the T flag when the shift amount is zero.

N: Negative flag:

The N flag is set when the MSB of the operation result is '1," and is otherwise cleared.

Z: Zero flag:

The Z flag is set when the operation result is all zeroes, and is otherwise cleared.

29

CHAPTER 2 CPU

0 V: Overflow flag:

The V flag is set when an overflow of a signed value occurs as a result of operation execution
and is otherwise cleared.
C: Carry flag:

The C flag is set when a carry-up or carry-down from the MSB occurs as a result of operation
execution, and is otherwise cleared.

m Register Bank Pointer (RP)

The RP register indicates the relationship between the general-purpose registers of the F2MC-
16LX and the internal RAM addresses. Specifically, the RP register indicates the first memory
address of the currently used register bank in the following conversion expression: [00180H +
(RP)*10H] (see Figure 2.7-8). The RP register consists of five bits, and can take a value
between 00H and 1FH. Register banks can be allocated at addresses from 000180H to 00037H
in memory.

Even within that range, however, the register banks cannot be used as general-purpose
registers if the banks are not in internal RAM. The RP register is initialized to all zeroes by a
reset. An instruction may transfer an eight-bit immediate value to the RP register; however, only
the low-order five bits of that data are used.

Figure 2.7-8 Register Bank Pointer (RP)

B4 B3 B2 B1 BO : RP

Initial value 0 0 0 0 0

Interrupt Level Mask Register (ILM)

The ILM register consists of three bits, indicating the CPU interrupt masking level. An interrupt
request is accepted only when the level of the interrupt is higher than that indicated by these
three bits. Level 0 is the highest priority interrupt, and level 7 is the lowest priority interrupt (see
Table 2.7-9). Therefore, for an interrupt to be accepted, its level value must be smaller than the
current ILM value. When an interrupt is accepted, the level value of that interrupt is set in ILM.
Thus, an interrupt of the same or lower level cannot be accepted subsequently. ILM is initialized
to all zeroes by a reset. An instruction may transfer an eight-bit immediate value to the ILM
register, but only the low-order three bits of that data are used.

Figure 2.7-9 Interrupt Level Register (ILM)

ILM2 | ILM1 [ILMO © LM

Initial value 0 0 0

Table 2.7-1 Levels Indicated by the Interrupt Level Mask (ILM) Register

ILM2 ILM1 ILMO Level value Acceptable interrupt level
0 0 0 0 Interrupt disabled
0 0 1 1 0 only
0 1 0 2 Level value smaller than 1
0 1 1 3 Level value smaller than 2

30

2.7 Registers

Table 2.7-1 Levels Indicated by the Interrupt Level Mask (ILM) Register (Continued)

ILM2 ILM1 ILMO Level value Acceptable interrupt level
1 0 0 4 Level value smaller than 3
1 0 1 5 Level value smaller than 4
1 1 0 6 Level value smaller than 5
1 1 1 7 Level value smaller than 6

31

CHAPTER 2 CPU

2.7.4 Program Counter (PC)

The PC register is a 16-bit counter that indicates the low-order 16 bits of the memory
address of an instruction code to be executed by the CPU. The high-order eight bits of
the address are indicated by the PCB. The PC register is updated by a conditional
branch instruction, subroutine call instruction, interrupt, or reset.

The PC register can also be used as a base pointer for operand access.

m Program Counter (PC)

Figure 2.7-10 shows the program counter.

Figure 2.7-10 Program Counter

PCB FEnH PC ABCD 4
< y Next instruction to be executed
| FEABCD H

32

2.8 Register Bank

2.8 Register Bank

A register bank consists of eight words. The register bank can be used as the
following general-purpose registers for arithmetic operations: byte registers RO to R7,
word registers RWO0 to RW7, and long word registers RLO to RL3. In addition, the
register bank can be used as instruction pointers.

m Register Bank

Table 2.8-1 lists the functions of the registers. Table 2.8-2 indicates the relationship between the
registers.

In the same manner as for an ordinary RAM area, the register bank values are not initialized by
a reset. The status before a reset is maintained. When the power is turned on, however, the
register bank will have an undefined value.

Table 2.8-1 Register Functions

RO to R7 Used as operands of instructions.
Note: RO is also used as a counter for barrel shift or normalization
instructions.
RWO0 to RW7 Used as pointers.

Used as operands of instructions.
Note: RWO is used as a counter for string instructions.

RLO to RL3 Used as long pointers.
Used as operands of instructions.

Table 2.8-2 Relationship between Registers

RWO
RLO
Rw1
RwW2
RL1
RW3
RO
RwW4
R1
RL2
R2
RWS
R3
R4
RW6
R5
RL3
R6
Rw7
R7

33

CHAPTER 2 CPU

34

0 Direct page register (DPR) <Initial value: 01H>

DPR specifies addr8 to addr15 of the instruction operands in direct addressing mode as shown
in Figure 2.8-1. DPR is eight bits long, and is initialized to 01H by a reset. DPR can be read or
written to by an instruction.

Figure 2.8-1 Generating a Physical address in Direct Addressing Mode

DTB register DPR register Direct address during instruction

aogoooaaa BBBBBRBA YYYYYYYY

24-bit physical

address

|

MSB LSB|

aaocooaaaaBBBBRBBRYYYYYYYY

Program counter bank register (PCB) <Initial value: Value in reset vector>
Data bank register(DTB) <Initial value: 00H>

User stack bank register(USB) <Initial value: 00H>

System stack bank register(SSB) <Initial value: 00H>

Additional data bank register(ADB) <Initial value: OOH>

Each bank register indicates the memory bank where the PC, DT, SP (user), SP (system), or
AD space is allocated. All bank registers are one byte long. PCB is initialized to 00H by a reset.
Bank registers other than PCB can be read or written to. PCB can be read but cannot be written
to.

PCB is updated when the JMPP, CALLP, RETP, RETIQ, or RETF instruction branching to the
entire 16-Mbyte space is executed or when an interrupt occurs. For operation of each register,
see Section 2.2 "Memory space."

2.9 Prefix Codes

2.9 Prefix Codes

Placing a prefix code before an instruction partially changes the operation of the
instruction. Three types of prefix codes can be used: bank select prefix, common
register bank prefix, and flag change disable prefix.

m Bank Select Prefix
The memory space used for accessing data is determined for each addressing mode.

When a bank select prefix is placed before an instruction, the memory space used for accessing
data by that instruction can be selected regardless of the addressing mode.

Table 2.9-1 lists the bank select prefixes and the corresponding memory spaces.

Table 2.9-1 Bank Select Prefix

Bank select prefix Space selected
PCB PC space
DTB Data space
ADB AD space
SPB Egtlf:zr the SSP or USP space is used according to the stack flag

Use the following instructions with care:

O String instructions (MOVS, MOVSW, SCEQ, SCWEQ), FILS, FILSW)

The bank register specified by an operand is used regardless of the prefix.

O Stack manipulation instructions (PUSHW, POPW)
SSB or USB is used according to the S flag regardless of the prefix.

O 1/O access instructions

MOV A, io / MOV io, A /MOVX A, io / MOVW A, io /IMOVW io, A/ MOV io, #imm8
MQV io, #imm16 / MOVB A, io:bp / MOB io:bp, A /SETB io:bp / CLRB io:bp
v BBC io:bp, rel / BBS io:bp, rel WBTC, WBTS

The 10 space of the bank is used regardless of the prefix.

O Flag change instructions (AND CCR,#mm8, OR CCR,#mm8)

The instruction is executed normally, but the prefix affects the next instruction.

0 POPW PS

SSB or USB is used according to the S flag regardless of the prefix. The prefix affects the next
instruction.

35

CHAPTER 2 CPU

0 MOV ILM,#mm3

The instruction is executed normally, but the prefix affects the next instruction.

0 RETI

SSB is used regardless of the prefix.

m Common Register Bank Prefix (CMR)

To simplify data exchange between multiple tasks, the same register bank must be accessed
relatively easily regardless of the RP value. When CMR is placed before an instruction that
accesses a register bank, that instruction accesses the common bank (the register bank
selected when RP=0) at addresses from 000180H to 00018FH regardless of the current RP
value. Use the following instructions with care:

String instructions (MOVS, MOVSW, SCEQ, SCWEQ, FILS, FILSW)

If an interrupt request occurs during execution of a string instruction with a prefix code, the
prefix code becomes invalid when the string instruction is resumed after the interrupt is
processed. Thus, the string instruction is executed falsely after the interrupt is processed. Do
not prefix any of the above string instructions with CMR.

Flag change instructions (AND CCR,#imm8, OR CCR,#imm8, POPW PS)

The instruction is executed normally, but the prefix affects the next instruction.

MOV ILM,#mm8

The instruction is executed normally, but the prefix affects the next instruction.

m Flag Change Disable Prefix (NCC)

36

To disable flag changes, use the flag change disable prefix code (NCC). Placing NCC before an
instruction disables flag changes associated with that instruction. Use the following instructions
with care:

String instructions (MOVS, MOVSW, SCEQ, SCWEQ, FILS, FILSW)

If an interrupt request occurs during execution of a string instruction with a prefix code, the
prefix code becomes invalid when the string instruction is resumed after the interrupt is
processed. Thus, the string instruction is executed incorrectly after the interrupt is processed.
Do not prefix any of the above string instructions with NCC.

Flag change instructions (AND CCR,#imm8, OR CCR,#imm8, POPW PS)

The instruction is executed normally, but the prefix affects the next instruction.

Interrupt instructions (INT #vct8, INT9, INT addrl6, INTP addr24, RETI)

CCR changes according to the instruction specifications regardless of the prefix.

JCTX @A

CCR changes according to the instruction specifications regardless of the prefix.

MOV ILM,#mm8

The instruction is executed normally, but the prefix affects the next instruction.

2.10 Interrupt Disable Instructions

2.10 Interrupt Disable Instructions

Interrupt requests are not sampled for the following ten instructions:
- MOV ILM,#mm8 -PCB - SPB -OR CCR,#imm8 -NCC
-AND CCR,#imm8 - ADB -CMR - POPW PS -DTB

m Interrupt Disable Instructions

If a valid interrupt request occurs during execution of any of the above instructions, the interrupt
can be processed only when an instruction other than the above is executed. For details, see

Figure 2.10-1.
Figure 2.10-1 Interrupt Disable Instruction
Interrupt disable instruction
[ocoo.ooo] (a) [o.o
(a) Ordinary
ﬁ ﬂ\ instruction
Interrupt request Interrupt acceptance

m Restrictions on Interrupt Disable Instructions and Prefix Instructions

When a prefix code is placed before an interrupt disable instruction, the prefix code affects the
first instruction after the code other than the interrupt disable instruction. For details, see Figure
2.10-2.

Figure 2.10-2 Interrupt Disable Instructions and Prefix Codes

Interrupt disable instruction

MOV A, FF NCC MOV ILM,#imm8 s ADD A 0L

CCR:XXX10XX ¢ CCR:XXX10XX

CCR does not change with NCC.

m Consecutive Prefix Codes
When competitive prefix codes are placed consecutively, the latter becomes valid.

In the figure below, competitive prefix codes are PCB, ADB, DTB, and SPB. For details, see

Figure 2.10-3.
Figure 2.10-3 Consecutive Prefix Codes
Prefix code
.....] ADB DTB PCB ADD A,01y [....

/P PCB is valid as the prefix code

37

CHAPTER 2 CPU

38

CHAPTER 3 INTERRUPTS

This chapter explains the interrupt functions and operations.

3.1
3.2
3.3
3.4
3.5
3.6

3.7
3.8

3.9

Outline of Interrupts

Interrupt Vector

Interrupt Control Registers (ICR)
Interrupt Flow

Hardware Interrupts

Software Interrupts

Extended Intelligent I/O Service (EI20S)

Operation Flow of and Procedure for Using the Extended Intelligent I/0O
Service (EI0S)

Exceptions

39

CHAPTER 3 INTERRUPTS

3.1

Outline of Interrupts

The F2MC-16LX has interrupt functions that terminate the currently executing
processing and transfer control to another specified program when a specified event
occurs. There are four types of interrupt functions:

Hardware interrupt: Interrupt processing due to an internal resource event
Software interrupt: Interrupt processing due to a software event occurrence

instruction

Extended intelligent I/O service (EI 20S): Transfer processing due to an internal

resource event
Exception: Termination due to an operation exception

Hardware Interrupts

F2MC-16 bus

A hardware interrupt is activated by an interrupt request from an internal resource. A hardware
interrupt request occurs when both the interrupt request flag and the interrupt enable flag in an
internal resource are set. Therefore, an internal resource must have an interrupt request flag
and interrupt enable flag to issue a hardware interrupt request.

Specifying an interrupt level

An interrupt level can be specified for the hardware interrupt. To specify an interrupt level, use
the level setting bits (ILO, IL1, and IL2) of the interrupt controller.

Masking a hardware interrupt request

A hardware interrupt request can be masked by using the | flag of the processor status register
(PS) in the CPU and the ILM bits (ILO, IL1, and IL2). When an unmasked interrupt request
occurs, the CPU saves 12 bytes of data that consists of registers PS, PC, PCB, DTB, ADB,
DPR, and A in the memory area indicated by the SSB and SSP registers.

Figure 3.1-1 Overview of Hardware Interrupts

Register file PS | ILM PS . Processor status
| . Interrupt enable flag
) [\ ILM : Interrupt level mask register
Microcode IR b =— Check‘fcomparatorJ IR . Instruction register
o g ad
FIMC-16LX:CPU | |
S Jo
Peripheral l
9| <
I —
= [}
SN
Enable FF—] % B
AND +— e | 2
3 | = | Interrupt
)
| Cause R H 3 £ | controller

m Software Interrupts

40

Interrupts requested by executing the INT instruction are software interrupts. An interrupt

3.1 Ouitline of Interrupts

request by the INT instruction does not have an interrupt request or enable flag. An interrupt

request is issued always by executing the INT instruction.

No interrupt level is assigned to the INT instruction. Therefore, ILM is not updated when the INT
instruction is used. Instead, the | flag is cleared and the continuing interrupt requests are

suspended.

Figure 3.1-2 Overview of Software Interrupts

Register file

O
‘ Microcode IR

O

FZMC-16LX- CPU

F2MC-16 bus

Save

1y

RAM

m Extended Intelligent /O Service (EI 20S)

Instruction bus

PS

|

ILM
IR

B unit

Processor status

Interrupt enable flag
Interrupt level mask register
Instruction register

Bus interface unit

The extended intelligent I/O service automatically transfers data between an internal resource
and memory. This processing is traditionally performed by an interrupt processing program, but

the EI20S enables data to be transferred in a manner similar to a DMA (direct memory access)

operation.

To activate the extended intelligent I/O service function from an internal resource, the interrupt
control register (ICR) of the interrupt controller must have an extended intelligent I/O service

enable flag (ISE).

The extended intelligent I/O service is started when an interrupt request occurs with 1 specified
in the ISE flag. To generate a normal interrupt using a hardware interrupt request, set the ISE

flag to O.

41

CHAPTER 3 INTERRUPTS

Figure 3.1-3 Overview of the Extended Intelligent I/O Service (EI 20S)

Memory space

— | /O register | ------- || Peripheral

Interrupt request | [

by I0A

CPU

ISD
ad - | Interrupt control registeie

Interrupt controller

O I/O requests transfer.
by BAP -F- O The interrupt controller selects the

descriptor.
O The transfer source and destination
0o Ls .

by DCT are read from the descriptor.

Buffer 0 Datais transferred between I/O and
memory.

m Exceptions

Exception processing is basically the same as interrupt processing. When an exception is
detected between instructions, exception processing is performed. In general, exception
processing occurs as a result of an unexpected operation. Therefore, use exception processing
only for debugging programs or for activating recovery software in an emergency.

42

3.2 Interrupt Vector

3.2 Interrupt Vector

An interrupt vector uses the same area for both hardware and software interrupts. For
example, interrupt request number INT42 is used for a delayed hardware interrupt and
for software interrupt INT #42. Therefore, the delayed interrupt and INT #42 call the
same interrupt processing routine. Interrupt vectors are allocated between addresses
FFFCOOH and FFFFFFH as shown in Table 3.2-1.

m Interrupt Vector

Table 3.2-1 Interrupt Vectors

Interrupt request |Vector address L ector address H ector address Mode register
bank

INT 0*1 FFFFFCH FFFFFDy FFFFFEH Unused
INT 1*1 FFFFF84 FFFFF9y4 FFFFFAL Unused
INT 7*1 FFFFEOH FFFFE1y FFFFE2y Unused
INT 8*2 FFFFDCy FFFFDDy FFFFDERQ FFFFDFy
INT 9 FFFFD8y FFFFD9y FFFFDAYQ Unused
INT 10*3 FFFFD4y FFFFD54 FFFFD64 Unused
INT 11 FFFFDOy FFFFD1y4 FFFFD2y Unused
INT 254 FFFCO04y FFFCO5y, FFFCO06y Unused
INT 255 FFFCOO0y FFFCO1y FFFC02, Unused

*1: When PCB is FFH, the vector area for the CALLV instruction is the same as that for
INT #vct8(#0 to #7). Care must be taken when using the vector for the CALLV instruction.

*2: The vector is a reset vector.
*3. The vector is an exception processing vector.
m Listing of Interrupt Vectors

See Table C-1 in Appendix C for a list of the MB90590 interrupt vectors.

43

CHAPTER 3 IN

TERRUPTS

3.3 Interrupt Control Registers (ICR)

The interrupt

control registers are in the interrupt controller. Each interrupt control

register has a corresponding I/O that has an interrupt function. The interrupt control
registers have the following three functions:

e Setting an

interrupt level for corresponding peripherals

» Selecting whether to use an ordinary interrupt or extended intelligent 1/0O service for
the corresponding peripherals

» Selecting t

he extended intelligent 1/O service channel

Do not access an interrupt control register by using a read-modify-write instruction, as
doing so causes a misoperation.

m Interrupt Control Register (ICR)

Figure 3.3-1 is a diagram of the bit configuration of an interrupt control register.

Figure 3.3-1 Interrupt Control Register (ICR)

15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0
ICS3 ICS2 ICS1 ICSO ISE L2 L1 ILO Interrupt control register
or or 00000111 g when reset
S1 SO
W W * * R/W R/W R/W R/W
Note:

ICS3 to ICSO0 are valid only when EI20S is activated. Set '1' in ISE to activate EI20S, and set

'0" in ISE not to activate it. When EI?OS is not to be activated, any value can be set in ICS3
to ICSO0. * '1'is read always.

ICS1 and ICSO are valid for write only. S1 and SO are valid for read only.
[bits 10 to 8] [bits 2 to 0]: ILO, IL1, and IL2 (interrupt level setting bits)

These bits are readable and writable, and specify the interrupt level of the corresponding
internal resources. Upon a reset, these bits are initialized to level 7 (no interrupt). Table 3.3-1
describes the relationship between the interrupt level setting bits and interrupt levels.

Table 3.3-1 Interrupt Level Setting Bits and Interrupt Levels

ILM2 ILM1 ILMO Level
0 0 0 0 (Strongest)
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5

44

3.3 Interrupt Control Registers (ICR)

Table 3.3-1 Interrupt Level Setting Bits and Interrupt Levels (Continued)

ILM2 ILM1 ILMO Level
1 1 0 6 (Weakest)
1 1 1 7 (No interrupt)

[bit 11] [bit 3]: ISE (extended intelligent I/O service enable bits)

The ISE bit is readable and writable. In response to an interrupt request, EI20S is activated
when '1' is set in the ISE bit and an interrupt sequence is activated when '0' is set in the ISE

bit. Upon completion of EI?OS, the ISE bit is cleared to a zero. If the corresponding
peripheral does not have the EI?0OS function, the ISE bit must be set to '0' on the software

side.

Upon a reset, the ISE bit is initialized to '0.'

[bits 15 to 12] [bits 7 to 4]: ICS 3 to 0 (extended intelligent I/O service channel select bits)

ICS3 to ICSO are write-only bits. These bits specify the EI20S channel. The values set in
these bits determined the intelligent I/O service descriptor addresses in memory, which is
explained later. The ICS bits are initialized by a reset.

Table 3.3-2 describes the correspondence between the ICS bits, channel numbers, and
descriptor addresses.

45

CHAPTER 3 INTERRUPTS

Table 3.3-2 ICS bits, Channel Numbers, and Descriptor Addresses

ICS3 ICS2 ICS1 ICSO Selected channel Descriptor address
0 0 0 0 0 0001004
0 0 0 1 1 000108y
0 0 1 0 2 0001104
0 0 1 1 3 000118y
0 1 0 0 4 000120y
0 1 0 1 5 000128y
0 1 1 0 6 000130y
0 1 1 1 7 000138y
1 0 0 0 8 0001404
1 0 0 1 9 000148y
1 0 1 0 10 000150y
1 0 1 1 11 000158y
1 1 0 0 12 0001604
1 1 0 1 13 000168y
1 1 1 0 14 000170y
1 1 1 1 15 000178y

[bits 13 and 12] [bits 5 and 4]: SO and S1 (extended intelligent I/O service status)

SO0 and S1 are read-only bits. The values set in these bits indicate the end condition of
EI20S. These bits are initialized to '00" upon a reset.

Table 3.3-3 shows the relationship between the S bits and the end conditions.

Table 3.3-3 S Bits and End Conditions

S1 SO End condition

EI20S running or not activated

Termination by count

0 0
0 1
1 0 Reserved
1 1

Termination by request from resource

46

3.4

3.4 Interrupt Flow

Interrupt Flow

Figure 3.4-1 shows the interrupt flow.

Interrupt Flow

Figure 3.4-1 Interrupt Flow
| : Flagin CCR
ILM : Level register in CPU
IF : Internal resource interrupt request

ISE : EI20S enable flag
IL : Internal resource interruptrequest level
S : Flagin CCR

1 IE : Internal resource interrupt enable flag 1

I1&IF&IE=1 YES
AND
ILM > IL
NO
NO YES
Fetching and decoding
the next instruction
Saving PS, PC, PCB, DTB, Executing the extended
ADB, DPR, and A into the intelligent 1/0 service
stack of SSP, and setting ILM=IL

YES
INT instruction
NO
Executing an ordinary Saving PS, PC, PCB, DTB, ADB,
instruction)
DPR, and A into the stack of SSP,
and setting I=0 and ILM=IL

Completion of
string instruction
repetition

Sc 1
Fetching the interrupt vector

Updating PC

47

CHAPTER 3 INTERRUPTS

48

Figure 3.4-2 Register Saving during Interrupt Processing

Word (16 bits)

MSB LSB
AH
AL
DPR ADB
DPB PCB
PC
PS

SSP (SSP value before interrupt)

SSP (SSP value after interrupt)

3.5 Hardware Interrupts

3.5 Hardware Interrupts

In response to an interrupt request signal from an internal resource, the CPU pauses
current program execution and transfers control to the interrupt processing program
defined by the user. This function is called the hardware interrupt function.

m Hardware Interrupts

A hardware interrupt occurs when the relevant conditions are satisfied as a result of two
operations: comparison between the interrupt request level and the value in the interrupt level
mask register (ILM) of PS in the CPU, and hardware reference to the | flag value of PS.

The CPU performs the following processing when a hardware interrupt occurs:

e Saves the values in the PC, PS, AH, AL, PCB, DTB, ADB, and DPR registers of the CPU to
the system stack.

« Sets ILM in the PS register. The currently requested interrupt level is automatically set.

* Fetches the corresponding interrupt vector value and branches to the processing indicated
by that value.

m Structure of Hardware Interrupt

Hardware interrupts are handled by the following three sections:

O Internal resources

Interrupt enable and request bits: Used to control interrupt requests from resources.

O Interrupt controller
ICR: Assigns interrupt levels and determines the priority levels of simultaneously requested
interrupts.

0O CPU

I and ILM: Used to compare the requested and current interrupt levelsand to identify the
interrupt enable status.

Microcode: Interrupt processing step

The status of these sections are indicated by the resource control registers for internal
resources, the ICR for the interrupt controller, and the CCR value for the CPU. To use a
hardware interrupt, set the three sections beforehand by using software.

The interrupt vector table referenced during interrupt processing is assigned to addresses
FFFCOO0y to FFFFFFy in memory. These addresses are shared with software interrupts.

49

CHAPTER 3 INTERRUPTS

3.5.1 Hardware Interrupt Operation

An internal resource that has the hardware interrupt request function has an interrupt
request flag and interrupt enable flag. The interrupt request flag indicates whether an
interrupt request exists, and the interrupt enable flag indicates whether the relevant
internal resource requests an interrupt to the CPU. The interrupt request flag is set
when an event occurs that is unique to the internal resource. When the interrupt
enable flag indicates "enable,” the resource issues an interrupt request to the interrupt
controller.

m Hardware Interrupt Operation

When two or more interrupt requests are received at the same time, the interrupt controller
compares the interrupt levels (IL) in ICR, selects the request at the highest level (the smallest IL
value), then reports that request to the CPU. If multiple requests are at the same level, the
interrupt controller selects the request with the lowest interrupt number. The relationship
between the interrupt requests and ICRs is determined by the hardware.

The CPU compares the received interrupt level and the ILM in the PS register. If the interrupt
level is smaller than the ILM value and the | bit of the PS register is set to 1, the CPU activates
the interrupt processing microcode after the currently executing instruction is completed. The
CPU references the ISE bit of the ICR of the interrupt controller at the beginning of the interrupt
processing microcode, checks that the ISE bit is 0 (interrupt), and activates the interrupt
processing body.

The interrupt processing body saves 12 bytes (PS, PC, PCB, DTB, ADB, DPR, and A) to the
memory area indicated by SSB and SSP, fetches three bytes of interrupt vector and loads them
onto PC and PCB, updates the ILM of PS to a level value of the received interrupt, sets the S
flag, then performs branch processing. As a result, the interrupt processing program defined by
the user is executed next.

Figure 3.5-1 illustrates the flow from the occurrence of a hardware interrupt until there is no
interrupt request in the interrupt processing program.

50

3.5.2

3.5 Hardware Interrupts

Occurrence and Release of Hardware Interrupt

Figure 3.5-1 shows the processing flow from occurrence of a hardware interrupt to
release of the interrupt request in an interrupt processing program.

m Occurrence and Release of Hardware Interrupt

F2MC-16 bus

Figure 3.5-1 Occurrence and Release of Hardware Interrup

Regjister file PS I ILM PS . Processor status
I . Interrupt enable flag
) \ \ ILM . Interrupt level mask register
Microcode IR - <= CheCk}7ComparatorJ IR . Instruction register
U U g
FZMC-16LX+CPU |
—> 10
Peripheral
p] 5] o
© —
= 0]
SRR
Enable FF— — g ol
1 | © >
AND 0 o | 5 | Interrupt
Cause Fi [3| E | controller

. An interrupt cause occurs in a peripheral.

. The interrupt enable bit in the peripheral is referenced. If interrupts are enabled, the

peripheral issues an interrupt request to the interrupt controller.

. Upon reception of the interrupt request, the interrupt controller determines the priority levels

of simultaneously requested interrupts. Then, the interrupt controller transfers the interrupt
level of the corresponding interrupt to the CPU.

. The CPU compares the interrupt level requested by the interrupt controller with the ILM bit of

the processor status register.

. If the comparison shows that the requested level is higher than the current interrupt

processing level, the | flag value of the same processor status register is checked.

. If the check in step 5. shows that the | flag indicates interrupt enable status, the requested

level is written to the ILM bit. Interrupt processing is performed as soon as the currently
executing instruction is completed, then control is transferred to the interrupt processing
routine.

. When the interrupt cause of step 1. is cleared by software in the user interrupt processing

routine, the interrupt request is completed.

The time required for the CPU to execute the interrupt processing in steps 6. and 7. is shown
below.

Interrupt start: 24 + 6 X (Table 3.3.2 machine cycles)

Interrupt return: 15 + 6 X (Table 3.3.2 machine cycles) RETI instruction

51

CHAPTER 3 INTERRUPTS

Table 3.5-1 Compensation Values for Interrupt Processing Cycle Count

Address indicated by the stack pointer

Cycle count compensation value

External area, 8-bit data bus +4
External area, even-numbered address +1
External area, odd-numbered address +4
Internal area, even-numbered address 0
Internal area, odd-numbered address +2

52

3.5 Hardware Interrupts

3.5.3 Multiple interrupts

As a special case, no hardware interrupt request can be accepted while data is being
written to the 1/0O area. This is intended to prevent the CPU from operating falsely
because of an interrupt request issued while an interrupt control register for a
resource is being updated.

If an interrupt occurs during interrupt processing, a higher-level interrupt is processed
first.

m Multiple Interrupts

The F2MC-16LX CPU supports multiple interrupts. If an interrupt of a higher level occurs while
another interrupt is being processed, control is transferred to the high-level interrupt after the
currently executing instruction is completed. After processing of the high-level interrupt is
completed, the original interrupt processing is resumed. An interrupt of the same or lower level
may be generated while another interrupt is being processed. If this happens, the new interrupt
request is suspended until the current interrupt processing is completed, unless the ILM value or
| flag is changed by an instruction. The extended intelligent 1/O service cannot be activated from
multiple sources; while an extended intelligent I/O service is being processed, all other interrupt
requests or extended intelligent 1/0O service requests are suspended.

Figure 3.5-2 shows the order of the registers saved in the stack.

Figure 3.5-2 Registers Saved in Stack

‘ Word (16 bits)
MSB LSB

H
? <— SSP (SSP value before interrupt)
AH
AL
DPR ADB
DPB PCB
PC
¢ PS <— SSP (SSP value after interrupt)
L

53

CHAPTER 3 INTERRUPTS

3.6 Software Interrupts

In response to execution of a special instruction, control is transferred from the
program currently executed by the CPU to the interrupt processing program defined by
the user. This is called the software interrupt function. A software interrupt occurs
always when the software interrupt instruction is executed.

m Software Interrupts

The CPU performs the following processing when a software interrupt occurs:

e Saves the values in the PC, PS, AH, AL, PCB, DTB, ADB, and DPR registers of the CPU to
the system stack.

» Sets | in the PS register. Interrupts are automatically disabled.

» Fetches the corresponding interrupt vector value, then branches to the processing indicated
by that value.

A software interrupt request issued by the INT instruction has no interrupt request or enable
flag. A software interrupt request is always issued by executing the INT instruction.

The INT instruction does not have an interrupt level. Therefore, the INT instruction does not
update ILM. The INT instruction clears the | flag to suspend subsequent interrupt requests.

m Structure of Software Interrupts

Software interrupts are handled within the CPU:

CPU.....Microcode: Interrupt processing step

m List of MB90590 Interrupt Vectors

Table D-1 lists the interrupt vectors of the MB90590 series.

As shown in Table D-1, software interrupts share the same interrupt vector area with hardware
interrupts.

For example, interrupt request number INT 13 is used for external interrupt #0 of a hardware
interrupt as well as for INT #13 of a software interrupt. Therefore, external interrupt #0 and INT
#13 call the same interrupt processing routine.

m Software Interrupt Operation

54

When the CPU fetches and executes the software interrupt instruction, the software interrupt
processing microcode is activated. The software interrupt processing microcode saves 12 bytes
(PS, PC, PCB, DTB, ADB, DPR, and A) to the memory area indicated by SSB and SSP. The
microcode then fetches three bytes of interrupt vector and loads them onto PC and PCB, resets
the | flag, and sets the S flag. Then, the microcode performs branch processing. As a result, the
interrupt processing program defined by the user application program is executed next.

Figure 3.6-1 illustrates the flow from the occurrence of a software interrupt until there is no
interrupt request in the interrupt processing program.

3.6 Software Interrupts

Figure 3.6-1 Occurrence and Release of Software Interrupt

O
Register file PS I
N I B unit -
‘ Microcode | |R] 1
F2MC-16LX*CPU ‘ ‘

s

RAM

7]

>

o]

(o]

<

O

S
o Save

—=

m Others

1. The software interrupt instruction is executed.

2. Special CPU

Instruction bus

corresponding to the software interrupt instruction.

PS Processor status
| . Interrupt enable flag
ILM Interrupt level mask registe

IR : |Instruction register
B unit: Bus interface unit

registers in the register file are saved according to the microcode

3. The interrupt processing is completed with the RETI instruction in the user interrupt

processing routine.

When the program bank register (PCB) is FFH, the CALLV instruction vector area overlaps the
table of the INT #vct8 instruction. When designing software, ensure that the CALLV instruction

does not use the same address as that of the #vct8 instruction.

Table D-2 shows the relationship of interrupt cause, interrupt vector, and interrupt control

register in the MB90590 series.

55

CHAPTER 3 INTERRUPTS

3.7 Extended Intelligent I/O Service (EI 20S)

The EI?0S function automatically transfers data between input and output and
memory. An interrupt processing program was conventionally used for such

processing, but EI 20S enables data transfer to be performed like DMA (direct memory
access).

m Extended Intelligent I/O Service (EI 20S)

EI?0S has the following advantages over the conventional method:
» The program size can be small because it is hot necessary to write a transfer program.

* No internal register is used for transfer, eliminating the need for register saving and
increasing the transfer speed.

» Transfer can be terminated from I/O, preventing unnecessary data from being transferred.
» The buffer address may either be incremented or left unupdated.

» The I/O register address may either be incremented or left unupdated.

At the end of EI?0OS, processing automatically branches to an interrupt processing routine after
the end condition is set. Thus, the user can identify the end condition.

To implement EI?OS, the hardware is distributed in two blocks. Each block has the following
registers and descriptors.

O Interrupt control register: EXxists in the interrupt controller and indicates the ISD address.

O Extended intelligent I/O service descriptor (ISD): Exists in RAM and holds the transfer
mode, I/O address, number of transfers, and buffer address.

Figure 3.7-1 outlines the extended intelligent I/O service.

56

m Structure

3.7 Extended Intelligent I/O Service (EI20S)

Figure 3.7-1 Outline of Extended Intelligent I/O Service

e« | /O register Peripheral

Interrupt request | O

Memory space
by IOA
— | /O register [ERTTR)
CPU

H 1D by ICS

0 0
by BAP

0b—-
Buffer g%:T
Note:

I Interrupt control regist+r

Interrupt controller

[0 1/O requests transfer.

[0 The interrupt controller selects the
descriptor.

[0 The transfer source and destination
are read from the descriptor.

[0 Data is transferred between I/0O and
memory.

The area that can be specified by I0A is between 000000y and O0OFFFF.

The area that can be specified by BAP is between 000000, and FFFFFF,.

The maximum transfer count that can be specified by DCT is 65,536.

EI20S is handled by the following four sections:

Internal resources

Interrupt enable and request bits: Used to control interrupt requests from resources.

Interrupt controller

ICR: Assigns interrupt levels, determines the priority levels of simultaneously requested
interrupts, and selects the EI0OS operation.

CPU

I and ILM: Used to compare the requested and current interrupt levels and to identify the

interrupt enable status

Microcode: EI?OS processing step
RAM

Descriptor: Describes the EI?OS transfer information.

57

CHAPTER 3 INTERRUPTS

3.7.1 Extended Intelligent I/O Service Descriptor (ISD)

The extended intelligent 1/0O service descriptor exists between 000100 y and 00017F 4 in
internal RAM, and consists of the following items:

« Data transfer control data

e Status data

» Buffer address pointer

m Extended Intelligent I/O Service Descriptor (ISD)

Figure 3.7-2 shows the configuration of the extended intelligent I/O service descriptor.

Figure 3.7-2 Extended Intelligent /O Service Descriptor Configuration

High-order 8 bits of data counter (DCTH) H
Low-order 8 bits of data counter (DCTL)

High-order 8 bits of I/O address pointer (IOAH)
Low-order 8 bits of /0O address pointer (IOAL)

EI20S status (ISCS)

High-order 8 bits of buffer address pointer (BAPH)
000100 +8x1CS Medium-order 8 bits of buffer address pointer (BAPM)
ISD start address—— | | ow-order 8 bits of buffer address pointer (BAPL) L

m Data Counter (DCT)

This is a 16-bit register that works as a counter corresponding to the number of data items

transferred. This counter is decremented by one before data transfer. EI20S is terminated when
this counter reaches 0. Figure 3.7-3 is a diagram of the data counter configuration.

Figure 3.7-3 Data Counter Configuration
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

DCT
B15| B14) B13| B12| B11|B10| B09|B08 | BO7| BO6 | BOS| BO4|BO3 |BO2 |BO1 BOO | (Undefined when reset)

m |/O Register Address Pointer (I0A)

This is a 16-bit register that indicates the low-order address (A15 to AO) of the buffer and I/O
register used for data transfer. The high-order address (A23 to A16) are all zeroes, and any I/O
between addresses 000000, and O0OFFFFy can be specified. Figure 3.7-4 is a diagram of the

IOA configuration.

58

3.7 Extended Intelligent I/O Service (EI20S)

Figure 3.7-4 1/0O Register Address Pointer Configuration
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

IOA
(Undefined when reset)

Al15| A14/A13|A12|A11|A10| AO9|AO08 | A07|A06 | AO5| A04|AO3|A02|A0L |ACO

m Buffer Address Pointer (BAP)

This 24-bit register holds the address used for the next EI?OS transfer. BAP exists for each

EI20S channel. Therefore, each EI?0OS channel can be used for transfer with anywhere in the

16-Mbyte space. If the BF bit of ISCS is set to '0' (update enabled), only the low-order 16 bits of
BAP changes and BAPH does not change.

59

CHAPTER 3 INTERRUPTS

3.7.2 EI®0S Status Register (ISCS)

This eight-bit register indicates the update direction (increment/decrement), transfer
data format (byte/word), and transfer direction of the buffer address pointer and the 1/0O
register address pointer. This register also indicates whether the buffer address
pointer or 1/O register address pointer is updated or fixed.

m EI20S Status Register (ISCS)
Figure 3.7-5 is a diagram of the ISCS configuration.

Figure 3.7-5 ISCS Configuration
7 6 5 4 3 2 1 0

ISCS
Reserved |Reserved |Reserved IF BW BF DIR SE (Undefined when reset)

* Always write 0 to bits 7 to 5 of ISCS.

Each bit is described below.

[bit4] IF: Specify whether the I/O register address pointer is updated or fixed.
0: The l/O register address pointer is updated after data transfer.
1: The l/O register address pointer is not updated after data transfer.

<Note> Only increment is allowed.

[bit 3] BW : Specify the transfer data length.
0: Byte
1: Word

[bit 2] BF : Specify whether the buffer address pointer is updated or fixed.
0: The buffer address pointer is updated after data transfer.
1: The buffer address pointer is not updated after data transfer.

<Note> Only the low-order 16 bits of the buffer address are updated. Only increment
is allowed.

[bit 1] DIR : Specify the data transfer direction.
0: /O --> Buffer
1: Buffer-->1/0

[bit 0] SE: Control the termination of the extended intelligent I/O service based on
resource requests.

0: The extended intelligent 1/0O service is not terminated by a resource request.

1: The extended intelligent I/O service is terminated by a resource request.

60

3.8 Operation Flow of and Procedure for Using the Extended Intelligent 1/O Service (EI20S)

3.8 Operation Flow of and Procedure for Using the Extended
Intelligent I/O Service (EI 20S)

Figure 3.8-1 is a diagram of the El 20S operation flow. Figure 3.8-2 is a diagram of the
EI20S use procedure.

m EI20S Operation Flow

Figure 3.8-1 EI20S Operation Flow

BAP . Buffer address pointer
1/0A : 1/O address pointer
ISD . El%0s descriptor
ISCS . EI?0S status
DCT . Data counter
Interrupt request issued . ISE . EI2OS enable bit
from internal resource . SlandSO : EI?OS end status

Interrupt sequence

YES
Data indicated by TOA Data indicated by BAP

(Data transfer) 0 (Data transfer)
Memory indicated by BAP Memory indicated by IOA

\
YES
IF=0 ‘

Reading ISD/ISCS

YES
nd request from resource

'

NO Upd I
pdate value -
depends on BW. Updatln‘g I0A ‘
YES
ﬁ: 0 ‘
NO
Update value Updating BAP
depends on BW. pda |n‘g ‘
‘ Decrementing DCT ‘
DCT =00 YES ‘
NO Setting S1 and SO to 01" Setting S1 and SO to 11"
Setting S1 and SO0 to '00 \L i

Clearing resource
interrupt request

CPU operation return

Clearing ISE to 'O’

l
l

Interrupt sequence

61

CHAPTER 3 INTERRUPTS

Processing by CPU

EI20S initialization

Figure 3.8-2 EI20S Use Flow

Processing by EI20S

JOB execution

(Interrupt request)

AND (ISE = 1)

Normal
termination

Data transfer

Re-setting of extended intelligent
I/O service
(Switching channels)

Processing data in buffer

The extended EI20S execution time for each flow is described below.

0 When data transfer continues (when the stop condition is not satisfied)
(Table 3.8-1 + Table 3.8-2) machine cycles

O When a stop request is issued from a resource

(36 + 6 X Table 3.D-2) machine cycles

0 When the counting is completed

(Table 3.8-1 + Table 3.8-2 + (21 + 6 X Table 3.D-2)) machine cycles

Table 3.8-1 Execution Time when the Extended El

20S Continues

ISCS SE bit Setto '0' Setto '1'
I/0O address pointer Fixed Updated Fixed Updated
Fixed 32 34 33 35
Buffer address pointer
Updated 34 36 35 37

Table 3.8-2 Data Transfer Compensation Values for Extended El

20S Execution Time

Internal access External access
I/O address pointer

B/E 0 B/E 8/0

Internal B/E 0 +2 +1 +4

access 0 +2 +4 +3 +6

Buffer address pointer

External B/E +1 +3 +2 +5

access 8/0 +4 +6 +5 +8

B: Byte data transfer

E: Even address word transfer

62

3.8 Operation Flow of and Procedure for Using the Extended Intelligent 1/O Service (EI20S)

8: 8-bit external bus word transfer

O: Odd address word transfer

63

CHAPTER 3 INTERRUPTS

3.9 Exceptions

The F?MC-16LX performs exception processing when the following event occurs:

m Execution of an Undefined Instruction

Exception processing is fundamentally the same as interrupt processing. When an exception is
detected between instructions, exception processing is performed separately from ordinary
processing. In general, exception processing is performed as a result of an unexpected
operation. Fujitsu recommends using exception processing only for debugging or for activating

emergency recovery software.

m Exception due to Execution of an Undefined Instruction

The F2MC-16LX handles all codes that are not defined in the instruction map as undefined
instructions. When an undefined instruction is executed, processing equivalent to the INT 10
software interrupt instruction is performed. Specifically, the AL, AH, DPR, DTB, ADB, PCB, PC,
and PS values are saved into the system stack, and processing branches to the routine
indicated by the interrupt number 10 vector. In addition, the | flag is cleared and the S flag is set.
The PC value saved in the stack is the address at which the undefined instruction is stored.
Processing can be restored by the RETI instruction, but is of no use, however, because the

same exception occurs again.

64

CHAPTER 4 DELAYD INTERRUPT

This chapter explains the functions and operations of the delayed interrupt.

4.1 Outline of Delayed Interrupt Module
4.2 Delayed Interrupt Register
4.3 Delayed Interrupt Operation

65

CHAPTER 4 DELAYD INTERRUPT

4.1 Outline of Delayed Interrupt Module

The delayed interrupt source module is used to generate interrupts for switching

tasks. Using this module, interrupt requests to the F 2MC-16LX CPU can be issued and
canceled by software.

m Block Diagram of Delayed Interrupt

Figure 4.1-1 is a block diagram of the delayed interrupt source module.

Figure 4.1-1 Block Diagram

F2MC-16 bus

Delayed interrupt cause issuance/cancellation decoder

Cause latch

m Notes on Operation

This lock is set by writing '1' to the corresponding bit of DIRR, and is cleared by writing '0' to the
same bit. Therefore, interrupt processing is reactivated immediately after control returns from
interrupt processing, unless the software is designed so that the cause of the interrupt is cleared
within the interrupt processing routine.

66

4.2 Delayed Interrupt Register

4.2 Delayed Interrupt Register

DIRR controls issuance and cancellation of delayed interrupt requests. Writing "1" to
this register issues a delayed interrupt request, and writing "0" cancels the delayed
interrupt request. Upon a reset, the request is canceled.

m Delayed Interrupt Cause Issuance/Cancellation Register (DIRR: Delayed Interrupt Request Register)

In DIRR, either "0" or "1" can be written to the reserved bit area. However, it is recommended
that a set bit or clear bit instruction be used to access this register for future expansions.

15 14 13 12 11 10 9 8
DIRR
\ddress: 00009F - - - - i } i} rRo | — 0 E
R/W

67

CHAPTER 4 DELAYD INTERRUPT

4.3 Delayed Interrupt Operation

When the CPU writes "1" to the relevant bit of DIRR by software, the request latch in
the delayed interrupt source module is set and an interrupt request is issued to the
interrupt controller.

m Delayed Interrupt Occurrence

68

When the CPU writes '1' to the relevant bit of DIRR by software, the request latch in the delayed
interrupt source module is set and an interrupt request is issued to the interrupt controller. If this
interrupt has the highest priority or if there is no other interrupt request, the interrupt controller

issues an interrupt request to the FZMC-16LX CPU. The FZMC-16LX CPU compares the ILM bit
of its internal CCR register and the interrupt request, and starts the hardware interrupt
processing microprogram as soon as the current instruction is completed if the interrupt level of
the request is higher than that of the ILM bit. The interrupt processing routine for this interrupt is
thus executed.

Figure 4.3-1 Delayed Interrupt Issuance

Delayed interrupt source module VVRI_I_EInterrupt controller F2MC-16LX CPU
Other request ‘
I
IL
DDIR 4’7 ILM
R, NTA

CHAPTER S5 CLOCK AND RESET

This chapter explains the functions and operations of clocks and resets.

5.1 Clock Generator
5.2 Reset Cause Occurrence

5.3 Reset Causes

69

CHAPTER 5 CLOCK AND RESET

5.1

Clock Generator

The clock generator controls internal clock operation, including such functions as
sleep, timer, stop, and PLL multiplication. This internal clock is called the machine
clock, and one cycle of the machine clock is called a machine cycle. A clock based on
the source oscillation is called the main clock, and a clock based on the internal VCO
oscillation is called the PLL clock.

m Notes on Clock Generator

70

Reset

Interrupt
HSTX

Transition t
stop mode

Selecting the oscillation
stabilization wait time

When the operating voltage is 5 V, the OSC source oscillation can be between 3 MHz and 16
MHz. The highest operating frequency for the CPU and peripheral resource circuits is 16 MHz,
however. Normal operation is not guaranteed if a multiplication factor resulting in a higher
frequency than 16 MHz is specified. For example, if the source oscillation is 16 MHz, only 1 can

be specified as the multiplication factor.

The lowest operating frequency of the VCO oscillation is 4 MHz, and an oscillation below 4 MHz

must not be specified.

Figure 5.1-1 is a block diagram of the clock generator circuit.

Figure 5.1-1 Clock Generator Circuit Block Diagram

S Q——) Machine clock
S Q- Transition to))
timeror =~ |p Selecting the machine clock
sleep mode
R | E—
@T s [
R 1 2\ 3 4
} PLL multiplication ‘
O
O
O - -
Time base timer
\ L1
—B |12 | 12048) | VAt 14 |4 18]
X0 XL l A

Selectmg the watch- d
timer interval

Vionitoring
timer

Watch-dog reset

5.2 Reset Cause Occurrence

5.2 Reset Cause Occurrence

When a reset cause occurs, F 2MC-16LX terminates the currently executing processing
and waits for reset release. A reset is caused by the following factors:

m Reset Cause Occurrence
A reset is caused by the following factors:
e Power-on reset
e Hardware standby release
« Watch-dog timer overflow
e External reset request via RSTX pin
« Reset request by software

While an external bus is used, the address generated by the device is undefined when a reset
cause occurs. All external bus access signals, including RDX and WRX, become inactive.

m Operation after Reset Release

When a reset cause is removed, the F?MC-16LX immediately outputs the address in which the
reset vector is stored, then fetches the reset vector and mode data. The reset vector and mode
data are assigned to the four bytes between FFFFDC and FFFFDFy. After reset is released,

the reset vector and mode data are transferred to the registers by the hardware as described in
Figure 5.2-1.

Use the mode pin to specify whether to read the reset vector and mode data from internal ROM
or from external memory. When the mode pin is set to external vector mode, the F?MC-16LX

reads the reset vector and mode data from external memory. When using the F?MC-16LX in
single chip mode or internal ROM external bus mode, Fujitsu recommends specifying internal
vector mode.

The bus mode after the reset vector and mode data are read is specified by the mode data.

71

CHAPTER 5 CLOCK AND RESET

72

Figure 5.2-1 Source and Destination of Reset Vector and Mode Data

FFFFDFy
FFFFDEy
FFFFDD

FFFFDCH

Note:

For MB90F594, the reset vector and mode data have predetermined values by the hard-

—® F2MC-16LX CPU @

® Memory space @

Mode data }7

Reset vector bits 23 to 16 wﬁi

Reset vector bits 15to 8

Reset vector bits 7to 0

r Mode }

Register

Micro ROM

Reset sequence

PCB}

wired logic.

PCJ

For more information, refer to "Reset Vector Addesses in Flash Memory".

5.3 Reset Causes

5.3 Reset Causes

Table 5.3-1 lists the five reset causes. The machine clock and watch-dog function are

initialized differently for each reset cause.

The reset cause register indicates the reset cause.

m Reset Causes

Table 5.3-1 Reset Causes

Reset Cause Machine clock Watch-dog timer Qgcnlgtlon .
stabilization wait
Power-on When the power is Main clock Stop Yes
turned on
Hardware standby | 'L'level inputto HSTX Main clock Stop Yes
pin
Watch-dog timer Watch-dog timer Main clock Stop Yes
overflow
External pin ‘L' level input to RSTX Previous status Previous status No
pin maintained maintained
Software '0" written to RST bit of Previous status Previous status No
STBYC maintained maintained

* In stop or hardware standby mode, a reset input allows for oscillation stabilization time
regardless of the reset cause.

* The oscillation stabilization time for a power-on reset is fixed to

218

cycles of source

oscillation. For other types of reset, the oscillation stabilization wait time is determined by CS1
and CSO of the clock selection register.

As shown in Figure 5.3-1, each reset cause has a corresponding flip-flop. The contents of the
flip-flop can be obtained by reading the watch-dog timer control register. If identifying the reset
cause is requiredafter the reset is released, ensure that the value read from the watch-dog timer
control register is processed by software and processing branches to an appropriate program.
Figure 5.3-2 is a diagram of the watch-dog timer control register.

73

CHAPTER 5 CLOCK AND RESET

Figure 5.3-1 Reset Cause bit Block Diagram

———————————

———————————

HSTX pin RSTX pin
HSTX=L -H RSTX=L Without periodic clear
Power on RST bit set
Hardware standby External reset ; ;
Power-on : i Watch-dog timer STBYC.RST bit
detection circuit releagﬁcclijtiettectlon requec?:ctiijtiettectlon reset detection circuit | | write detection circuit
v y | L v \
R R S R S R S R WTC register
FIF FIF FIF FIF FIF Delay
Q Q Q Q Q circuit

WTC register read

F2MC-16L internal bus

Address: 0000A8

Figure 5.3-2 WDTC (Watch-Dog Timer Control) Register

7 6 5 4 3 2 1 0 - Bit No.
PONR| STBR | WRST| ERST| SRST| WTE | WT1 | WTO wDTC

Read/write — (R} (R) (R) R ® W W W

Initial value = (X) ~ (X) (X) x X X))

74

When there are multiple reset causes, the corresponding reset cause bits in the watch-dog timer
control register are set. Therefore, if an external reset request and a watch-dog reset occur at

the same time, both the ERST and WRST bits are set to 1.

A power-on reset is an exception; while the PONR bit is 1, the values of other bits do not
indicate the correct reset causes. Therefore, design software so that the other reset cause bit

values are ignored while the PONR bit is set to 1.

Table 5.3-2 Reset Cause Bits

Reset cause PONR STBR WRST ERST SRST
Power-on 1 - - - -
Hardware standby * 1 * * *
Watch-dog timer * * 1 * *
External pin * * * 1 *
RST bit * * * * 1

(An asterisk (*) in the table means that the previous value is maintained.)

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

This chapter explains the functions and operations of the low-power control circuits.

6.1 Outline of Low-Power Control Circuit
6.2 Registers

6.3 Low-Power Mode Operation

6.4 Intermittent CPU Operation

6.5 Switching Machine Clocks

6.6 Status Transition of Clock Selection

75

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

6.1 Outline of Low-Power Control Circuit

The MB90590 Series supports various operation modes to help reduce the power
dissipation.

The operation modes include PLL clock mode, PLL sleep mode, timer mode, main
clock mode, main sleep mode, stop mode, and hardware standby mode. Modes other
than PLL clock mode are classified as low-power modes.

m Outline of Lower-power Control Circuit

In main clock mode or main sleep mode, the main clock (OSC oscillation clock) is used. The
operation clock is generated by dividing the main clock by two, and the PLL clock (VCO
oscillation clock) is stopped.

In PLL sleep mode or main sleep mode, only the CPU operation clock is stopped. All other
clocks are in operation.

In timer mode, only the time base timer is in operation.In stop mode or hardware standby mode,
oscillation is stopped. The data can be maintained at the lowest power consumption possible.

The intermittent CPU operation function is used to intermittently enable the clock supplied to the
CPU when a register, internal memory, internal resource, or external bus is accessed. CPU
execution is slowed while high-speed clock is supplied to the internal resources, enabling
processing at low power consumption.

The PLL clock multiplication factor can be selected from 1, 2, 3, and 4 by setting the CS1 and
CSO bits.

The oscillation stabilization wait time for the main clock upon release of stop or hardware
standby mode can be set by the WS1 and WSO bits.

76

m Block Diagram

6.1 Outline of Low-Power Control Circuit

Figure 6.1-1 Low-power Control Circuit and Clock Generator

CKSCR Main clock
s ain cloc
MCM PLL multiplication (OSC oscillation)
MCS 1 2 3 4 |12
CPU clock CPU clock
CKSCR generation - cloc
cs1]
CPU clock selector
CS0 0/9/17/33 intermittent
cycle selection
3
o LPMCR
g Intermittent CPU
@) CG1 operation function
= Cycle count selection
U CGO circuit
LPMCR Peripheral clock L~ Peripheral
generation clock
SLP Standby control circuit
STP
RSTRelease chSti-\r/ation
" HSTX pin |
Interrupt
request or RST
CKSCR -
Oscillation 210 Clock input
OscC1 stabilization 213 Time base timer - Time base
wait time 215 clock
0OSCo selector 217 212 514 516 519
LPMCR
SPL Pin high-impedance control Pin HI-Z
circuit
LPMCR Internal reset L RSTXpln ;
RST generation circuit Internal RST
To watch-dog
timer
WDGRST

*: 218 at power-on

77

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

6.2 Registers

A low-power control circuit has the following two registers:
» Low-power mode control register (LPMCR)
» Clock selection register (CKSCR)

m Low Power Mode Control Register

Address: 7 6 5 4 3 2 1 0 <= Bit No.
0000AQ, STP SLP SPL RST |Reserved| CG1 CGO0 Reserved | LPMCR
Readiwrite — (w) (W) (RW) W) () RW) (RW)

Initial value == (0 0) 0) (1 (1) ©0) (0) (8
Clock selection register

Address: 15 14 13 12 11 10 9 8 <= Bit No.
0000A1 Reserved MCM ws1 WSO |Reserved MCS cs1 CS0 CKSCR

Readjwrite— () Ry (RW) (RW) () RW) RW) (RW)

Initial value=> (1) (1) (1) 1) 1) 1) (0) (0)

78

6.2 Registers

6.2.1 Low Power Mode Control Register (LPMCR)

In association with the clock selection register, the low-power mode control register
sets various operation modes to reduce power consumption.

m Low Power Mode Control Register (LPMCR)

Address: 7 6 5 4 3 2 1 0 <= Bit No.
0000A0 STP SLP SPL RST |Reserved| CG1 CGO |Reserved| LPMCR
Readfwrite — () (W) (RIW) (W)) (RW) (RW) o)

Initial value == () (0) (0) 1) 1) (0) 0) 0)
[bit 7] STP

Writing '1' to this bit starts the timer mode (CKSCR.MCS=0) or stop mode (CKSCR.MCS=1).
Writing '0' performs no operation. This bit is cleared to '0' upon a reset, timer mode release,
or stop mode release. This is a write-only bit. '0' is always read from this bit.

[bit 6] SLP

Writing '1' to this bit starts sleep mode. Writing '0' performs no operation. This bit is cleared
to '0" upon a reset, clock release, or stop release.

Writing '1' to the STP and SLP bits simultaneously starts clock or stop mode. This is a write-
only bit. '0" is always read from this bit.

[bit 5] SPL

When '0' is written to this bit, the external pin level in timer mode or stop mode is maintained.
When '1' is written to this bit, the external pin in clock or stop mode is set to high impedance.
This bit is cleared to '0' upon a reset. This bit is readable and writable.

It is important to note that when SPL is set to 0 and the microcontroller is in the stop mode
(STP=1 and MCS=1), all inputs must be provided with stable digital values. Otherwise it
results in current consumption at the input buffers. (A/D analog inputs are exception)

Generally it is recommended to set the SPL bit to 1 when the microcontroller is in the stop
mode inorder to disable all input buffers.

[bit 4] RST

Writing '0' to this bit generates internal reset signals for three machine cycles. Writing '1'
performs no operation. '1' is always read from this bit.

[bits 2 and 1] CG1 and CGO

These bits are used to set the clock pause cycle count during intermittent CPU operation.

These bits are initialized to '00' upon a reset by power-on, hardware standby, or watch-dog.
These bits are not initialized by any other type of reset. These bits are readable and writable.

The intermittent CPU operation function pauses the clock to the CPU when a register,
internal memory, internal resource, or external bus is accessed, thus delaying the activation
of the internal bus cycle. CPU execution is slowed while high-speed clock is supplied to an

79

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

80

internal resource, enabling processing at low power consumption.

Table 6.2-1 CG Bit Setting

CG1 CGO CPU clock pause cycle count
0 0 0 cycle (CPU clock = Resource clock)
0 1 9 cycles (CPU clock: Resource clock = 1:3 to 4 approx.)
1 0 17 cycles (CPU clock: Resource clock = 1:5 to 6 approx.)
1 1 33 cycles (CPU clock: Resource clock = 1:9 to 10 approx.)

6.2 Registers

6.2.2 Clock Selection Register (CKSCR)

The clock selection register sets and controls the CPU machine clock, and sets the
oscillation stabilization wait time when power is turned on or oscillation is restored.

m Clock Selection Register (CKSCR)

Address: 15 14 13 12 11 10 9 8 <= Bit No.
0000A1 H Reserved) MCM WS1 WSO |Reserved| MCS Cs1 CSo0 . CKSCR
peadiwrie — () R RW) (RW) 0 RW RW) (RW)
€ &) &) &) () &) ©) ©)
[bit 14] MCM

This bit indicates whether the main clock or PLL clock is selected as the machine clock. ‘0’
indicates that the PLL clock is selected, and '1' indicates that the main clock is selected.
When MCS=0 and MCM=1, the system is waiting for the PLL clock oscillation to stabilize.

The PLL clock oscillation stabilization wait time is fixed to 212 main clock cycles.
[bits 13 and 12] WS1 and WSO

These bits are used to set the main clock oscillation stabilization wait time upon release of
stop or hardware standby mode.

These bits are initialized to '11' upon a power-on reset. These bits are not initialized by any
other type of reset. These bits are readable and writable.

Table 6.2-2 WS Bit Setting

WS1 WSO Oscillation stabilization wait time (at 4 MHz source oscillation)
0 0 Approx. 256ps (210 counts of source oscillation)
0 1 Approx. 2.05 ms (212 counts of source oscillation)
1 0 Approx. 8.19 ms (21° counts of source oscillation)
1 1 Approx. 32.77 ms (217 counts of source oscillation)

*. Approx. 65.54ms (218 counts of source oscillation) at power-on.

More stabilization time of 217 is added to the default duration only upon with the power-on
reset. Therefor, after power-on there will be about 65.54ms of the stabilization time.

[bit 10] MCS

This bit is used to select the main clock or PLL clock as the machine clock. Writing '0' selects
the PLL clock and writing '1' selects the main clock. When this bit is updated from '1' to '0,’
the PLL clock oscillation stabilization wait period is created by automatically clearing the time
base timer and the TBOF bit of the time base timer control register. The oscillation
stabilization wait time for the PLL clock is fixed to 212 main clock cycles. (The oscillation wait
time is about 2 ms at 4 MHz source oscillation.)

81

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

82

When the main clock is selected, the operation clock is generated by dividing the main clock
by two. (The operation clock is 2 MHz at 4 MHz source oscillation.)

This bit is initialized to '1' by the power-on reset, hardware standby, or watch-dog reset. But it
is not initialized by the external reset from the RSTX pin or by the software reset (the RST bit
in the LPMCR reqister).

Note:

When updating the MCS bit from '1' to '0,' ensure that the time base timer interrupt is masked
by the TBIE bit or the ILM bit of the CPU.

[bits 9 and 8] CS1 and CSO

These bits are used to select the multiplication factor of the PLL clock.

These bits are initialized to '00" upon a power-on reset. These bits are not initialized by any
other type of reset.

Write is disabled when '0" is written to the MCS bit. To update the CS bit, set '1' in the MCS
bit (to start main clock mode).

These bits are readable and writable.

Table 6.2-3 CS Bit Setting

Cs1 CS0 Machine clock (at 4 MHz source oscillation)
0 0 4 MHz (Operation frequency = OSC oscillation frequency)
0 1 8 MHz (Operation frequency = OSC oscillation frequency *2)
1 0 12 MHz (Operation frequency = OSC oscillation frequency *3)
1 1 16 MHz (Operation frequency = OSC oscillation frequency *4)

Note:

When the operating voltage is 5 V, the OSC source oscillation can be between 3 MHz and
16 MHz. Since the highest operating frequency for the CPU and peripheral resource circuits
is 16 MHz, however, normal operation is not guaranteed if a multiplication factor resulting in
a higher frequency than 16 MHz is specified. For example, if the source oscillation is 16
MHz, only 1 can be specified as the multiplication factor.

The lowest operating frequency of the VCO oscillation is 4 MHz, and an oscillation below 4
MHz must not be specified.

6.3

Low-Power Mode Operation

6.3 Low-Power Mode Operation

Table 6.3-1 lists the chip status in each operation mode.

m Low-power Mode Operation

Table 6.3-1 Low-power mode status

Transition Oscillation PLL Regulator CPU Watch Other Pin Release
condition & T.B.T Timer Peripheral method
Main MCS=1 Operat- Stopped Operat- Stopped | Operat- Operat- Operat- Reset
Sleep SLP=1 |ng |ng |ng |ng |ng Interrupt
PLL MCS=0 Operat- Operat- Operat- Stopped | Operat- Operat- Operat- Reset
Sleep SLP=1 |ng |ng |ng |ng |ng |ng Interrupt
Timer MCS=0 Operat- Stopped Operat- Stopped Operat- Stopped Held Reset
(SPLZO) STP=1 |ng |ng |ng Interrupt
Timer MCS=0 Operat- Stopped Operat- Stopped Operat- Stopped HI-Z Reset
(SPL:l) STP=1 |ng |ng |ng Interrupt
Stop MCS=1 Stopped Stopped Stopped Stopped | Stopped Stopped Held* Reset
(SPL=0) STP=1 Interrupt
Stop MCS=1 Stopped Stopped Stopped Stopped | Stopped Stopped HI-z Reset
(SPL=1) STP=1 Interrupt
Hardwar HSTX=L Stopped Stopped Stopped Stopped | Stopped Stopped HI-Z HSTX=
e H
standby

Note: When the SPL is set to 0 in the stop mode, all inputs must be provided with stable digital
values. Otherwise it results in current consumption at the input buffers. (A/D analog inputs are
exception)

83

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

m Note: Low-power Mode Control Register Access

84

Writing data to the low-power mode control register starts low-power mode (stop or sleep
mode). In this case, use an instruction shown in Table 6.3-2. If any other instruction is used to
start low-power mode, misoperation may result. Any instruction can be used to control functions
other than transition of the low-power mode control register to low-power mode.

To write data to the low-power mode control register in word length, ensure that the data is
written to an even-number address. If low-power mode is started by writing data to an odd-
number address, misoperation may result.

Table 6.3-2 List of Instructions Used for Transition to Low-power Mode

MOQV io,#imm8 MOQV dir,#imm8 MOV eam,#imm8 MOV eam,#immRi
MOV io,A MOV dir,A MOV addr16,A MOV eam,A

MOV RLi+dip8,A MOVP addr24,A

MOVW io,#imm16 MOVW dir,#imm16 MOVW eam #imm16 MOVW eam,RWi
MOVW io,A MOVW dir,A MOVW addr16,A MOVW eam,A

MOVW RLi+dip8,A MOPW addr24,A

SETB io:bp SETB dir:bp SETB addr16:bp

6.3 Low-Power Mode Operation

6.3.1 Sleep Mode

In sleep mode, only the clock supplied to the CPU is stopped. As a result, the CPU
terminates while peripheral circuits keep operating.

m Transition to Sleep Mode

The standby control circuit is set in sleep mode by writing '1' to the SLP bit and '0' to the STP bit
of the low power mode control register. In sleep mode, only the clock supplied to the CPU is
stopped. The CPU stops, and the peripheral circuits continue operation.

If an interrupt request has been issued when '1' is written to the SLP bit, the standby control
circuit does not enter sleep mode. Therefore, the CPU executes the next instruction if the
interrupt cannot be accepted, or immediately branches to the interrupt processing routine if the
interrupt can be accepted.

In sleep mode, the values of special registers such as the accumulator and the internal RAM are
maintained. The external bus hold function works even in sleep mode. If there is a hold request,
the hold status is entered.

m Releasing Sleep Mode

The standby control circuit releases sleep mode in the event of a reset input or an interrupt. If
sleep mode is released by a reset, the reset status takes effect after sleep mode is released.

If a peripheral circuit or similar issues an interrupt request of a higher interrupt level than 7 in
sleep mode, the standby control circuit releases sleep mode. After sleep mode is released,
processing is handled as normal interrupt processing. The CPU executes interrupt processing if
the interrupt can be accepted according to the | flag, ILM, and the interrupt control register
(ICR). If the interrupt cannot be accepted, processing continues from the instruction following
the instruction that was being executed before the transition to sleep mode.

Note:

Usually, interrupt processing is started after the instruction following the instruction that was
executed during the transition to sleep mode. If, however, transition to sleep mode and
acceptance of the external bus hold request are simultaneous, interrupt processing may start
before the next instruction is executed.

85

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

6.3.2 Timer Mode

Timer mode stops operations other than the source oscillation, time base timer, and
watch-dog timer, resulting in almost all functions of the chip being stopped.

m Transition to Timer Mode

The standby control circuit is set to timer mode when the MCS bit of the clock selection register
is '0' and '1' is written to the STP bit of the low-power mode control register. In timer mode, all
operations are stopped except for the source oscillation and time base timer. Most functions of
the chip stop.

Using the SPL bit of the low-power mode control register, the I/O pin may be maintained at the
immediately preceding status or at high impedance in timer mode.

If an interrupt request has been issued when '1' is written to the STP bit, the standby control
circuit does not enter timer mode.

In timer mode, the values of special registers such as the accumulator and the internal RAM are
maintained. The external bus hold function is disabled in timer mode. No hold request is
accepted. If a hold request is input during transition to timer mode, the HAKX signal may not
become ‘L' while the bus is Hi-Z.

m Releasing Timer Mode

86

The standby control circuit releases timer mode in the event of a reset input or an interrupt. If
timer mode is released by a reset, the reset status takes effect after timer mode is released.

To return from timer mode, the standby control circuit initially releases timer mode, then enters
the PLL clock oscillation stabilization wait state. The MCS bit is not cleared by an external reset,
so the reset sequence is performed using the main clock if the reset period is shorter than the
PLL clock oscillation stabilization wait period. The PLL clock oscillation stabilization wait period

is 213 to 3*213 main clock cycles depending on the time base timer status, because the time
base timer is not cleared.

If a peripheral circuit or similar issues an interrupt request of a higher interrupt level than 7 in
timer mode, the standby control circuit releases timer mode. After the timer mode is released,
processing is handled as normal interrupt processing. The CPU executes interrupt processing if
the interrupt can be accepted according to the | flag, ILM, and the interrupt control register
(ICR). If the interrupt cannot be accepted, processing continues from the instruction following
the instruction that was being executed during transition to timer mode.

Note:

Usually, interrupt processing is started after the instruction following the instruction that was
being executed during the transition to timer mode. If, however, transition to timer mode and
acceptance of the external bus hold request are simultaneous, interrupt processing may start
before the next instruction is executed.

The standby control circuit enters PLL clock oscillation stabilization wait status when timer
mode is released. If the PLL clock is not used, write '1' to the MCS bit by an instruction
immediately following the reset or interrupt.

6.3 Low-Power Mode Operation

6.3.3 Stop Mode

Stop mode stops the source oscillation, resulting in all functions of the chip being
stopped. Data can be maintained at the lowest power consumption possible.

m Transition to Stop Mode

The standby control circuit is set to stop mode when the MCS bit of the clock selection register
is '1'and '1' is written to the STP bit of the low-power mode control register. In stop mode, the
source oscillation is stopped and all functions of the chip are stopped. Therefore, data can be
maintained at the lowest power consumption possible.

Using the SPL bit of the LPMCR, the 1/O pins can be maintained at the immediately preceding
status or at high impedance in stop mode. When the SPL bit is set to 0, all inputs must be
provided with stable digital values. Otherwise it results in current consumption at the input
buffers. (A/D analog inputs are exception)

If an interrupt request has been issued when '1' is written to the STP bit, the standby control
circuit does not enter the stop mode.

In stop mode, the values of special registers such as the accumulator and the internal RAM are
maintained. The external bus hold function is disabled in stop mode. No hold request is
accepted. If a hold request is input during the transition to stop mode, the HAKX signal may not
become 'L' while the bus is Hi-Z.

m Releasing Stop Mode

The standby control circuit releases stop mode in the event of a reset input or an interrupt. If
stop mode is released by a reset, the reset status takes effect after stop mode is released.

To return from stop mode, the standby control circuit initially enters the PLL clock oscillation
stabilization wait status, and then releases stop mode. Even if stop mode is released by a reset,
the reset sequence is executed after the oscillation stabilization wait period.

If a peripheral circuit or similar issues an interrupt request of a higher interrupt level than 7 in
stop mode, the standby control circuit releases stop mode. After stop mode is released, the
processing is handled as normal interrupt processing after the main clock oscillation stabilization
wait period specified by the WS1 and WSO bits of CKSCR. The CPU executes interrupt
processing if the interrupt can be accepted according to the | flag, ILM, and the interrupt control
register (ICR). If the interrupt cannot be accepted, processing continues from the instruction
following the instruction that was being executed during transition to stop mode.

m Setting the Oscillation Stabilization Wait Time

Use the WS1 and WSO bits to specify the oscillation stabilization wait time when stop mode or
hardware standby mode is released. Specify the oscillation stabilization wait time according to
the types and characteristics of the oscillator circuit and oscillator device connected to the X0
and X1 pins.

These bits are not initialized upon a reset, except for a power-on reset. Upon a power-on reset,
these bits are initialized to '11." Therefore, at power-on, the oscillation stabilization wait time is

about 217 counts of source oscillation.
Note:

Usually, interrupt processing is started after the instruction following the instruction that was
being executed during the transition to stop mode. If, however, transition to stop mode and

87

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

acceptance of the external bus hold request are simultaneous, interrupt processing may start
before the next instruction is executed.

88

6.3 Low-Power Mode Operation

6.3.4 Hardware Standby Mode

In the hardware standby mode, oscillation is stopped and all 1/0O pins are set to high
impedance while the HSTX pin is at "L" level, regardless of other statuses (including

reset).

m Transition to Hardware Standby Mode

The standby control circuit can be set in hardware standby mode from any status by setting the
HSTX pin at 'L' level. In hardware standby mode, oscillation is stopped and all I/O pins are set to
high impedance while the HSTX pin is at 'L' level, regardless of other status including reset.

In hardware standby mode, the internal RAM contents are maintained but the special registers
such as the accumulator are initialized.

m Releasing Hardware Standby Mode

Hardware standby mode can be released only by the HSTX pin. When the HSTX pin is set at 'H'
level, the standby control circuit releases hardware standby mode, enables the internal reset
signal, and enters oscillation stabilization wait status. After the oscillation stabilization wait
period, the standby control circuit releases the internal reset, and consequently the CPU starts
execution from the reset sequence.

m Setting the Oscillation Stabilization Wait time

Use the WS1 and WSO bits to specify the oscillation stabilization wait time when stop mode or
hardware standby mode is released. Specify the oscillation stabilization wait time according to
the types and characteristics of the oscillator circuit and oscillator device connected to the X0
and X1 pins.

These bits are not initialized upon a reset, except for a power-on reset. Upon a power-on reset,
these bits are initialized to '11." Therefore, at power-on, the oscillation stabilization wait time is

about 217 counts of source oscillation.

89

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

6.4 Intermittent CPU Operation

The intermittent CPU operation function pauses the clock supplied to the CPU when a
register, internal memory (ROM, RAM, 1/O, or resource), or external bus is accessed,
delaying the activation of the internal bus cycle. The CPU execution speed is
decreased while a high-speed clock is supplied to internal resources, thus enabling
processing at low power consumption.

m Intermittent CPU Operation

Figure 6.4-1 is a diagram of intermittent CPU operation. For intermittent CPU operation, the
CG1 and CGO bits are used to select the cycle count for clock pausing.

The external bus operation itself is performed using the same clock as that used for the
resources.

An instruction execution time using the intermittent CPU operation function can be obtained by
adding a compensation value to the ordinary execution time. The compensation value is
obtained by multiplying the number of accesses to a register, internal memory, internal
resource, or external bus by the cycle count for pausing.

Figure 6.4-1 Intermittent CPU Operation

CPU clock

Intermittent operation pause cycle I Internal bus activation cycle

90

6.5 Switching Machine Clocks

6.5 Switching Machine Clocks

Writing to the MCS bit in the CKSCR register switches the machine clock from the
main clock to the PLL clock.

m Switching between Main Clock and PLL Clock

Write data to the MCS bit of the CKSCR register to switch between the main clock and PLL
clock.

When the MCS bit is changed from '1' to '0,' the PLL clock takes over the main clock after the
PLL clock oscillation stabilization wait time (212 machine clock cycles).

When the MCS bit is changed from '0' to '1,' the main clock takes over the PLL clock when the
edges of the PLL and main clocks match (after about 1 to 8 PLL clock cycles).

Writing to the MCS bit does not change the machine clock immediately. To manipulate a
resource that depends on the machine clock, always reference the MCM bit before hand to
check that the machine clock has been switched.

Initializing the Machine Clock

The MCS bit is not initialized by a reset using an external pin or RST bit. The MCS bit is
initialized to '1' by any other reset.

91

CHAPTER 6 LOW-POWER CONTORL CIRCUIT

6.6 Status Transition of Clock Selection

The oscillation stabilization wait time for the PLL clock is fixed at 2 13 main clock

cycles. (The oscillation wait time is about 2 ms at a source oscillation of 4 MHz.)

m Status Transition of Clock Selection

Figure 6.6-1 is a diagram of status transition of clock selection.

Figure 6.6-1 Status Transition of Clock Selection

Power on

i

MCS bit clear

End of PLL clock oscillation stabilization wait & CS1/0=00

End of PLL clock oscillation stabilization wait & CS1/0=01

End of PLL clock oscillation stabilization wait & CS1/0=10

End of PLL clock oscillation stabilization wait & CS1/0=11
MCS bit set (including hardware standby and watch-dog reset)
Synchronization timing between PLL clock and main clock

Oooooooog

92

0
Main Main PLLx
MCS =1 MCS =0 0
MCM =1 MCM =1
CS1/0=xx CS1/0=xx 0
. PLL1
PLLO Main 0 multiplication
MCS =1 MCS =0
MCM =0 MCM =0
CS1/0=00 CS1/0=00
_ PLL2
PLL20 Main multiplication
MCS=1 MCS =0
MCM =0 MCM =0
CS1/0=01 CS1/0=01
_ PLL3
PLL30 Main multiplication
MCS =1 MCS =0
MCM =0 O MCM =0
CS1/0=10 Cs1/0=10
. PLL4
PLLAL Main multiplication
MCS =1 MCS =0
MCM =0 O MCM =0
CS1/0=11 CS1/0=11

CHAPTER 7 MEMORY ACCESS MODES

This chapter explains the functions and operations of the memory access modes.

7.1 Outline of Memory Access Modes
7.2 Mode Pins
7.3 Mode Data

93

CHAPTER 7 MEMORY ACCESS MODES

7.1

Outline of Memory Access Modes

In the F2MC-16LX, the following three memory access modes are provided for each of
the access methods, access areas, and tests:
e Operation mode

Bus mode
Access mode

m Memory Access Modes

94

H Operation mode H H Bus mode H H Access mode H
{ Single chip External data bus length
ORUN —— | Internal ROM, external bus [8 bits]
EPROM write External ROM, external bus 16 bits

Test functions

For the MB90590 Series, the external bus function is not supported. Therefor the following part
of this document is not fully supported. In user applications, please use the MB90590 Series in
the single chip mode.

To set the MB90590 Series into the signle chip mode, the mode inputs (MD2 to 0) should be
"011" and the most significant two bits of the mode data (M1 and MO) should be "00".

Operation mode

Operation mode means the mode for controlling the device operation status. The operation
mode is specified by the MDx mode setting pin and the Ex bit in mode data. By selecting an
operation mode, normal operation, internal test program activation, or special test function
activation can be performed.

Bus mode

Bus mode means the mode for controlling the internal ROM operation and external access
function. The bus mode is specified by the MDx mode setting pin and the Mx bit in mode data.
The MDx mode setting pin specifies the bus mode for reading the reset vector and mode data,
and the Mx bit in mode data specifies the bus mode for normal operation.

Access mode

Access mode means the mode for controlling the external data bus width. The access mode is
specified by the MDx mode setting pin and the SO bit in mode data. By selecting an access
mode, an 8- or 16-bit external data bus is specified.

7.2 Mode Pins

7.2 Mode Pins

Table 7.2-1 describes the operations specified by combinations of the MD2 to MDO
external pins.

m Mode pins

Table 7.2-1 Mode Pins and Modes

. . Reset External
Mode pin setting Mode name vector data bus Remarks
MD2 MD1 MDO)
access area width

0 0 0 External vector mode 0 External 8 bits

0 0 1 External vector mode 1 External 16 bits Reset'vector, 16-bit
bus width access

0 1 0 External vector mode 2 External 16 bits Reset vector, 8-bit bus
width access
Reset sequence and

0 1 1 Internal vector mode Internal (Mode data) later segments are
controlled based on
mode data.

|| O] O

0
1 Reserved
0
1

Pl R Rk

Flash memory -- --

In External vector mode 2, the HMBS bit of the bus control signal selection register is set to '1,'
and the bus width for external access to the area between 800000y and FFFFFF is 8 bits. Use
External vector mode 2 when the bus width for the ROM is 8 bits but the bus width for the RAM
or other components is 16 bits. In External vector mode 1, the HMBS bit is set to '0' and the
access bus width becomes 16 bits.

95

CHAPTER 7 MEMORY ACCESS MODES

7.3 Mode Data

Mode data is stored at FFFFDF of main memory and used for controlling the CPU

operation. This data is fetched during a reset sequence and stored in the mode
register inside the device. The mode register value can be changed only by a reset
sequence.

The setting of this register is valid after the reset sequence.

Always set the reserved bits to '0.'

m Mode Data
Figure 7.3-1 is a diagram of the setting of the bits.

Figure 7.3-1 Mode Data Structure
7 6 5 4 3 2 1 0

Mode data| M1 MO 0 0 SO 0 0 0

L Function extension bit (reserved area)

Mode setting bits
Bus mode setting bits

m Mode Setting BitsMode Setting Bits

These bits are used to specify the bus mode or access mode after the reset sequence is
completed. Table 7.3-1 shows the relationship between the bits and the functions.

Table 7.3-1 Mode Setting Bits and Functions

SO Function Remarks
0 External data bus, 8-bit mode
1 External data bus, 16-bit mode

m Bus Mode Setting Bits

These bits are used to specify the operation mode after the reset sequence is completed. Table
7.3-2 shows the relationship between the bits and the functions.

Table 7.3-2 Bus Mode Setting Bits and Functions

M1 MO Function Remarks
0 0 Single chip mode

0 1 Internal ROM and external bus mode

1 0 External ROM and external bus mode

1 1 (Inhibited)

96

FFFFFFy - = -- = - -
ROM ROM
Device- s = -
dependent #
FFOO00 y - = - > -
ROM ROM
004000 - = - > -
(IjDeviced- . - -
ependent RAM RAM RAM
002100 - = >- >
I/0 I/0
001100 H = = - > @
RAM RAM RAM ’—‘
000100y - = . - !
0000CO y - = > - >
000000, - = Vo ~.L Vo ~. LYo N
Single chip Internal ROM, External ROM,
external bus external bus
Note:

7.3 Mode Data

Figure 7.3-2 is a diagram of the correspondence between the access areas and physical

addresses for each bus mode.

Figure 7.3-2 Access Areas and Physical Addresses in each Bus Mode

"Device-dependent" means an address that is determined depending on the device.

m Recommended Setting

Table 7.3-3 lists a sample recommended setting of mode pins and mode data.

Table 7.3-3 Sample Recommended Setting of Mode Pins and Mode Data

- No access

. Internal access

: External access

Sample setting MD2 |MD1 |MDO M1 MO SO
Single chip 0 1 1 0 0 X
Internal ROM and external bus mode, 16-bit 0 1 1 0 1 1
bus
Internal ROM and external bus mode, 8-bit 0 1 1 0 1 0
bus
External ROM and external bus mode, 16-bit
bus, vector 16 bus width 0 0 1 1 0 1
External ROM and external bus mode, 16-bit
bus, vector 8 bus width 0 1 0 1 0 1

97

CHAPTER 7 MEMORY ACCESS MODES

Table 7.3-3 Sample Recommended Setting of Mode Pins and Mode Data (Continued)

Sample setting MD2 |MD1 |MDO M1 MO

External ROM and external bus mode, 8-bit

bus 0 0 0 1 0

98

CHAPTER 8 /O PORTS

This chapter explains the functions and operations of the I/O ports.

8.1 1/0 Port
8.2 1/0 Port Registers

99

CHAPTER 8 1/0 PORTS

8.1 1/O Ports

Each pin of the ports can be specified as input or output using the direction register if
the corresponding peripheral does not use the pin. When a pin is specified as input,
the logic level at the pin is read. When a pin is specified as output, the data register
value is read. The above also applies to a read operation for the read-modify-write
instructions.

Only for Port O, Port 1, Port 2 and Port 3, the corresponding bits of the Port Direction
registers should be set to "1" in oder to enable peripheral signal outputs.

m |/O Ports

When a pin is used as an output of other peripheral function, the peripheral output value is read
regardless of the direction register value.

It is generally recommended that the read-modify-write instructions should not be used for
setting the data register prior to setting the port as an output. This is because the read-modify-
write instruction in this case results reading the logic level at the port rather than the register
value.

Figure 8.1-1 is a block diagram of the 1/O ports.

Figure 8.1-1 1/O Port Block Diagram

™

Internal data bus

<

Data register read

= o

} Data register ‘

Data register write
| Direction register }7

Direction register write

—

Direction register read

100

8.2

I/O Port Registers

8.2 1/0 Port Registers

There are three types of I/O port registers:
Port data register (PDRO to 9)

Port direction register (DDRO to 9)

Analog input enable register (ADER)

I/0 Port Registers

Address :
Address :
Address :
Address :

Address :

Address

Address :
Address :
Address :

Address :

Address

Address :
Address :
Address :
Address :

Address :

Address

Address :
Address :

Address :

Address : 00001B

Figure 8.2-1 shows the I/O port registers.

Bit
000000 1
000001
000002
000003

000004 4

£ 000005

000006
000007
000008
000009 4

Bit

£ 000010

000011
000012
000013
000014
000015

£ 000016

000017
000018
000019

Bit

Figure 8.2-1 1/O Port Registers

15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0
po7 | Po6 | Pos| Poa| Po3| Po2| Po1| POO
P17 | P16 | P15 | P14 | P13 | P12 | P11 | P10
P27 | P26 | P25 | P24 | P23 | P22 | P21 | P20
P37 | P36 | P35 | P34 | P33 | P32 | P31 | P30
Pa7 | P46 | Pas | Pas | Pa3 | Pa2 | Pa1 | Pao
P57 | P56 | P55 | Ps4 | P53 | P52 | P51 | P50
P67 | P66 | Pe5 | Pe4 | P63 | P62 | Pe1 | P60
P77 | P76 | P75 | P74 | P73 | P72 P71| P70
P87 | P86 |[Ps5 Pe4 | P83 | P82 | P81 | P80
— — | P95 | Poa | Po3 | P92 | Po1 | P90
15/7 14/6 13/5 12/4 11/3 10/2 9/1 8/0
po7 | Doe | D05 | D04 | D03 [D02 | DO1 | DOO
D17 | D16 | D15 | D14 | D13 | D12 | D11 | D10
D27 | D26 | D25 | D24 | D23 | D22 | D21 | D20
D37 | D36 | D35 | D34 | D33 | D32 | D31 | D30
D47 | D46 | D45 | D44 | D43 | D42 | D41 | D4o
D57 | Ds6 | D55 | D54 | D53 | D52 | D51 | D50
D67 | De6 | D65 | De4 | De3 | D62 | D61 | Deo
p77| p76 | b75 | b74| D73 | D72 | D71 | D70
D87 | D86 |D85 D84 | D83 | D82 | D81 | Dso
— | — | p9s | D94 | D93 | D92 | D91 | D90
15 14 13 12 11 10 9 8
AWDE7 |JADE6 [ADE5 [ADE4|ADE3|ADE2|ADE1|ADEO

Port 0 data register (PDRO)
Port 1 data register (PDR1)
Port 2 data register (PDR2)
Port 3 data register (PDR3)
Port 4 data register (PDR4)
Port 5 data register (PDR5)
Port 6 data register (PDR6)
Port 7 data register (PDR7)
Port 8 data register (PDR8)

Port 9 data register (PDR9)

Port 0 direction register (DDRO)
Port 1 direction register (DDR1)
Port 2 direction register (DDR2)
Port 3 direction register (DDR3)
Port 4 direction register (DDR4)
Port 5 direction register (DDR5)
Port 6 direction register (DDR6)
Port 7 direction register (DDR7)
Port 8 direction register (DDR8)

Port 9 direction register (DDR9)

Port 6 analog input enable
register (ADER)

101

CHAPTER 8 1/O PORTS

8.2.1

Port Data Register

Note that R/W for 1/O ports differ from R/W for memory in the following points:

Input mode
Read: The level at the corresponding pin is read.

Write: Data is written to an output latch.
Output mode

Read: The data register latch value is read.
Write: Data is written to an output latch and output to the corresponding pin.

m Port data Register

102

PDRO

Address:

PDR1
Address

PDR2

Address:

PDR3

Address:

PDR4

Address:

PDR5

Address:

PDR6

Address:

PDR7

Address:

PDR8

Address:

PDR9

Address:

Figure 8.2-2 shows the port data registers.

000000

£ 000001 1

000002

000003

000004

000005

000006 1

000007

000008

000009

Figure 8.2-2 Port Data Registers

7 6 5 4 3 2 1 0
po7 | Po6 | Pos| Po4a| Po3| Po2]| Po1| PoOO
15 14 13 12 11 10 9 8
p17| P16 | P15| P14 | P13| P12]| P11| P1O
7 6 5 4 3 2 1 0
P27 | P26 | P25| P24 | P23| P22] P21 P20
15 14 13 12 11 10 9 8
P37 | P36 | P35| P34 | P33| P32]| P31| P30
7 6 5 4 3 2 1 0
Pa7 | Pa6 | Pas| Paa| Pas| pPa2]| Pa1| P40
15 14 13 12 11 10 9 8
ps7 | P56 | P55 | P54 | Ps3| P52| P51| PS5O
7 6 5 4 3 2 1 0
P67 | P66 | P65 | Pe4a| Pe3| P62| P61l P6O
15 14 13 12 11 10 9 8
p77 | P76 |P75 | P74 | P73 | P72| P71]| P70
7 6 5 4 3 2 1 0
ps7 | P86 | Ps5| Ps4a| Ps3| Ps2| Ps1| Pso
15 14 13 12 11 10 9 8
— — | pos| poa| Po3 | Po2| P91| P90

Initial value

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Undefined

Access
R/W

RIW

R/W

R/W

R/IW

RIW

RIW

R/IW

R/W

R/IW

*1

*1

*1

*1

*1

*1

*1

*1

*1

*1

8.2.2

Port Direction Register

8.2 1/0 Port Registers

When a pin is used as a port, the corresponding pin is controlled as described below:
0: Input mode
1: Output mode

m Port Direction Register

DDRO

Address:

DDR1

Address:

DDR2

Address:

DDR3

Address:

DDR4

Address:

DDR5

Address:

DDR6

Address:

DDR7

Address:

DDR8

Address:

DDR9

Address:

Figure 8.2-3 shows the port direction registers.

000010

000011

000012

000013

000014

000015

000016

000017

000018

000019

Figure 8.2-3 Port Direction Registers

7 6 5 4 3 2 1 0

D07 | DO6 | D05 | D04 | DO3 |DO2 |DO1 |DOO
15 14 13 12 11 10 9 8
D17 | D16 | D15 | D14 | D13 |D12 | D11 |D10O
7 6 5 4 3 2 1 0

D27 | D26 | D25 | D24 | D23 |D22 | D21 |D20
15 14 13 12 11 10 9 8
D37 | D36 | D35 | D34 | D33 |D32 | D31 |D30
7 6 5 4 3 2 1 0

D47 | D46 | D45 | D44 | D43 | D42 | D41 | D40
15 14 13 12 11 10

D57 | D56 | D55 | D54 | D53 | D52 | D51 | D50
7 6 5 4 3 2 1 0

D67 | D66 | D65 | D64 | D63 | D62 | D61 |D60O
15 14 13 12 11 10 9 8
D77| D76 | D75 | D74 | D73 | D72 | D71 | D70
7 6 5 4 3 2 1 0

D87 | D86 | D85 | D84 | D83 |D82 | D81 | D80
15 14 13 12 11 10 9 8
- — D95 | D94 | D93 | D92 | D91 | D90

Initial value

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

00000000

000000

Access

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

103

CHAPTER 8 1/O PORTS

8.2.3 Analog Input Enable Register

This register controls the port 6 pins as described below:
0: Port input/output mode
1: Analog input mode

If an external pin is used as an analog input for the A/D converter, the corresponding

bit should be set to "1".

m Analog Input Enable Register

Figure 8.2-4 shows the analog input enable register.

Figure 8.2-4 Analog Input Enable Register

bit 15 14 13 12 11 10 9 8
Address: 00001B ADE7 ADE®6 ADES ADE4 ADE3 ADE?2 ADE1 ADEO
R/W R/W R/W R/W R/W R/IW R/W R/W

104

Initial value
11111111

CHAPTER 9 TIME BASE TIMER

This chapter explains the functions and operations of the time base timer.

9.1 Outline of Time Base Timer
9.2 Time Base Timer Control Register

9.3 Operations of Time Base Timer

105

CHAPTER 9 TIME BASE TIMER

9.1 Outline of Time Base Timer

The time base timer consists of an 18-bit time base counter and a control register. The
18-bit time base counter divides the system clock. The time base timer issues
interrupts at specified intervals based on carry signals of the time base counter.

m Outline of Time Base Timer

When the power is turned on, the time base counter can be cleared to all zeroes by setting the
stop mode or by software (writing '0' to the TBR bit). The time base counter is incremented while
the source oscillation is input.

The time base counter can be used as a timer for supplying clock to the watch-dog timer or for
waiting for the oscillation to stabilize.

m Block Diagram of Time Base Timer

Figure 9.1-1 shows a block diagram of the time base timer.

Figure 9.1-1 Block Diagram of Time Base Timer

WTE
WT1 Output enable
v
WTO J i Reset
Two-bit Reset
Selector counter control -
Time base counter
1 1 1 1 1 1 1 1 1
ff2 Py SO0 I |1z | I3 | o0d | 515 | 516 | pI7 | I8
Power-on |
S35 —[Sanmo
contro
mode TBOF |RQ
JA Selector TBOF iy
TBR T
) Clear

TBC1 J E120S

TBCO 1/2'6t0 1/28 Time base devision output

OSCl g . oy

Selector Osciliation stabilization wait completion signal
0SCo

106

9.2 Time Base Timer Control Register

9.2 Time Base Timer Control Register

The time base timer control register controls interrupts of the time base timer and can

clear the time base counter.

m Time Base Timer Control Register (TBTC)

bit 15 14 13 12 11 10 9
TBTC
Address: 0000A9, Reserved — — TBIE | TBOF TBR | TBC1 | TBCO
W R/W R/W w R/W R/W

[bit 15] Reserved

Initial value

1--00100

This is a reserved bit. When writing data to this register, ensure that '1' is written to this bit.

[bit 12] TBIE

This bit is used to enable interval interrupts based on the time base timer. Writing '1' to this
bit enables interrupts, and writing '0' disables interrupts. This bit is initialized to '0' upon a

reset. This bit is readable and writable.

[bit 11] TBOF

This is an interrupt request flag for the time base timer. While the TBIE bit is '1," an interrupt

request is issued when '1' is written to TBOF. This bit is set to '1' for each interval specified

with the TBC1 and TBCO bits.

This bit is cleared by writing '0,' transition to stop or hardware standby mode, or a reset.

Writing '1' has no effect.

'1'is always read by a read-modify-write instruction.

[bit 10] TBR

This bit clears all bits of the time base timer counter to '0."

Writing 'O’ clears the time base counter.

Writing '1' has no effect.

'1'is always read from this bit.

[bits 9 and 8] TBC1 and TBCO

These bits are used to set the time base timer interval.

Table 9.2-1 lists the specifiable intervals.

Table 9.2-1 Selecting the Time Base Timer Interval

TBC1 TBCO Interval at 4 MHz source oscillation
0 0 1.024 ms
0 1 4.096 ms

107

CHAPTER 9 TIME BASE TIMER

Table 9.2-1 Selecting the Time Base Timer Interval (Continued)

TBC1 TBCO Interval at 4 MHz source oscillation
1 0 16.384 ms
1 1 131.072 ms

108

9.3 Operations of Time Base Timer

9.3 Operations of Time Base Timer

The time base timer functions as a watch-dog timer clock source, timer for waiting for
the oscillation to stabilize, and interval timer for generating interrupts at specified

intervals.

m Time Base Counter

The time base counter consists of an 18-bit counter for a clock generated by dividing the source
oscillation input by two. This clock is used to generate the machine clock. While the source
oscillation is input, the time base counter keeps counting. The time base counter is cleared by a
power-on reset, transition to stop or hardware standby mode, or writing '0' to the TBR bit of the
TBTC register.

m Interval Interrupt Function

Interrupts are generated at specified intervals according to the carry signals of the time base
counter. The TBOF flag is set at the intervals specified with the TBC1 and TBCO bits of the
TWC register. The flag is written to reference to the time at which the time base timer is cleared
last.

Upon transition to stop or hardware standby mode, the time base timer is used as a timer for
waiting for the oscillation to stabilize upon recovery. Therefore, the TBOF flag is immediately
cleared upon mode transition.

109

CHAPTER 9 TIME BASE TIMER

110

CHAPTER 10 WATCH-DOG TIMER

This chapter explains the functions and operations of the watch-dog timer.

10.1 Outline of Watch-Dog Timer
10.2 Watch-dog Timer Operations

111

CHAPTER 10 WATCH-DOG TIMER

10.1 Outline of Watch-Dog Timer

The watch-dog timer consists of a two-bit watch-dog counter, control register, and
watch-dog reset controller. The two-bit watch-dog counter uses the carry signals of an

18-bit time base counter as a clock source.

m Watch-dog Timer Block Diagram

Figure 10.1-1 is a diagram of the configuration of the watch-dog timer.

Figure 10.1-1 Watch-dog Timer Block Diagram

WTE
Output enable
WT1 J |
WTO i Reset
Two-bit Reset
Selector counter control :
Time base counter
1 1 1 1 1 1 1 1 1
f/2 — = [N N]
2 oIl | 512 | 513 | 9l4 | 915 | 516 | 17 | 518
Power-on |
S58p —{Eo
contro
j Selector TBOF)y
TBR T
] Clear
TBC1 J £i120S
TBCO 1/2'%t0 1/28 Time base devision output
OSCl g . g
Selector Osciliation stabilization wait completion signal
OSsCo

112

10.1 Outline of Watch-Dog Timer

m Watch-dog Timer Control Register (WDTC)

Bit 7 6 5 4 3 2 1 0 Initial value

WDTC XXXXX111
Address : 0000A8,, PONR| STBR | WRST| ERST | SRST| WTE | WT1 | WTO H
R R R R R W \W W

[bits 7 to 3] PONR, STBR, WRST, ERST, and SRST

These flags indicate the reset causes. The flags are set upon a reset as described in Table
10.1-1.

All bits are cleared to '0' after the WDTC register is read. These bits are read-only bits. For
details, see Section 5.2 "Reset".

Table 10.1-1 Reset Cause Registers

Reset cause PONR STBR WRST ERST SRST
Power-on 1 - - - -
Hardware standby * 1 * * *
Watch-dog timer * * 1 * *
External pin * * * 1 *
RST bit * * * * 1

(*: The previous value is maintained.)
[bit 2] WTE

While the watch-dog timer is stopped, writing '0' to this bit activates the watch-dog timer.
Subsequently, writing '0' clears the watch-dog timer counter. Writing '1' has no effect.

The watch-dog timer is stopped by power-on, hardware standby, or reset by watch-dog
timer. '1" is always read from this bit.

[bits 1 and 0] WT1 and WTO

These bits are used to select the watch-dog timer interval. Only the data items written during
watch-dog timer activation are valid. Data items that are written outside watch-dog timer
activation are ignored. Table 10.1-2 lists the interval settings.

These bits are write-only bits.

Table 10.1-2 Watch-dog Timer Interval Selection Bit

Interval (at a source oscillation of 4 _
WT1 WTO MHz) Main clock cycle
count
Minimum Maximum

0 0 approx. 3.58 ms approx. 4.61 ms 21 plus or minus 211
cycles

0 1 approx. 14.33 ms | approx.18.43ms | 216 plus or minus 213
cycles

1 0 approx. 57.23 ms | approx. 73.73ms | 2% plus or minus 21°
cycles

113

CHAPTER 10 WATCH-DOG TIMER

114

Table 10.1-2 Watch-dog Timer Interval Selection Bit (Continued)

Interval (at a source oscillation of 4

WT1 WTO MHz) Main clock cycle
count
Minimum Maximum
1 1 approx. 458.7 ms | approx. 589.82 ms | 22! plus or minus 218

cycles

Note: The interval becomes the maximum when the time base counter is not reset during

watch-dog timer operation.

10.2 Watch-dog Timer Operation

10.2 Watch-dog Timer Operation

The watch-dog timer function enables detection of program surge.
If the watch-dog timer is not accessed within the specified time due to, for example, a
program surge, the watch-dog timer resets the system.

m Activation

The watch-dog timer is activated by writing '0' to the WTE bit of the WDTC register while the
watch-dog timer is stopped. At the same time, the WT1 and WTO bits are used to set the watch-
dog timer reset interval. Only the interval setting specified during activation is valid.

m Watch-dog Counter

Once the watch-dog timer is activated, the watch-dog timer counter must be periodically cleared
within the program. Writing '0' to the WTE bit of the WDTC register clears the watch-dog
counter. The watch-dog counter consists of a two-bit counter which uses the carry signals of the
time base counter as a clock source. Therefore, the watch-dog reset time may become shorter
than the setting if the time base counter is cleared.

The watch-dog counter is cleared not only by writing to the WTE bit but also by a reset,
transition to the sleep or stop mode, and a hold acknowledge signal. (The watch-dog counter is
not cleared by transition to timer mode.)

Figure 10.2-1 is a diagram of the watch-dog timer operation.

Figure 10.2-1 Watch-dog Timer Operation

Time base [

Watch-dog 00 X o1 X 10X 00 X 01X 10X 11X 00
WTE write |_| |_|

Watch-dog activation Watch-dog clear

Watch-dog reset

m Watch-dog Stop

Once activated, the watch-dog timer is initialized and stopped only by power-on, hardware
standby, or reset by watch-dog. Reset by an external pin or software merely clears the watch-
dog counter without stopping the watch-dog function.

115

CHAPTER 10 WATCH-DOG TIMER

116

CHAPTER 11 16-BIT I/O TIMER

This chapter explains the functions and operations of the 16-bit 1/0 timer.

11.1 Outline of 16-Bit I/O Timer
11.2 16-Bit I/O Timer Registers
11.3 16-bit Free-running Timer
11.4 Output Compare

11.5 Input Capture

117

CHAPTER 11 16-BIT I/O TIMER

11.1 Outline of 16-Bit I/O Timer

The MB90590 Series contains one 16-bit free-running timer module, three output
compare modules, and three input capture modules and supports six input channels
and six output channels. The following sections only describes the 16-bit free-running
timer, Output Compare 0/1 and Input Capture 0/1.

The remaining modules have the identical functions and the register addresses should
be found in the I/O map.

m 16-bit Free-running Timer

The 16-bit free-run timer consists of a 16-bit up counter, control register, and prescaler. The
values output from this timer counter are used as the base timer for input capture and output
compare.

O Four counter clocks are available.

Internal clock:@/4, ¢/16, /64, (/256

O Aninterrupt can be generated upon a counter overflow or a match with compare register

0.

O The counter value can be initialized to '0000H' upon a reset, software clear, or match with

compare register 0.

m Output Compare (2 Channels per One Module)

The output compare module consists of two 16-bit compare registers, compare output latch, and
control register.

When the 16-bit free-running timer value matches the compare register value, the output level is
reversed and an interrupt is issued.

The two compare registers can be used independently.

Output pins and interrupt flags corresponding to compare registers

Output pins can be controlled based on pairs of the two compare registers.

Output pins can be reversed by using the two compare registers.
Initial values for output pins can be set.

Interrupts can be generated upon a compare match.

m Input Capture (2 Channels per one Module)

118

The input capture module consists of two 16-bit capture registers and control registers
corresponding to two independent external input pins. The 16-bit free-running timer value can
be stored in the capture register and an interrupt is issued simultaneously upon detection of an
edge of a signal input from an external input pin.

11.1 Outline of 16-Bit I/O Timer

O The detection edge of an external input signal can be specified.

Rising, falling, or both edges
O Two input channels can operate independently.

O Aninterrupt can be issued upon a valid edge of an external input signal.

The intelligent I/O service can be activated upon an input capture interrupt.

m Block Diagram of 16-bit I/O Timer
Figure 11.1-1 shows a block diagram of the 16-bit I/O timer.

Figure 11.1-1 Block Diagram of 16-bit I/O Timer

<—>| Control logic
Interrupt o
3
16-bit free-run timer —— 35
<
<—>| 16-bit timer | e
[}
(o)
|_
Clear _
Outputcompareo [| [|
2] .
a <—>| Compare register O k 5 ouTO
Output compare 1 O
<—>| Compare register 1 L OouT1
| I

Input capture 0

|

Capture register 0 |e Edge selection|<— INO

| I
Input capture 1
Capture register 1 |e Edge selection [<— IN1
— |

119

CHAPTER 11 16-BIT I/O TIMER

11.2 16-Bit I/O Timer Registers

The 16-bit I/O timer has the following three registers:

» 16-bit free-running timer register
» 16-bit output compare register
» 16-bit input capture register

m 16-bit Free-runningTimer

15

0

001944 TCDT

00006E

TCCS

m 16-bit Output Compare

15

Timer data register

Timer status register

0

0019304 OCCPO/1

Compare register

001932y,

000058y ocs1 ‘

0OCSsO0

Control status register

m 16-bit Input Capture

15

001920y IPCP0/1

001922y,

000054y,

ICS0/1

120

Capture register

Control status register

11.3 16-bit Free-running Timer

11.3 16-bit Free-running Timer

The 16-bit free-running timer consists of a 16-bit up counter and a control status

register. The count values of this timer are used as the base timer for the output

compares and input captures.

» Four counter clock frequencies are available.

* Aninterrupt can be generated upon a counter value overflow.

* The counter value can be initialized upon a match with compare register 0,
depending on the mode.

m 16-bit Free-running Timer Block Diagram

Figure 11.3-1 16-bit Free-running Timer Block Diagram

T —1__— Interrupt request ?
A A v
<—={ IVF [IVFE [STOP|MODE| CLR [CLK1]CLK0]

Comparator O |

Bus
e 16-bit up counter = """ Clock T15
‘ \
to

Count value output TOO

121

CHAPTER 11 16-BIT I/O TIMER

11.3.1 Data Register

The data register can read the count value of the 16-bit free-running timer. The counter
value is cleared to '0000' upon a reset. The timer value can be set by writing a value to
this register. However, ensure that the value is written while the operation is stopped
(STOP=1).

The data register must be accessed by the word access instructions.

m Data Register

bit 15 14 13 12 11 10 9 8

Address: 001945y, T15 T14 | Ti13 | T12 T11| T10 TO9 | TO8
R/W RW RW RW RW RW RW R/W

~ Attribute
~ Initial value

0 0 0 0 0 0 0 0
bit 7 6 5 4 3 2 1 0
Address: 001944, TO7 | TO6 | TO5 | TO4 | TO3 | TO2 | TO1 | TOO
~ Attribute
RW RW RW RW RW RW RW RW i
0 0 0 0 0 0 0 o < Initial value

The 16-bit free-running timer is initialized upon the following factors:
* Reset
« Clear bit (CLR) of control status register

« A match between compare register 0 and the timer counter value.

122

11.3 16-bit Free-running Timer

11.3.2 Control Status Register

The control status register sets the operation mode of the 16-bit free-running timer,
starts and stops the 16-bit free-running timer, and controls interrupts.

m Control Status Rgister

it 7 6 5 4 3 2 1 0
Address: 00006E, |Reserved IVF | IVFE | STOP| MODE| CLR | CLK1| CLKO
RW RW RW RW RW RW RW RW :ﬁfftﬁgﬂglu .
0 0 0 0 0 0 0 0

[bit 7] Reserved bit
Always write '0' to this bit.
[bit 6] IVF
This bit is an interrupt request flag of the 16-bit free-running timer.

If the 16-bit free-running timer overflows, or if the counter is cleared by a match with
compare register 0, '1' is set to this bit.

An interrupt is issued if the interrupt request enable bit (bit 5: IVFE) is set.
This bit is cleared by writing '0." Writing '1' has no effect.

'1'is always read by a read-modify-write instruction.

0 No interrupt request (initial value)
1 Interrupt request
[bit 5] IVFE

IVFE is an interrupt enable bit of the 16-bit free-run timer. While this bit is "1", an interrupt is
issued if '1' is set to the interrupt flag (bit 5: IVF).

0 Interrupt disabled (initial value)
1 Interrupt enabled
[bit 4] STOP

The STOP bit is used to stop the 16-bit free-running timer.
Writing '1' to this bit stops the timer. Writing '0' starts the timer.

0 Counter enabled (operation) (initial value)

1 Counter disabled (stop)

123

CHAPTER 11 16-BIT I/O TIMER

Note:
The output compare operation stops when the 16-bit free-running timer stops.
[bit 3] MODE
The MODE bit is used to set the reset condition of the 16-bit free-running timer.
When '0' is set, the counter value can be initialized by RESET or a clear bit (bit 2: CLR).

When '1' is set, the counter value can be initialized by a match with compare register 0 in
addition to RESET and a clear bit (bit 2: CLR).

0 Initialization by reset or clear bit (initial value)
1 Initialization by reset, clear bit, or compare register 0
Note:
The clear bit and the match with compare register initializes the timer when the timer value
changes.
[bit 2] CLR

The CLR bit initializes the operating 16-bit free-running timer value to '0000.'

When '1' is set, the counter value is initialized to '0000." Writing '0" has no effect. '0' is always
read from this bit. The counter value is initialized when the count value changes.

0 No effect (initial value)

1 The counter value is initialized to '0000."'

Note:
To initialize the counter value while the timer is stopped, write ‘0000’ to the data register.
[bits 1 and 0] CLK1 and CLKO

CLK1 and CLKO are used to select the count clock for the 16-bit free-run timer. The clock is
updated immediately after a value is written to these bits. Therefore, ensure that the output
compare and input capture operations are stopped before a value is written to these bits.

124

CLK1 CLKO Count clock ¢=16 MHz @=8 MHz ¢=4 MHz ¢=1 MHz
0 0 w4 0.25 us 0.5 us 1us 4 us
0 1 @16 1us 2 us 4 s 16 ps
1 0 @64 4 us 8 us 16 ps 32 pus
1 1 @256 16 ps 32 ps 64 Us 128 us

@ = Machine clock

11.3 16-bit Free-running Timer

11.3.3 16-bit Free-running TimerOperation

The 16-bit free-running timer starts counting from counter value '0000' after the reset is
released. The counter value is used as the reference time for the 16-bit output compare
and 16-bit input capture operations.

m 16-bit Free-running Timer Operation
The counter value is cleared in the following conditions:
* When an overflow occurs.
« When a match with the output compare register 0 occurs. (This depends on the mode.)
« When '1' is written to the CLR bit of the TCCS register during operation.
* When '0000' is written to the TCDC register during stop.
* Reset

An interrupt can be generated when an overflow occurs or when the counter is cleared by a
match with the compare register 0. (Compare match interrupts can be used only in an
appropriate mode.)

m Clearing the Counter by an Overflow

Counter value

Overflow
e e T e i i

BFFF | [-ccommoom T T
42 = T R Rt R DT R
K T St S
00004 Time

Reset |

Interrupt

125

CHAPTER 11 16-BIT I/O TIMER

m Clearing the Counter upon a Match with Output Compare Register 0

Counter value

FRFFy |l
BFFF b-coomooo oo T
TFFF [~ T s o s e
BFFFy [~ o T T AT T e
0000, Time

Reset |

Compare [BFFF,
register value
Interrupt

m 16-bit Free-running Timer Timing

O 16-hit free-running timer count timing

The 16-bit free-run timer is incremented based on the input clock (internal or external clock).
When external clock is selected, the 16-bit free-run timer is incremented at the rising edge.

? RN I S S N

External clock
input |

Count clock

N N+1

Counter value

O 16-hit free-running timer clear timing (match with the compare register 0)

The counter can be cleared upon a reset, software clear, or a match with the compare register
0. By a reset or software clear, the counter is immediately cleared. By a match with compare
register 0, the counter is cleared in synchronization with the count timing.

Compare N
register value
Compare match
Counter value N 0000

126

11.4 Output Compare

11.4 Output Compare

The output compare module consists of two 16-bit compare registers, two compare
output pins, and control register. If the value written to the compare register of this
module matches the 16-bit free-running timer value, the output level of the pin can be
reversed and an interrupt can be issued.

m Output Compare

« Two compare registers exist that can be used independently. Depending on the setting, the
two compare registers can be used to control pin outputs.

e The initial value for the pin output can be specified.
¢ Aninterrupt can be issued upon a match as a result of comparison.
m Output Compare Block Diagram

Figure 11.4-1 shows a block diagram of output compare.

Figure 11.4-1 Output Compare Block Diagram

16-hit timer counter value (T15 to T0O0)

~

| Compare control i T Q ouTo
.
<—>| Compare register 0 |

16-bit timer counter value (T15 to T0O)

—

Bus | Compare control I ouT1
<—>| Compare register 1 |
I ICP1 ‘ ICPO ‘ ICE1 ‘ICEO |
Compare 1
-

D Controller | interrupt
\ . A Compare 0

Control blocks interrupt

N

127

CHAPTER 11 16-BIT I/O TIMER

11.4.1 Output Compare Register

These 16-bit compare registers are compared with the 16-bit free-running timer. Since
the initial register values are undefined, set appropriate value before enabling the
operation. These registers must be accessed by the word access instructions. When
the value of the register matches that of the 16-bit free-running timer, a compare signal
is generated and the output compare interrupt flag is set. If output is enabled, the
output level corresponding to the compare register is reversed.

m Output Compare Register

o 15 14 13 12 1 10 9 8
001931, cis | cia| ci3| ci2| cu1| cio| coo| cos |
0019334 RW RW RW RW RW RW RW Rw Churbute
X X X X X X X X
7 6 5 4 3 2 10
001930 co7 | co6| cos| coa| coz| coz| cor| coo
0019324

~ Attribute
R/W R/W R/W R/W R/W R/W R/W R/W Py
% X X X X X X X « Initial value

128

11.4 Output Compare

11.4.2 Control Status Register of Output Compare

The control status register sets the operation mode of output compare, starts and
stops output compare, controls interrupts, and sets the external output pins.

m Control Status Register of Output Compare

000059,

bit

15 14 13 12 11 10 9 8
— — — | CMOD| OTE1 | OTEO | OTD1| OTDO
— — — RW RW RW RW Rw _jpuibute
o o - 0 0 0 0 0
bit 7 6 5 4 3 2 1 0
000058y, ICP1 | ICPO | ICE1 | ICEO | — — | CST1| CSTO
~ Attribute
R/W R/W RW R/W — — RW R/W i
0 0 0 0 _ _ 0 0 ~ Initial value

[bits 15, 14, and 13] Unused bits
[bit 12] CMOD

CMOD is used to switch the pin output level reverse mode upon a match while pin output is
enabled (OTE1=1 or OTEO=1).

When CMOD=0 (initial value), the output level of the pin corresponding to the compare
register is reversed.

e OUTO: The level is reversed upon a match with compare register 0.
e OUTL: The level is reversed upon a match with compare register 1.

When CMOD=1, the output level is reversed for the compare register 0 in the same manner
as for CMOD=0. The output level of the pin corresponding to compare register 1 (OUT1),
however, is reversed upon a match with compare register 0 or 1. If compare registers 0 and
1 have the same value, the same operation as with a single compare register is performed.

« OUTO: The level is reversed upon a match with compare register 0.

¢« OUTL: The level is reversed upon a match with compare register O or 1.

[bits 11 and 10] OTE1 and OTEO

These bits are used to enable the output compare output pins. The initial value for these bits
is'0.'

0 General-purpose port (initial value)

1 Output compare pin output

Note:

OTEL: Corresponds to output compare 1 (OUT1).
OTEO: Corresponds to output compare 0 (OUTO).

When they are specified as outputs, the corresponding bits of the Port Direction registers
should also be setto "1".

129

CHAPTER 11 16-BIT I/O TIMER

[bits 9 and 8] OTD1 and OTDO

These bits are used to change the pin output level when the output compare pin output is
enabled. The initial value of the compare pin output is '0.' Ensure that the compare operation
is stopped before a value is written. When read, these bits indicate the output compare pin
output value.

0 Sets '0' for the compare pin output. (initial value)
1 Sets '1' for the compare pin output.
Note:

OTD1: Corresponds to output compare 1.
OTDO: Corresponds to output compare 0.
[bits 7 and 6] ICP1 and ICPO

These bits are used as output compare interrupt flags. '1' is set to these bits when the
compare register value matches the 16-bit free-run timer value. While the interrupt request
bits (ICE1 and ICEOQ) are enabled, an output compare interrupt occurs when the ICP1 and
ICPO bits are set. These bits are cleared by writing '0.'

Writing '1' has no effect. '1' is always read by a read-modify-write instruction.

0 No compare match (initial value)

1 Compare match

Note:
ICP1: Corresponds to output compare 1.
ICPO: Corresponds to output compare 0.
[bits 5 and 4] ICE1 and ICEO

These bits are used as output compare interrupt enable flags. While the '1' is written to these
bits, an output compare interrupt occurs when an interrupt flag (ICP1 or ICPO) is set.

0 Output compare interrupt disabled (initial value)

1 Output compare interrupt enabled

Note:
ICE1: Corresponds to output compare 1.
ICEOQ: Corresponds to output compare 0.
[bits 3 and 2] Unused bits
[bits 1 and 0] CST1 and CSTO

These bits are used to enable the comparison with 16-bit free-run timer.

0 Compare operation disabled (initial value)

1 Compare operation enabled

Ensure that a value is written to the compare register before the compare operation is
enabled.

130

11.4 Output Compare

Note:
CST1: Corresponds to output compare 1.
CSTO: Corresponds to output compare 0.

Since output compare is synchronized with the 16-bit free-running timer clock, stopping the
16-bit free-running timer stops compare operation.

131

CHAPTER 11 16-BIT I/O TIMER

11.4.3 16-bit Output Compare Operation

In the 16-bit output compare operation, an interrupt request flag can be set and the
output level can be reversed when the specified compare register value matches the
16-bit free-run timer value.

m Sample of Output Waveform when Compare Registers 0 and 1 are Used (The Initial Output Value is 0.)

Figure 11.4-2 Sample of Output Waveform when Compare Registers 0 and 1 are Used
Counter value

FFFFy
BFFF
TFFFy
3FFFy
0000y

Reset] 1 1

Compare register 1 ‘
0 value) :

Compare register \ ;
1 value |

ouTO ‘ |

OouT1

Compare 0 |
interrupt

Compare 1
interrupt

The output level can be changed using two compare registers (when CMOD=1).

132

11.4 Output Compare

m Sample of a Output Waveform with Two Compare Registers (The Initial Output Value is '0.")

Figure 11.4-3 Sample of a Output Waveform with Two Compare Registers (The Initial Output Value is '0’)

Counter value
FFFFy
BFFF
7FFFy

3FFFy
0000

Reset

Compare register |
0 value |

g:ompare register ;
value ‘
ouUTO [B
OUT1 [| Corresponds to

compare O and 1

Compare 0 |
interrupt
Compare 1 |
interrupt

m Output Compare Timing

In output compare operation, a compare match signal is generated when the free-running timer
value matches the specified compare register value. The output value can be reversed and an
interrupt can be issued. The output reverse timing upon a compare match is synchronized with
the counter count timing.

O Compare operation upon update of compare register

When the compare register is updated, comparison with the counter value is not performed.

N X N+1 X N+2 X N+3 X
! No match signal is generated. !

Counter value

Compare register M ‘ N+1,
0 value !
Compare register ‘
0 write !

Compare register M ‘ ‘ ‘
1 value ' ' ‘ '
Compare register ‘ : : [1 :
1 write ' Compare O stop ! Compare 1 stop

133

CHAPTER 11 16-BIT I/O TIMER

134

O Interrupt timing

Counter value N

Compare register

value

Compare match

Interrupt

O Output pin change timing

N N+1

Counter value

N+1

Compare register

value

Compare match

signal

Pin output

11.5 Input Capture

11.5 Input Capture

Input capture detects a rising or falling edge or both edges of an external input signal
and stores a 16-bit free-running timer value at that time in a register. In addition, input
capture can generate an interrupt upon detection of an edge. Input capture consists
of an input capture data register and a control register.

m Input Capture

Each input capture has a corresponding external input pin.

O The valid edge of an external input can be selected from the following three types:

Rising edge 1
Falling edge 1
Both ed

oth edges 11

O Aninterrupt can be generated upon detection of a valid edge of an external input.

m Input Capture Block Diagram

Figure 11.5-1 shows a block diagram of input capture.

Figure 11.5-1 Input Capture Block Diagram

<—>| Capture data register 0 '% Edge detection INO
| 16-bit timer counter value (T15to T00) | | Ec11| EG10 | EGO01 |EGOO |
\/ —
Bus
<—>| Capture data register 1 ||< Edge detection IN1

| ICP1 ‘ICPO ‘ICEl ‘ICEO |

=)>——=Interrupt
—)>——= |Interrupt

135

CHAPTER 11 16-BIT I/O TIMER

11.5.1 Input Capture Register Details

Input capture has the two registers listed. These registers store a value from the 16-bit
free running timer when a valid edge of the corresponding external pin input waveform
is detected. (The registers must be accessed in word mode. No values can be written
to the registers.)

* Input capture data register

* Input capture control register

m Input Capture Data Register

bit 15 14 13 12 11 10 9 8
001921y CP15| CP14| CP13| CP12| CP12| CP11| CP09| CPO08
001923y Attribute
R R R R R R R R Clnitial value
X X X X X X X X
001920, CP0O7| CP0§ CPO5| CP04| CP03| CP0O2| CPO1| CPOO
001922, i
R R R R R R R R <_,|At_tt(|t1utel
X X X X X X X X « Initial value

m Control Status Register

bit 7 6 5 4 3 2 1 0

000054 ICP1 ICPO ICE1 ICEO EG11 EG10| EGO1 EGO00

~ Attribute

R/W R/W R/W R/W R/W R/W RIW RW _\|hitial value

0 0 0 0 0 0 0 0

[bits 7 and 6] ICP1 and ICPO

These bits are used as input capture interrupt flags. '1' is set to this bit upon detection of a
valid edge of an external input pin. While the interrupt enable bits (ICEO and ICE1) are set,
an interrupt can be generated upon detection of a valid edge.

These bits are cleared by writing '0." Writing '1' has no effect. '1' is always read by a read-
modify-write instruction.

0 No valid edge detection (initial value)

1 Valid edge detection

Note:
ICPO: Corresponds to input capture 0.
ICP1: Corresponds to input capture 1.

136

[bits 5 and 4] ICE1 and ICEO

11.5 Input Capture

These bits are used to enable input capture interrupts. While these bits are "1", an input
capture interrupt is generated when the interrupt flag (ICPO or ICP1) is set.

0

Interrupt disabled (initial value)

1

Interrupt enabled

Note:

ICEOQ: Corresponds to input capture O.

ICE1: Corresponds to input capture 1.
[bits 3, 2, 1, and 0] EG11, EG10, EGO01, and EG00

These bits are used to specify the valid edge polarity of the external inputs. These bits are
also used to enable input capture operation.

EG11 EG10 . .
EGOL EGO00 Edge detection polarity
0 0 No edge detection (stop) (initial value)
0 1 Rising edge detection
T
1 0 Falling edge detection
1
1 1 Both edge detection
Tl
Note:

EGO01 and EGO0O0: Correspond to input capture O.

EG11 and EG10: Correspond to input capture 1.

137

CHAPTER 11 16-BIT I/O TIMER

11.5.2 16-bit Input Capture Operation

In 16-bit input capture operation, an interrupt can be generated upon detection of at
the specified edge, fetching the 16-bit free-run timer value and writing it to the capture
register.

m Sample of Input Capture Fetch Timing
« Capture 0: Rising edge
e Capture 1: Falling edge

« Capture example: Both edges

Figure 11.5-2 Sample of Input Capture Fetch Timing
Counter value
[T e T L T
BFFF b - - T T
TFFF b 7777777777777777777 R
FFFy f----------— ———————————— SRR ———————————————
0000 3 f j 3 Time
Reset S ‘
INO * ‘ |
IN1 1 | : v
IN example ¢‘ '? ‘
Capture 0 Undefined | 3FFRy

Capture 1 Undefined ‘ I 7FFR

Captur ‘ ‘
exgmpFe Undefined ‘ [BFFRy [7FFRy

Capture O |
interrupt
Capture 1
interrupt
Capture
interrupt

138

11.5 Input Capture

m Input Capture Input Timing

O Capture timing for input signals

2 [s O A R O N S
Counter value N N+1
Input capture
inBut P } valid edge
Capture signal

Capture register N+1

Interrupt

139

CHAPTER 11 16-BIT I/O TIMER

140

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT
COUNT FUNCTION)

This chapter explains the functions and operations of the 16-bit reload timer (with the
event count function).

12.1 Outline of 16-Bit Reload Timer (with Event Count Function)

12.2 16-Bit Reload Timer (with Event Count Function)

12.3 Internal Clock and External Clock Operations of 16-Bit Reload Timer
12.4 Underflow Operation of 16-Bit Reload Timer

12.5 Output Pin Functions of 16-Bit Reload Timer

12.6 Counter Operation State

141

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.1 Outline of 16-Bit Reload Timer (with Event Count Function)

The 16-bit reload timer consists of a 16-bit down-counter, a 16-bit reload register, one
input pin (TIN) and one output pin (TOUT), and a control register. The input clock can
be selected from one external clock and three types of internal clock.

m Outline of 16-bit Reload Timer (with Event Count Function)

The output pin (TOUT) outputs a toggle output waveform in reload mode and outputs a square
waveform indicating counting in one-shot mode. The input pin (TIN) is used for event input in
event count mode, and can be used for trigger input or gate input in internal clock mode.

The MB90590 Series has two 16-bit reload timers. However the TIN input and TOUT output
external pins are shared between the two timers.

m Intelligent /O Service (EI 20S) Function and Interrupts

142

The timer includes a circuit that supports EI20S. The timer can activate EI’OS when an

underflow occurs. EI?0OS can be used with both timers on this product. However, as both timers
(ch0 and chl) are connected to the same interrupt control register (ICRx) in the interrupt

controller, chO and ch1 cannot be assigned to different EI?OS services. Also, as the two timers
have different interrupt vectors, they can be assigned to two different interrupt services.
However, as chO and chl share an interrupt control register as described above, the same
interrupt level applies to both channels.

m Block Diagram of 16-bit Reload Timer

FFMC-16BUS

12.1 Outline of 16-Bit Reload Timer (with Event Count Function)

Figure 12.1-1 shows a block diagram of the 16-bit reload timer.

Figure 12.1-1 Block Diagram of 16-bit Reload Timer

16
16-bit reload register
) 8
Reload |__
v
J\ — I RELD
A 4]
. 16-bit down-counter UF] OUTE
16
OUTL
i (
o ouT INTE
GATE CTL. |
T UF % IRQ
csL1 L N
Clock selector CNTE N Clear
CSLO 2
; N TRG OSCLR
< Re-trigger
M 2
\ IN CTL Port (TIN)
EXCK .
Output enable
° 0 0 3 P
51 3 55 |< Prescaler Port (TOUT)
clear | | moD2
— MOD1 UART baud rate (ch0)
Peripheral clock A/DC (chl)
L__| MODO

143

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.2 16-Bit Reload Timer (with Event Count Function)

The 16-bit reload timer has the following two types of registers:

» Timer control register (TMCSR)
» 16-bit timer register (TMR)/16-bit reload register (TMRLR)

m 16-bit Reload Timer Register

Timer control status register (upper)

15

14

13

12

11

10

9

8 P Bit number

-]

il

Address: ch0 000051H
chl 000053+ 0

— CsL1

C

SLO

“MOoD2

MoD1[

Read/write
Initial value =

Timer control status register (lower)

(RIwW)

- ©

(RIwW)
©

(RIwW)

©

(RIwW)
©

0 “ Bit number

il

Address: ch0 0000504 C

chl 000052+

MODO

RELD

INTE

UF

CNTE

TRG ‘ _ TMCSR

Read/write
Initial value —>

16-bit timer register (upper)/
16-bit reload register (upper)

(RIW)

©)

15

(RIW)

©)

14

(RIW)

©

(RIW)
(0)

13 12

(RIW)

©)

(RIW)
(0)

11

(RIW)

10

©

(RIW)

©)

8 < Bit number

Address: ch0 0019411 O ——

chl 001943n B

Read/write o> (R/W)

Initial value —>

16-bit timer register (lower)/
16-bit reload register (lower)

Address: ch0 001940+ O
chl 001942+

Read/write
Initial value =>

144

)

(RIW)
(X)

)

(RIW)

(RIW)

*)

(RIW)

*)

(Riw)

)

(Rw)

)

)

1 0«

(Riw)

Bit number

TMR/
TMRLR

(RIW)
)

(RIW)
(X)

(RIW) (RIW)

)

)

(RIW)

)

*)

(RIW)

(RIW)
(X)

(RIW)
(X)

12.2 16-Bit Reload Timer (with Event Count Function)

12.2.1 Timer Control Status Register (TMCSR)

Controls the operation mode and interrupts for the 16-bit timer. Only modify bits other

than UF, CNTE, and TRG when CNTE = "0".

m Register Layout of Timer Control Register (TMCSR)

Timer control status register (upper) 15 14 13 12 11 10 9 8 < Bit number
Address: ch0 0000514 U e INDPENS BRSNS NP BPEE al i
chl 0000534 U — — — — CSL1 | CSLO | MOD2 | MOD1
Read/write — — — — RW) (RIW) (RIW) (RW)
Initial value = — — — — —) © © ©
Timer control status register (lower) 7 6 5 4 3 2 1 0 o Bitnumber
T T T o o o o]
|
Address: chO 000050
Sl 000052 S MODO | OUTE | OUTL | RELD | INTE | UF | CNTE | TRG TMCSR
Read/write RW) (RW) (RW) RW) [RW) (RW) RW) (RW)
Initial value = (0) (0) (0) (0) (0) (0) (0) (0)
m Register Contents of Timer Control Register (TMCSR)
[Bits 11, 10] CSL1, CSLO (Clock select 1, 0)
The count clock select bits. Table 12.2-1 lists the selected clock sources.
Table 12.2-1 Clock Sources for CSL Bit Settings

CsL1 CSLO Clock Source (Machine cycle @= 16 MHz)
0 0 @2 (0.125 ps)
0 1 @23 (0.5 ps)
1 0 @2° (2.0 ps)
1 1 External event count mode

[Bits 9, 8, 7] MOD2, MOD1, MODO
These bits set the operation mode and I/O pin functions.

The MOD2 bit selects the I/O functions. When MOD2 = "0", the input pin functions as a
trigger input. In this case, the reload register contents is loaded to the counter when an
active edge is input to the input pin and count operation proceeds. When MOD2 = "1", the
timer operates in gate counter mode and the input pin functions as a gate input. In this
mode, the counter only counts while an active level is input to the input pin.

The MOD1 and 0 bits set the pin functions for each mode. Tables 12.2-2 and 12.2-3 list the

145

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

146

MOD?2, 1, 0 bit settings.

Table 12.2-2 MOD?2, 1, 0 Bit Settings (1)

MOD2 MOD1 MODO Input Pin Function Active Edge or Level
0 0 0 Trigger disabled -
0 0 1 Trigger input Rising edge
0 1 0 Falling edge
1
0 1 1 Both edges
1
1 X 0 Gate input "L" level
1 X 1 "H" level
1

Internal clock mode (CSLO, 1 ="00", "01", or "10")

Table 12.2-3 MOD2, 1, 0 Bit Settings (2)

MOD2 MOD1 MODO Input Pin Function Active Edge or Level
0 0 - -
0 1 Trigger input Rising edge
1 0 Falling edge
X 1
1 1 Both edges
1

« Event counter mode (CSLO,1 ="11")

» Bits marked as X in the table can be set to any value.

[Bit 6] OUTE

Output enable bit. The TOUT pin functions as a general-purpose port when this bit is "0" and
as the timer output pin when this bit is "1". In reload mode, the output waveform toggles. In
one-shot mode, TOUT outputs a square waveform that indicates that counting is in progress.

[Bit 5] OUTL

This bit sets the output level for the TOUT pin.

Table 12.2-4 OUTE, RELD, and OUTL Settings

OUTE

RELD

OuUTL

Output Waveform

0

X

X

General-purpose port

12.2 16-Bit Reload Timer (with Event Count Function)

Table 12.2-4 OUTE, RELD, and OUTL Settings (Continued)

OUTE RELD OUTL Output Waveform
1 0 0 Output an "H" level square waveform during counting.
1 0 1 Output an "L" level square waveform during counting.
1 1 0 Toggle output. Starts with "L" level output.
1 1 1 Toggle output. Starts with "H" level output.

[Bit 4] RELD (Reload)

This bit enables reload operations. When RELD is "1", the timer operates in reload mode. In
this mode, the timer loads the reload register contents into the counter and continues
counting whenever an underflow occurs (when the counter value changes from 00004 to

FFFFL). When RELD is "0", the timer operates in one-shot mode. In this mode, the count
operation stops when an underflow occurs due to the counter value changing from 0000y to
FFFFy,.

[Bit 3] INTE (Interrupt enable)

Timer interrupt request enable bit. When INTE is "1", an interrupt request is generated when
the UF bit changes to "1". When INTE is "0", no interrupt request is generated, even when
the UF bit changes to "1".

[Bit 2] UF (Underflow)

Timer interrupt request flag. UF is set to "1" when an underflow occurs (when the counter
value changes from 0000y to FFFFy). Cleared by writing "0" or by the intelligent /O service.

Writing "1" to this bit has no meaning. Read as "1" by read-modify-write instructions.
[Bit 1] CNTE (Count enable)

Timer count enable bit. Writing "1" to CNTE sets the timer to wait for a trigger. Writing "0"
stops count operation.

[Bit 0] TRG (Trigger)

Software trigger bit. Writing "1" to TRG applies a software trigger, causing the timer to load
the reload register contents to the counter and start counting. Writing "0" has no meaning.
Reading always returns "0". Applying a trigger using this register is only valid when CNTE =
"1". Writing "1" has no effect if CNTE = "0".

147

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.2.2 Register Layout of 16-bit Timer Register (TMR)/16-bit
Reload Register (TMRLR)

TMR contents (for reading)

Reading this register reads the count value of the 16-bit timer. The initial value is
undefined. Always read this register using the word access instructions.

TMRLR contents (for writing)

The 16-bit reload register holds the initial count value. The initial value is undefined.
Always write to this register using the word access instructions.

m Register Layout of 16-bit Timer Register (TMR)/16-bit Reload Register (TMRLR)

16-bit timer register (upper)/ 15 14 13 12 11 10 9 8 < Bit number
16-bit reload register (upper)

Address: chO 001941u
chl 001943u

oog

Readiwiite , (RW) (RW) (RW) (RW) (RW) (RW) (RW) (RW)
Initial value = (X) (X) (X) (X) (X) (X) (X) (X)

16-bit timer register (lower)/ 7 6 5 4 3 2 1 0 o Bitnumber
16-bit reload register (lower)] T =] T T T] =7 —-
Address: ch0 001940s 1 - - B - - - — = ’ TMR/
chl 0019424 O PR TMRLR

Readiwrite . (RW) (RW) (RW) (RW) (RW) RW) RW) (RW)
Initial value — X) X) X) X) X))))

148

12.3 Internal Clock and External Clock Operations of 16-bit Reload Timer

12.3 Internal Clock and External Clock Operations of 16-bit
Reload Timer

The machine clock divided by 2 1, 23, or 2° can be selected as the clock sources for
operating the timer from an internal divide clock. The external input pin can be
selected as either a trigger input or gate input by a register setting.

If an external clock is selected, the TIN pin functions as an external event input pin to
count the number of valid edges set in the register.

m Internal Clock Operation of 16-bit Reload Timer

Writing "1" to both the CNTE and TRG bits in the control register enables and starts counting at
one time. Using the TRG bit as a trigger input is always available when the timer is enabled
(CNTE ="1"), regardless of the operation mode.

Figure 12.3-1 shows counter activation and counter operation. A time period T (T: machine
cycle) is required from the counter start trigger being input until the reload register data is
loaded into counter.

Figure 12.3-1 Activation and Operation of 16-bit Reload Timer Counter

Count clock

Counter >< Reload data >< -1 >< -1 -1

Data load

CNTE (bit)

TRG (bit)

149

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

m Input Pin Functions of 16-bit Reload Timer (in Internal Clock Mode)

The TIN pin can be used as either a trigger input or a gate input when an internal clock is
selected as the clock source. When used as a trigger input, input of an active edge causes the
timer to load the reload register contents to the counter and then start count operation after
clearing the internal prescaler. Input a pulse width of at least 2T (T is the machine cycle) to TIN.

Figure 12.3-2 shows the operation of trigger input.

Figure 12.3-2 Trigger Input Operation of 16-bit Reload Timer

Count clock T

TIN % Rising edge detected

Prescaler clear H

Counter >< 0000H >< Reload data >< -1 >< -1 >< -1
Load H

D
2T-
25T

When used as a gate input, the counter only counts while the active level specified by the
MODO bit of the control register is input to the TIN pin. In this case, the count clock continues to
operate unless stopped. The software trigger can be used in gate mode, regardless of the gate
level. Input a pulse width of at least 2T (T is the machine cycle) to the TIN pin. Figure 12.3-3
shows the operation of gate input.

Figure 12.3-3 Gate Input Operation of 16-bit Reload Timer

Count clock

TIN When MODO = “1” (Count when “H” is input)

Counter >< -1 >< -1 ><

'
[

150

12.3 Internal Clock and External Clock Operations of 16-bit Reload Timer

m External Event Counter

The TIN pin functions as an external event input pin when an external clock is selected. The
counter counts on the active edge specified in the register. Input a pulse width of at least 4T (T
is the machine cycle) to the TIN pin.

151

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.4 Underflow Operation of 16-bit Reload Timer

An underflow is defined for this timer as the time when the counter value changes
from 0000 y to FFFF . Therefore, an underflow occurs after (reload register setting + 1)

counts.

m Underflow Operation of 16-bit Reload Timer

If the RELD bit in the control register is "1" when the underflow occurs, the contents of the
reload register is loaded into the counter and counting continues. When RELD is "0", counting
stops with the counter at FFFF.

The UF bit in the control register is set when the underflow occurs. If the INTE bit is "1" at this
time, an interrupt request is generated.

Figure 12.4-1 shows the operation when an underflow occurs.

Figure 12.4-1 Underflow Operation of 16-bit Reload Timer

Count clock
Counter >< 0000+ >< Reload data >< 1 >< 1 >< 1

Data load

Underflow set

[RELD=1]

Count clock Ji
Counter >< 0000+ >< FFFFH

Underflow set

[RELD=0]

152

12.5 Output Pin Functions of 16-bit Reload Timer

12.5 Output Pin Functions of 16-bit Reload Timer

In reload mode, the TOUT pin performs toggle output (inverts at each underflow). In
one-shot mode, the TOUT pin functions as a pulse output that outputs a particular
level while the count is in progress.

m Output Pin Functions of 16-bit Reload Timer

The OUTL bit of the control register sets the output polarity. When OUTL = "0", the initial value
for toggle output is "0" and the one-shot pulse output is "1" while the count is in progress. The
output waveforms are opposite when OUTL = "1".

Figures 12.5-1 and 12.5-2 show the output pin functions.

Under?ow

TOUT

CNTE

Trigger

Under?ow

TOUT

CNTE

Trigger

Figure 12.5-1 Output Pin Function of 16-bit Reload Timer (1)

Count start

| | L

4

Level is opposite

when OUTL =*“1".

General-purpose port

[RELD=1, OUTL=0]

Figure 12.5-2 Output Pin Function of 16-bit Reload Timer (2)

| |

Levelis opposite
when OUTL = “1"

General-purpose port

|

<— Waiting for a trigger —>|

[RELD=0, OUTL=0]

153

CHAPTER 12 16-BIT RELOAD TIMER (WITH EVENT COUNT FUNCTION)

12.6 Counter Operation State

The counter state is determined by the CNTE bit in the control register and the internal
WAIT signal. Available states are: CNTE = "0" and WAIT = "1" (STOP state), CNTE = "1"
and WAIT = "1" (WAIT state for trigger), and CNTE ="1" and WAIT ="0" (RUN state).

m Counter Operation State

Figure 12.6-1 shows the transitions between each state.

Figure 12.6-1 Counter State Transitions

Reset
— State transitions by hardware
STOP CNTE=0, WAIT=1
—> State transitions by register access
Counter: Retains the value while
counting stopped.
Value undefined after reset.
CNTE='0"
CNTE="1" CNTE="1"
TRG='0' TRG="1"
WAIT | cNTE=1, WAIT=1 RUN CNTE=1, WAIT=0
Counter: Retains the value while . .
counting stopped. RELD-UE Counter: Running
Value undefined after reset until
load.
A
TRG='1' TRG="1'

RELD-UF

LOAD CNTE=1, WAIT=0

A

Load contents of the reload Load Complete

register to the counter.

154

CHAPTER 13 WATCH-DOG TIMER

This chapter explains the functions and operations of the watch-dog timer.

13.1 Outline of Watch Timer
13.2 Watch-dog Timer Registers

155

CHAPTER 13 WATCH-DOG TIMER

13.1 Outline of Watch Timer

The Watch Timer consists of the Timer Control register, Sub-second register, Second/
Minute/Hour registers, 1/2 clock divider, 21bit prescaler and Second/Minute/Hour
counters. The oscillation frequency of the MCU is assumed to be at 4MHz for the aimed
operation of the Watch Timer. The Watch Timer operates as the real-world timer and
provides the real-world time information.

m Block Diagram of Watch-dog Timer

Figure 13.1-1 shows a block diagram of the watch-dog timer.

Figure 13.1-1 Block Diagram of Watch-dog Timer

Oscillation OE O
clock 1/2 Clock 21bit Prescaler -
Divider cd ° WOT
EN
Sub-second
register

UPEI ST ‘_CISecond Counter| Minute Counter Hour Counter

EN
LOAD CQ CQ CQO

| Second/Minute/Hour register |

INTEO |NTT| |INTE1| INTL | |INTE2| INT2 | INT3 |NTT|

IRQ

156

13.2 Watch-dog Timer Registers

13.2 Watch-dog Timer Registers

The watch-dog timer has the following five types of registers:
» Timer control register (WTCR)

» Subsecond register (WTBR)

» Second register (WTSR)

* Minute register (WTMR)

* Hour register (WTHR)

m Watch-dog Timer Registers

Timer control register

7 6 5 4 3 2 1 0 <5 Bit number
Address: 000060+
‘ TSTZ‘ TSTl‘ TSTO ‘ — ‘ — ‘ UPDT ‘ OE ‘ ST ‘ WTCR
Read/write —, (RIW) (RW) (RW) — — (RW) (RW) (RIW)
Initial value = 0) 0) (O - 0) 0) 0)
Timer control register 15 14 13 12 11 10 9 8 <5 Bit number
Address: 000061+

Readiwrite . (RW) (RW) [RW) (RW) (RW) RW) RW) RW)

Initial value > (0) (0) (0) 0) (0) 0)) (0)
Sub-second register
7 6 5 4 3 2 1 0 < Bit number
Address: 00194Au

‘D7‘D6‘D5‘D4‘D3‘D2‘D1‘DO‘ WTBR

Readiwrite .y (RW) (RIW) (RW) (RW) (RW) (RMW) (RW) (RW)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

Sub-second register 15 14 13 12 11 10 9 8 <5 Bit number
Address: 00194Bu

‘DlS ‘ D14 ‘ D13 ‘ D12 ‘ D11 ‘Dlo ‘ D9 ‘ D8 ‘ WTBR

Readiwrite o, (RW) (RW) (RMW) (RW) (RW) [RW) (RW) (RW)
Initial value => X) X) X) (X) X))))

Sub-second register

Address: 00194Cn

‘f‘f‘—‘DZO‘DlQ‘DlS‘Dl7‘D16‘

Rg»ad/wrlte o —
Initial value => —

— RwW) RW) RW) RW) (RW)
— X) X) X) X))

Second register 15 14 13 12 11 10 9 8 ., Bitnumber
Address: 00194Dw
‘ — ‘ — ‘ S5 ‘ sS4 ‘ s3 ‘ s2 ‘ s1 ‘ S0 ‘ WTSR
Readiwrite ., __ — RW) RW) (RW) RW) (RMW) (RW)
Initial value => —))) (X) (X) (X)
Minute register
7 6 5 4 3 2 1 0 <o Bit number
Address: 00194Ex
‘ — ‘ — ‘ M5 ‘ M4 ‘ M3 ‘ M2 ‘ M1 ‘ Mo ‘ WTMR
Readiwrite ., — (RW) (RW) (RIW) (RW) (RW) (RW)
Initial value = ~ — (X) (X) (X) (X) X) X)
Hour register 15 14 13 12 11 10 9 8 <5 Bit number
Address: 00194FH
‘ — ‘ — ‘ — ‘ Ha4 ‘ H3 ‘ H2 ‘ HL ‘ HO ‘ WTHR
Read/write ., __ . RW) RW) RW) (RW) (RW)
Initial value = — —) X) X) X) X)

‘ INTE3‘ INT3‘ INTEZ‘ INT2 ‘ INTEl‘ INTL ‘ INTEO‘ INTO‘ WTCR

7 6 5 4 3 2 1 0 <5 Bit number
WTBR

157

CHAPTER 13 WATCH-DOG TIMER

13.2.1 Timer Control Register

The timer control register starts and stops the watch-dog timer, controls interrupts,
and sets the external output pins.

m Timer Control Register

158

Timer control register

7 6 5 4 3 2 1 0 < Bit number
Address: 000060+
TST2| TST1| TSTO | — — UPDT | OE ST WTCR
Read/write o, (RIW) (RW) (RW) — — RW) (RW) (RIW)
Initial value => (0) (0) o -) ©))
Timer control register 15 14 13 12 11 10 9 8 <5 Bit number
Address: 000061+

INTE3| INT3 | INTE2| INT2 | INTEL1| INTL | INTEO| INTO WTCR

Readiwrite . (Rw) (RMW) (RW) (RMW) (RW) (RW) (RW) (RW)
Initial value > (0) (0)) (0) (0) 0) (0))
[bits 15 to 8] INT3 to O, INTE3 to O : Interrupt flags and Interrupt enable flags

INTO to INT3 are the interrupt flags. They are set when the second counter, minute counter
and hour counter overflow respectively. If a INT bit is set while the corresponding INTE bit is
"1", the Watch Timer signals an interrupt. These flags are intended to signal an interrupt
every second/minute/hour/day.

Writing "0" to the INT bits clears the flags and writing "1" does not have any effect. Any read-
modify-write instruction performed on the INT bit results reading "1".

[bits 7 to 5] TST2 to 0 : Test bits

These bits are prepared for the device test. In any user applications, they should be set to
"000".

[bit 2] UPDT : Update bit
The UPDT bit is prepared for modifying the Second/Minute/Hour counter values.

To modify the counter values, write the modified data in the Second/Minute/Hour registers.
Then set the UPDT bit to "1". The register values are loaded to the counter at the next CO
signal from the 21-bit prescaler. The UPDT bit is reset by the hardware when the counter
values are updated. However, if the set operation by software and the reset operation by
hardware occur at the same time, the UPDT bit will not be reset.

Note:

If this bit is set during "59 second", normal up count operation is executed and this bit is reset
to "0" without reflecting the Second/Minute/Hour register values.

Writing "0" to the UPDT bit has no effect and a read-modify-write instruction results in
reading "0".

[bit 1] OE : Output enable bit
When the OE bit is set to "1", the WOT external pin serves as the output for the Watch

13.2 Watch-dog Timer Registers

Timer. Otherwise it can be used as a general purpose 1/O or for another peripheral block.
[bit 0] ST : Start bit

When the ST bit is set to "1", the Watch Timer loads Second/Minute/Hour values from the
registers and starts its operation. When it is reset to "0", all the counters and the prescalers
are reset to "0" and halts.

159

CHAPTER 13 WATCH-DOG TIMER

13.2.2 Sub-second Registers

The subsecond register stores a reload value for the 21-bit prescaler that divides the
oscillation clock. The reload value is usually set so that the 21-bit prescaler will output

exactly within a one-second cycle.

m Sub-second Register

Sub-second register

160

7 6 5 4 3 2 1 0 < Bit number
D7 D6 D5 D4 D3 D2 D1 DO WTBR

00194AH

Readiwrite ., (RW) (RW) (RW) (RW) (RW) (RMW) (RW) (RW)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

Sub-second register 15 14 13 12 11 10 9 8 <o Bit number

00194BH

D15 D14 D13 D12 D11 D10 D9 D8 WTBR

Readiwrite . (RW) (RW) (RW) (RW) (RW) (RMW) (RW) (RIW)
Initial value => (X) (X) X) (X) (X) X) X) X)

Sub-second register

7 6 5 4 3 2 1 0 <o Bit number
00194Cn
— | = | = D20 | D19 | D18 | D17 | D16 WTBR
Readiwrte .y — — — (RW) (RW) (RW) [RW) (RW)
Initial value = — — — — (X) (X) (X) (X) (X)

[bit 20 to 0] D20 to DO

The Sub-second register stores the reload value for the 21bit prescaler. This value is
reloaded after the reload counter reaches "0". Note that when modifying the all three bytes,
make sure the reload operation will not be performed in between the write instructions.
Otherwise the 21-bit prescaler loads the incorrect value of the combination of new data and
old data bytes. It is generally recommended that the Sub-Second register are updated while
the ST bit is "0". If the sub-second registers are set to "0", the 21-bit prescaler does not
operate at all.

The input clock frequency always equals the oscillation clock frequency and it is intended to
be 4MHz. The reload value of the 21bit prescaler is typically set to Hex1E847F which equals

to "27 * 55-1". Therefore the combination of these two prescalers is intended to provide a
clock signal of exact one second.

13.2 Watch-dog Timer Registers

13.2.3 Second/Minute/Hour Registers

The Second/Minute/Hour registers stores the time information. It is a binary
representation of the second, minute and hour.

Reading these registers simply returns the counter values. These registers are write
associable however, the written data is loaded in the counters after the UPDT bit is set
to "1".

m Second/Minute/Hour Registers

Second register 15 14 13 12 11 10 9 8 < Bit number
Address: 00194DH
— — | s5 sS4 s3 | s2 s1 | so WTSR
Readiwrite _, __ — (RW) RMW) (RW) (RMW) (RW) (RMW)
Initial value = — X) X) X)) X))
Minute register
7 6 5 4 3 2 1 0 b= Bit number
Address: 00194EH
_ | M5 | M4 | M3 | M2 | M1 MO WTMR
Readiwrite ., — — RW) (RW) RMW) (RW) (RMW) (RW)
Initial value &> ~ — — X) (X) (X) (X) (X) (X)
Hour register 15 14 13 12 11 10 9 8 <5 Bit number
Address: 00194Fu
— — | — | Ha4 H3 | H2 HL | Ho WTHR
Read/write _ _ — RW) RW) RW) (RW) (RW)
Initial value = __ _ _ X) X) X) X) X)

Since there are three byte-registers, make sure the obtained values from the registers are
consistent.

i.e. Obtained value of "1 hour, 59 minute, 59 second" could be "0 hour 59 minute, 59 second" or
"1 hour, 0 minute, 0 second" or "2 hour, 0 minute, 0 second".

Also when the operation clock of the MCU is the half of the oscillation clock (When the PLL is
stopped), the read values from these registers may be corrupt. This is due to the
synchronization of the read operation and the count operation. Therefore it is recommended is
use a second interrupt to trigger the read instructions.

161

CHAPTER 13 WATCH-DOG TIMER

162

CHAPTER 14 8/16-BIT PPG

This chapter explains the 8/16-bit PPG and explains its functions.

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Outline of 8/16-Bit PPG

Block Diagram of 8/16-Bit PPG

8/16-Bit PPG Registers

Operations of 8/16-Bit PPG

Selecting a Count Clock for 8/16-Bit PPG
Controlling Pin Output of 8/16-Bit PPG Pulses
8/16-Bit PPG Interrupts

Initial Values of 8/16-Bit PPG Hardware

163

CHAPTER 14 8/16-BIT PPG

14.1 Outline of 8/16-hit PPG

The 8/16-bit Programable Pulse Generator (PPG) consists of two eight-bit down
counters, four eight-bit reload registers, one 16-bit control register, two external pulse
output signals, and two interrupt outputs. The following functions are implemented:

m Function of 8/16-bit PPG

O 8-bit PPG output, 2-channel independent operation mode:

Two independent channels of PPG output operation are implemented.

0 16-bit PPG output operation mode:

One channel of 16-bit PPG output operation is implemented.

O 8+8-bit PPG output operation mode:
8-bit PPG output operation is implemented at specifies intervals, using channel 0 output as
channel 1 clock input.

O PPG output operation:

Pulse waves are output at specified intervals and duty ratio. With an external circuit, this module
can be used as a D/A converter.

The MB90590 Series contains six PPG's. The follwoing sections only describe the functionality
of the PPG 0/1. The remaining PPG's have the identical function and the register addresses
should be found in the 1/O map.

164

14.2 Block Diagram of 8/16-Bit PPG

14.2 Block Diagram of 8/16-Bit PPG

Figure 14.2-1 shows a block diagram of the 8/16-bit PPG (ch0). Figure 14.2-2 shows a
block diagram of the 8/16-bit PPG (chl).

m Block Diagram of 8/16-bit PPG

Figure 14.2-1 8-bit PPG chO Block Diagram

PPGO0O0 output enable
E PPGO00
—<—— Peripheral clock 16-division

—<—— Peripheral clock 8-division In MB90590 Series, this signal is not

= Pe”p.heral clock 4'd'V!S!°.” connected to any external pin.
—<——-7>peripheral clock 2-division

Peripheral clock

PPGO
Output latch

Invert Clear

——— PENO

In MB90590 Series, this IRQ signal
merged with the Channel 1 IRQ signal
PCNT S by OR logic.

Count clock —— (down counter) RQ IRQ
selection

Time base counter output

512-division of main clock ° chl-borrow

L/H selection

T
OOOO(:/
Py

PIEO

‘[PUFO
L data bus

]

: -——— Hdatabus
0 :
PPGCO

(Operation mode control)

165

CHAPTER 14 8/16-BIT PPG

Figure 14.2-2 8-bit PPG chl Block Diagram

PPG10 output enable
—
E PPG10

——=<——Peripheral clock 16-division

——<— Peripheral clock 8-division . L
Peripheral clock 4-division In MB90590 Series th!s pin is connected to
Peripheral clock 2-division the “PPGO” external pin.

PPG1
~| Output latch

Peripheral clock L

Invert Clear

Count clock
selection $— =—PENl |, MB90590 Series, this IRQ signal

merged with the Channel 0 IRQ signal
by OR logic.
ch0 borrowrf S
PCNT
(down counter) RQ IRQ

d5db4 i}
J

Time p§s§ counter.output Reload
512-division of main clock

L/H selection L/H selector
PRLL1 | | PRLBH1 |
[T O ﬁ FIE
PRLH1
PUF
L data bus
]

H data bus j

{
PPGC1

(Operation mode control)

166

14.3 8/16-Bit PPG Registers

14.3 8/16-Bit PPG Registers

The 8/16-bit PPG has the following five types of registers:
PPGO operation mode control register

PPG1 operation mode control register

PPGO, 1 operation mode control register

Reload register H

Reload register L

8/16-bit PPG Registers

PPGO operation mode control register

6 5 4 3 2 1 0 <= Bit No.
Address: ch0 000038H o
| PENO‘ — ‘PEOO ‘PIEO ‘PUFO‘ — ‘ — ‘Reserved |
- PPGCO
Readwrite => [RMW) () (RW) (RW) (RW) (9) (W)
Initial value — => (0) (-) ©) (0)))) (1)
PPG1 operation mode control register
15 14 13 12 11 10 9 8 <= Bit No.
Address: chO 000039H ---
|PEN1‘ — FElo ‘PIEl ‘PUFﬂ MDl‘ MDO‘R959W9d|
, --- PPGC1
Readwrite RW) () RW) RW) RW) RW) RW) (W)
Initial value = © (0) (0) (0) (0) (0) 1)
PPGO0,1 output control register 7 6 5 4 3 2 1 0 <= Bit No.
Address: ch0 1 003AH - -
| PCSZ‘ PCS1 ‘ PCSO‘ PCMZ‘PCMI‘PCMO ‘ — ‘ — |
, - PPGO1
Readiwrite —, (R/W) (RW) RW) RW) RW) RW) O)
Initial value =, 0 (O (0) (0) (0) (0) Q] Q]
15 14 13 12 11 10 9 8 <= Bit No.
Reload register H T T T T T] T] —T - -
Address: ch0 001901H
ch1 001903H - PRLH
Readiwrite = (RW) (RW) (RW) (RW) (RW) (RIW) (RW) (R/W)
Initial value => (X) (X) X X X X X (X)
7 6 5 4 3 2 1 0 <= Bit No.
Reload register L T T] T o 1]]
Address: ch0 001900H o
ch1 001902H N PRLL
Read/write = (R/W) (RIW) (RW) (RW) (RIW) (RIW) (RW) (R/W)
Initial value => (X) (X) < X X < X (X)

167

CHAPTER 14 8/16-BIT PPG

14.3.1 PPGO Operation Mode Control Register (PPGCO)

PPGCO is a five-bit control register that selects the operation mode of the block,
controls pin outputs, selects count clock, and controls triggers.

m PPGO Operation Mode Control Register (PPGCO)

PPGO operation mode control register

Address: chO, 000038H7 B 7 6 5 4 3 2 1 0 <— Bit No.
PENO - PEOO PIEO PUFO - - Reserved PPGCO
Read/write = == (R/w) () RW) RW) RW) () ©) W)
Initial value 0) O) ©)) ¢ © @

[bit 7] PENO (PPG enable): Operation enable bit

This bit enables the counter operation of the PPG.

PENO Operation
0 Stop ('L' level output maintained)
1 PPG operation enabled

Setting this bit to 1 enables the counter operation.
This bit is initialized to '0' upon a reset. This bit is readable and writable.
[bit 5] PEOO (PPG output enable 00): PPGO0O pin output enable bit

This bit controls the PPGO0O pulse output external pin as described below.

0 General-purpose port pin (pulse output disabled)

1 PPGO0O0 = pulse output pin (pulse output enabled)

This bit is initialized to '0' upon a reset. This bit is readable and writable.
For MB90590 Series, this bit should always be set to "0".
[bit 4] PIEO (PPG interrupt enable): PPG interrupt enable bit

This bit controls PPG interrupt as described below.

0 Interrupt disabled

1 Interrupt enabled

While this bit is "1", an interrupt request is issued as soon as PUFO is set to "1". No interrupt
request is issued while this bit is set to "0".

This bit is initialized to '0" upon a reset. This bit is readable and writable.

168

14.3 8/16-Bit PPG Registers

[bit 3] PUFO (PPG underflow flag): PPG counter underflow bit

This bit indicates the PPG counter underflow as described below.

0 PPG counter underflow is not detected.

1 PPG counter underflow is detected.

In 8-bit PPG 2-channel mode or 8-bit prescaler + 8-bit PPG mode, this bit is set to "1" when
an underflow occurs as a result of the chO counter value becoming from 0O0H to FFH. In 16-
bit PPG mode, this bit is set to "1" when an underflow occurs as a result of the Channel 0
and 1 counter value becoming from 0000H to FFFFH. To set this bit to '0," write '0." Writing 1’
to this bit has not effect. Upon a read operation during a read-modify-write instruction, '1' is
read.

This bit is initialized to '0' upon a reset. This bit is readable and writable.
[bit O]
This is a reserved bit. When setting PPGCO, always set this bit to 1.

169

CHAPTER 14 8/16-BIT PPG

14.3.2 PPG1 Operation Mode Control Register (PPGC1)

PPGCO is a seven-bit control register that selects the operation mode of the block,
controls pin outputs, selects count clock, and controls triggers.

m PPG1 Operation Mode Control Register (PPGC1)

PPGL1 operation mode 15 14 13 12 11 10 9 8 <= BitNo.
control register -
Address: ch1 000039H PEN1 - PE10 PIE1 PUF1 MD1 MDO Reserved PPGC1
Readjwrite == (R/w)) RW) (RW) (RW) (RW) (RW) (W)
Initial value ~— => 0)) (0) (0) ©) (0) (0))

[bit 15] PEN1 (PPG enable): Operation enable bit

This bit enables the counter operation of the PPG.

PEN1 Operation
0 Stop ('L' level output maintained)
1 PPG operation enabled

Setting this bit to 1 enables the counter operation.
This bit is initialized to '0' upon a reset. This bit is readable and writable.
[bit 13] PE10 (PPG output enable 10): PPG10 pin output enable bit

This bit controls the PPG10 pulse output external pin as described below.

0 General-purpose port pin (pulse output disabled)

1 PPG10 = pulse output pin (pulse output enabled)

This bit is initialized to '0" upon a reset. This bit is readable and writable.
For MB90590 Series , the pulse signal is output to the "PPGO0" external pin.
[bit 12] PIEL1 (PPG interrupt enable): PPG interrupt enable bit

This bit controls PPG interrupt as described below.

0 Interrupt disabled

1 Interrupt enabled

While this bit is "1", an interrupt request is issued as soon as PUF1 is set to "1". No interrupt
request is issued while this bit is set to "0".

This bit is initialized to '0" upon a reset. This bit is readable and writable.

170

14.3 8/16-Bit PPG Registers

[bit 11] PUF1 (PPG underflow flag): PPG counter underflow bit

This bit indicates the PPG counter underflow as described below.

0 PPG counter underflow is not detected.

1 PPG counter underflow is detected.

In 8-bit PPG 2-channel mode or 8-bit prescaler + 8-bit PPG mode, this bit is set to "1" when
an underflow occurs as a result of the Channel 1 counter value becoming from 00H to FFH.
In 16-bit PPG mode, this bit is set to "1" when an underflow occurs as a result of the Channel
0 and 1 counter value becoming from 0000H to FFFFH. To set this bit to '0," write '0." Writing
'1' to this bit has not effect. Upon a read operation during a read-modify-write instruction, '1'
is read.

This bit is initialized to '0' upon a reset. This bit is readable and writable.
[bit 10, 9] MD1, 0 (PPG count mode): Operation mode selection bit

This bit selects the PPG timer operation mode as described below.

MD1 MDO Operation mode
0 0 8-bit PPG 2ch independent mode
0 1 8-bit prescaler + 8-bit PPG 1ch mode
0 0 Reserved
0 1 16-bit PPG 1ch mode

This bit is initialized to '00' upon a reset. This bit is readable and writable.
Note:
Do not set '10' in this bit.

To write '01' to this bit, ensure that '01' is not written to the PENO bit of PPGCO or PEN1 bit of
PPGC1. Write '11' or '00' in both the PENO and PENL1 bits simultaneously.

To write '11' to this bit, update PPGCO0 and PPGC1 by word transfer and write '11' or '00' to
both the PENO and PEN1 bits simultaneously.

[bit 8] This is a reserved bit. When setting PPGC1, always write 1 to this bit.

171

CHAPTER 14 8/16-BIT PPG

14.3.3 PPGO, 1 Output Control Register (PPG01)

The PPGO, 1 output control register (PPGO01) is an 8-bit control register that controls
the pin output of the 8/16-bit PPG.

m PPGO, 1 Clock Select Register (PPGO01)

PPGO, 1 output control register

Address: ch0, 1 003AH 7 6 5 4 3 2 1 0 <= Bit No.
PCS2 PCS1 PCSO PCM2 PCM1 PCMO —_— e PPGO1
Readwrite = ®w) (RW) RW) (RW) RW) (RW)))
Initial value == (g ©) ©) ©) ©) 0 ¢

[bits 7 to 5] PCS2 to 0 (PPG count select): Count clock selection bit

These bits select the operation clock for the down counter of Channel 1 as described below.

PCS2 | PCS1 | PCSO Operation mode

0 0 0 Peripheral clock (62.5-ns machine clock, 16 MHz)

0 0 1 Peripheral clock/2 (125-ns machine clock, 16 MHz)

0 1 0 Peripheral clock/4 (250-ns machine clock, 16 MHz)

0 1 1 Peripheral clock/8 (500-ns machine clock, 16 MHz)

1 0 0 Peripheral clock/16 (1-us machine clock, 16 MHz)

1 0 1 Clopk ipput fromthe time base timer (128-us, 4-MHz source

oscillation)

This bit is initialized to '000" upon a reset. This bit is readable and writable.
Note:

In 8-bit prescaler + 8-bit PPG mode or in 16-bit PPG mode, chl PPG operates in response
to a counter clock from chO. Therefore, the setting in these bits has no effect.

[bits 4 to 2] PCM2 to 0 (PPG count mode): Count clock selection bit

These bits select the operation clock for the down counter of Channel 0 as described below.

PCS2 PCS1 PCSO Operation mode
0 0 0 Peripheral clock (62.5-ns machine clock, 16 MHz)
0 0 1 Peripheral clock/2 (125-ns machine clock, 16 MHz)
0 1 0 Peripheral clock/4 (250-ns machine clock, 16 MHz)
0 1 1 Peripheral clock/8 (500-ns machine clock, 16 MHz)

172

14.3 8/16-Bit PPG Registers

PCS2 PCS1 PCSO Operation mode
1 0 0 Peripheral clock/16 (1-us machine clock, 16 MHz)
1 0 1 Clock input from the time base timer (128-us, 4-MHz

source oscillation)

This bit is initialized to '000" upon a reset. This bit is readable and writable.

173

CHAPTER 14 8/16-BIT PPG

14.3.4 Reload Register (PRLL/PRLH)

The reload registers (PRLL and PRLH) are 8-bit registers that store reload values for
the PCNT down counters. The PRLL and PRLH registers are readable and writable.

m Reload Register (PRLL/PRLH)

174

15 14 13 12 11 10 9 8 <= Bit No.
Reload register H T T T 7]]] 7 T - -
Address: ch0 001901H - - - - - - -
ch1 001903H - PRLH

Readiwrite => (RW) (RW) (RW) (RW) (RW) (RW) (RMW) (RMW)
Initial value — => (X) (X3 X X) X) (X) (X) (X)

7 6 5 4 3 2 1 0 <= Bit No.
Reload register L I T T P B B B e -
Address: ch0 001900H o
ch1 001902H PRLL

=> (RW) RW) (RW) (RW) (RW) RW) (RW) (RW)
=> X)X x X & X X X)

Register name Function
0 Holds the L side reload value.
1 Holds the H side reload value.
Note:

In 8-bit prescaler + 8-bit PPG mode, different values in PRLL and PRLH of Channel 0 may
cause the PPG waveform of chl to vary in each cycle. Write the same value to PRLL and
PRLH of chO.

14.4 Operations of 8/16-bit PPG

14.4 Operations of 8/16-bit PPG

One 8/16-bit PPG consists of two channels of 8-bit PPG units. These two channels can
be used in three modes: independent two-channel mode, 8-bit prescaler + 8-bit PPG
mode, and single-channel 16-bit PPG mode.

m Operations of 8/16-bit PPG

Each of the 8-bit PPG units has two eight-bit reload registers. One reload register is for the L
pulse width (PRLL) and the other is for the H pulse width (PRLH). The values stored in these
registers are reloaded into the 8-bit down counter (PCNT), from the PRLL and PRLH in turn.
The pin output value is inverted upon a reload caused by counter borrow. This operation results
in the pulses of the specified L pulse width and H pulse width.

Table 14.4-1 lists the relationship between the reload operation and pulse outputs.

Table 14.4-1 Reload Operation and Pulse Output

Reload operation Pin output change
PRLH => PCNT PPGO/1[0=>1] Rise
T
PRLL => PCNT PPGO/1[1=>0] Fall
1

When 1 is set in bit 4 (PIEQO) of PPGCO or in bit 12 (PIE1) of PPGC1, an interrupt request is
output upon a borrow from 00 to FF (from 0000 to FFFF in 16-bit PPG mode) of each counter.

m Operation Modes of 8/16-bit PPG
This block can be used in three modes: independent two-channel mode, 8-bit prescaler + 8-bit
PPG mode, and single-channel 16-bit PPG mode.
O Independent two-channel mode
The two channels of 8-bit PPG units operate independently. The PPGOO pin is connected to the
ch0 PPG output, while the PPG10 pin is connected to the chl PPG output.
O 8-bit prescaler + 8-bit PPG mode

chO is used as an 8-hit prescaler while the count in chl is based on borrow outputs from chO.
Thus, 8-bit PPG waveforms can be output with arbitrary length of cycle time. The PPGOO pin is
connected to the chO prescaler output, while the PPG10 pin is connected to the chl PPG
output.

O 16-bit PPG 1ch mode

ch0 and chl are connected and used as a single 16-bit PPG. The PPGO00 and PPG10 pins are
connected to the 16-bit PPG output.

For the MB90590 Series, the output signal from the Channel 0 PPG is not connected to any
external pin.

175

CHAPTER 14 8/16-BIT PPG

m 8/16-bit PPG Output Operation

PEN
Output pin
PPG

In this block, the chO PPG is activated to start counting when '1' is written to bit 7 (PENO) of the
PPGCO (PWM operation mode control) register. Similarly, the chl PPG is activated to start
counting when '1' is written to bit 15 (PEN1) of the PPGC1 register. Once the operation has
started, counting is terminated by writing '0' to bit 7 (PENO) of PPGCO or in bit 15 (PEN1) of
PPGCL1. Once the counting is terminated, the output is maintained at the L level.

For the MB90590 Series, the output signal from the Channel 0 PPG is not connected to any
external pin.

In 8-bit prescaler + 8-bit PPG mode, do not set chl to be in operation while chO operation is
stopped.

In 16-bit PPG mode, ensure that bit 7 (PENO) of PPGCO register and bit 15 (PEN1) of PPGC1
register are started or stopped simultaneously. The figure below is a diagram of PPG output
operation. During PPG operation, a pulse wave is continuously output at a frequency and duty
ratio (the ratio of the H-level period of the pulse wave to the L-level period). PPG continues
operation until stop is specified explicitly.

Figure 14.4-1 PPG Output Operation, Output Waveform

4 2.Starts operation based on PEN (from Lside). |
’ []

Tx(L+l) | T x (H+D) L © PRLL value
H : PRLH value

T : Inputfrom peripheral clock (&, & /4, &/16)
or timer base counter (depending on the
clock selection by PPGC)

(Start)

m Relationship Between 8/16-bit PPG Reload Value and Pulse Width

176

The width of the output pulse is determined by adding 1 to the reload register value and
multiplying it by the count clock cycle. Note that when the reload register value is 00y during 8-
bit PPG operation or 0000y during 16-bit PPG operation, the pulse width is equivalent to one
count clock cycle. In addition, note that when the reload register value is FFy during 8-PPG
operation, the pulse width is equivalent to 256 count clock cycles. When the reload register
value is FFFFy during 16-bit PPG operation, the pulse width is equivalent to 65536 count clock
cycles.

L : PRLL value
P1=T x (L+1) H : value
Ph=T x (H+1) T : Inputclock cycle
Ph : High pulse width
Pl : Low pulse width

14.5 Selecting a Count Clock for 8/16-Bit PPG

14.5 Selecting a Count Clock for 8/16-Bit PPG

The count clock used for the operation is supplied from the peripheral clock or the
time base timer. The count clock can be selected from six choices.

m Selecting a Count Clock for 8/16-bit PPG

Select chO clock at bit 4 to 2 (PCM2 to 0) of the PPGO1 register, and chl clock at bit 7 to 5
(PCS2 to 0) of the PPGOL1 register.

The clock is selected from a peripheral clock 1/16 to 1 times higher than a machine clock or an
input clock from the time base timer.

In 8-bit prescaler + 8-bit PPG mode or 16-bit PPG mode, however, the setting in the PCS2 to 0
has no effect.

When the time base timer input is used, the first count cycle after a trigger or a stop may be
shifted. The cycle may also be shifted if the time base counter is cleared during operation of this
module.

In 8-bit prescaler + 8-bit PPG mode, if chl is activated while chO is in operation and chl is
stopped, the first count cycle may be shifted.

177

CHAPTER 14 8/16-BIT PPG

14.6 Controlling Pin Output of 8/16-bit PPG Pulses

The pulses generated by this module can be output from external pins PPG00 and

PPG10.

m Controlling Pin Output of 8/16-bit PPG Pulses

178

To output the pulses from an external pin, write '1' to the bit corresponding to each pin. When '0'
is written to these bits (default), the pulses are not output from the corresponding external pins;
the pins work as general-purpose ports.

In 16-bit PPG mode, the same waveform is output from PPG0O0 and PPG10. Thus, the same
output can be obtained by enabling both external pin.

In 8-bit prescaler + 8-bit PPG mode, the 8-bit prescaler toggle output waveform is output from
PPGO0O0, while the 8-bit PPG waveform is output from PPG10. Figure 14.6-1 is a diagram of
output waveforms in this mode.

For the MB90590 Series, the output signal from the Channel 0 PPG is not connected to any

external pin.

Figure 14.6-1 8+8 PPG Output Operation Waveform

'PhO + PIO"

Phl

PIO=T x (LO+1)
PhO=T x (LO+1)
PIL=T x (LO+1) x (LI+1)
Phl1=T x (LO+1) x (HI+1)

Note:

Set the same value in chO PRLL and chO PRLH.

PI1

Egligigiplig

LO :
L1 :
H1 :

Pho :
PIO :
Ph1 :
PI1 :

chO PRLL value and chO PRLH value
chl PRLL value

chl PRLH value

Input clock cycle

PPGO0O0 and 01 high pulse width
PPGO00 and 01 low pulse width
PPG10 and 11 high pulse width
PPG10 and 11 low pulse width

14.7 8/16-bit PPG Interrupts

14.7 8/16-bit PPG Interrupts

For the 8/16-bit PPG, an interrupt becomes active when the reload value counts out
and a borrow occurs.

m 8/16-bit PPG Interrupts

In 8-bit PPG 2ch mode or 8-bit prescaler + 8-bit PPG mode, an interrupt is requested by a
borrow in each counter. In 16-bit PPG mode, PUGO and PUF1 are simultaneously set by a
borrow in the 16-bit counter. Therefore, enable only PIEO or PIE1 to unify the interrupt causes.
In addition, simultaneously clear the interrupt flags for PUFO and PUF1.

179

CHAPTER 14 8/16-BIT PPG

14.8

Initial Values of 8/16-bit PPG Hardware

The hardware components of this block are initialized to the following values when

reset:

m |nitial Values of 8/16-bit PPG Hardware

180

<Registers>

« PPGCO -> 0X000001B
« PPGC1 -> 00000001B
e« PPG10 -> XXXXXX00B

<Pulse outputs>

e PPGOO -> 'L

« PPG10 -> 'L

e PEOO -> PPGOO output disabled
e PE10 -> PPG10 output disabled

<Interrupt requests>
* |IRQO -> 'L
* IRQ1 -> I

Hardware components other than the above are not initialized.

Note:

In a mode other than 16-bit PPG mode, it is recommended to use a word transfer instruction
to write data in reload registers PRLL and PRLH. If two byte transfer instructions are used to
write a data item to these registers, a pulse of unexpected cycle time may be output

depending on the timing.

Figure 14.8-1 Write Timing for 8/16-bit PPG Reload Registers (PRLL and PRLH)

e &

A ; ‘ A

)

D—=<=<—D—>

Assume that PRLL is updated from A to C before point 1 in the time chart above, and PRLH is
updated from B to D after point 1. Since the PRL values at point 1 are PRLL=C and PRLH=B, a

pulse of L side count value C and H side count value B is output only once.

Similarly, to write data in PRL of chO and chl in 16-bit PPG mode, use a long word transfer
instruction, or use word transfer instructions in the order of chO and then chl. In this mode, the
data is only temporarily written to chO PRL. Then, the data is actually written into chO PRL when

the chl PRL is written to.

In a mode other than 16-bit PPG mode, ch0 and chl PRL are written independently.

14.8 Initial Values of 8/16-bit PPG Hardware

Figure 14.8-2 PRL Write Operation Block Diagram

ch0 PRL write data

ch0 write in a mode other
than 16-bit PPG mode

chl PRL write data

Transferred in synchronization

| Temporary latch

chO PRL |

with chl write in 16-bit
PPG mode

chl write

chl PRL

181

CHAPTER 14 8/16-BIT PPG

182

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

This chapter explains the functions and operations of the DTP/external interrupts.

15.1 Outline of DTP/External Interrupts

15.2 DTP/External Interrupt Registers

15.3 Operations of DTP/External Interrupts

15.4 Switching Between External Interrupt and DTP Requests
15.5 Notes on Using DTP/External Interrupts

183

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.1 Outline of DTP/External Interrupts

The data transfer peripheral (DTP) is located between an external peripheral and the
F2MC-16LX CPU. The DTP receives a DMA request or interrupt request from the

external peripheral, transfers the requesttothe F~ 2MC-16LX CPU to activate the
intelligent 1/0O service or interrupt processing.

m Outline of DTP/External Interrupts

For the intelligent 1/O service, 'H' and 'L' request levels are available. For an external interrupt
request, four request levels are available: 'H,' 'L,' rising edge, and falling edge.

For the MB90590 Series, the external bus interface is not supported. Therefore the DTP/
External Interrupt can not serve as the data transfer peripheral. It can be only used as the
External Interrupt.

For MB90V590, there are only four external pins assigned to this block. Therefor the external
interrupt channel 4 to 7 are not supported. These external interrupts should be disabled.

m Block Diagram of DTP/External Interrupts

184

Figure 15.1-1 Block Diagram of DTP/External Interrupts

Interrupt/DTP enable register ‘

Gate M Cause FIF M Edge detection circuit@ Request input

Interrupt/DTP cause register ‘

16 Request level setting register }7

FhE

m DTP/external Interrupts Registers

bit
Address : 000030y
bit
Address : 000031y
bit
Address : 000032y

bit
Address : 000033y

15.1 Outline of DTP/External Interrupts

7 6 5 4 3 2 1 0
EN7 | EN6 | EN5 | EN4 | ENS3 EN2 EN1| ENO
15 14 13 12 11 10 9 8
ER7 | ER6 | ER5 | ER4 | ER3 ER2 ER1| ERO
7 6 5 4 3 2 1 0
LB3 | LAS LB2 | LA2 LB1 LA1 LBO | LAO
15 14 13 12 11 10 9 8
LB7 | LA7 LB6 | LA6 | LB5 LAS LB4 | LA4

Interrupt/DTP enable register
(ENIR)

Interrupt/DTP cause register
(EIRR)

Request level setting register
(ELVR)

Request level setting register
(ELVR)

185

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.2 DTP/External Interrupt Registers

The DTP/external interrupts has the following three types of registers:
Interrupt/DTP enable register (ENIR: Interrupt request enable register)
Interrupt/DTP flag (EIRR: External interrupt request register)

Request level setting register (ELVR: External level register)

Interrupt/DTP Enable Register (ENIR: Interrupt request enable register)

7 6 5 4 3 2 1 0 Initial value

ENIR
Address : 000030y | EN7 | EN6 | EN5| EN4 | EN3| EN2 | EN1| ENO| 00000000g

RW RW RW RW RW R/W RW R/W

ENIR enables the function to issue a request to the interrupt controller using a device pin as an
external interrupt/DTP request input. A pin corresponding to a '1' bit of this register is used as an
external interrupt/DTP request input. A pin corresponding to a '0' bit holds the external interrupt/
DTP request input cause, but does not issue a request to the interrupt controller.

m Interrupt/DTP Flags (EIRR: External interrupt request register)

15 14 13 12 11 10 9 8 Initial value
EIRR
Address : 000031 ER7 | ERG6 ER5 | ER4 | ER3 ER2 ER1 | ERO | XXXXXXXX g

R/W R/W R/W R/W R/W R/W RW R/W - The objects differ
for R and W.

The EIRR indicates the presence of external interrupt/DTP requests at the pins corresponding
to the '1' bits of this register. Writing '0' to a bit of this register clears the corresponding request
flag. Writing '1' has no effect. '1' is always read from this register by a read-modify-write
instruction.

186

15.2 DTP/External Interrupt Registers

m Request Level Setting Register (ELVR: External level register)

Address : 000032

Address : 000033

7 6 5 4 3 2 1 0 Initial value
LB3 | LA3 | LB2 | LA2 | LB1 LA1 LBO | LAO 00000000g
RW RW RW RW R/W R/W RW R/W
7 6 5 4 3 2 1 0 Initial value
LB7 | LA7 LB6 | LA6 | LB5 LAS LB4 | LA4 | 00000000g
RW RW RW RW R/W R/W RW R/W

ELVR defines the request event at the external pin. Each pin is assigned two bits as described
in Table 15.2-1. If a request is detected by the input level, the interrupt flag is set as long as the
input is at the specified level even after the flag is reset by software.

Table 15.2-1 Interrupt Request Detection Factor for LBx and LAx Pins

LBx LAX Interrupt request detection factor
0 0 L level pin input
0 1 H level pin input
1 0 Rising edge pin input
1 1 Falling edge pin input

187

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.3 Operations of DTP/External Interrupts

When the interrupt flag is set, this block signals an interrupt to the interrupt controller.
The interrupt controller judges the priority levels of the simultaneous interrupts, and

issues an interrupt request to the F~ 2MC-16LX CPU if the interrupt from this block has

the highest priority. The F 2MC-16LX CPU compares the ILM bits of its internal CCR
register and the interrupt request. If the interrupt level of the request is higher than

that indicated by the ILM bits, the F °MC-16LX CPU activates the hardware interrupt
processing microprogram as soon as the currently executing instruction is terminated.

m External Interrupt Operation

In the hardware interrupt processing microprogram, the CPU reads the ISE bit information from
the interrupt controller, identifies that the request is for interrupt processing based on that
information, and branches to the interrupt processing microprogram. The interrupt processing
microprogram reads the interrupt vector area and issues an interrupt acknowledgment signal for
the interrupt controller. Then, the microprogram transfers the jump destination address of the
macro instruction generated from the vector to the program counter, and executes the user
interrupt processing program.

Figure 15.3-1 External Interrupt

External interrupt/DTP Interrupt controller F?MC-16CPU
Other request

ELVR ICR,,
] |

EIRR
ENIR

ICRy ILM
Cause—>}- - - oo ___. j NTA

188

15.3 Operations of DTP/External Interrupts

m DTP operation

To activate the intelligent 1/O service, the user program initially sets the address of a register,
assigned between 000000y, and O00OFFy, in the I/O address pointer of the intelligent I/O
service descriptor. Then, the user program sets the start address of the memory buffer in the
buffer address pointer.

The DTP operation sequence is almost the same as for external interrupts. The operation is
identical until the CPU activates the hardware interrupt processing microprogram. Then, for the
DTP, control is transferred to the intelligent I/O service processing microprogram, since the ISE
bit read by the CPU within the hardware interrupt processing microprogram indicates the DTP.
Once the intelligent 1/0O service is activated, a read or write signal is sent to the addresses
external peripheral, and data is transferred between the peripheral and the chip. The external
peripheral must cancel the interrupt request to this chip within three machine cycles after the
transfer is made. When the transfer is completed, the descriptor is updated, and the interrupt
controller generates a signal that clears the transfer cause. Upon receiving the signal to clear
the transfer cause, this resource clears the flip-flop holding the cause and prepares for the next
request from the pin. For details of the intelligent I/O service processing, refer to the MB90700
Programming Manual.

Figure 15.3-2 Timing to Cancel the External Interrupt at the End of DTP Operation

Internal operation J ? Edge request or H level request L

Interrupt cause

Address bus pin

Data bus pin >< Read data>< >< Write data ><

Read signal) 0

Write signal - -
0

* When data is transferred from the 1/O register to memory

Selecting and in the intelligent 1/O service

reading
descriptor

>< Read address >< Write address ><

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
'
|
|
|
=

Cancel within three machine cycles.

External peripheral

Cancel within three machine
cycles after transfer.

Figure 15.3-3 Sample Interface to the External Peripheral

ata, address
K ? bus < Internal bus >

Register

INT
DTP CORE MEMORY

N

MB90590

189

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

15.4 Switching between External Interrupt and DTP Requests

To switch between external interrupt and DTP requests, use the ISE bit in the ICR
register corresponding to this block, which is in the interrupt controller. Each pin is
individually assigned ICR. Thus, a pin is used for a DTP request if '1' is written to the
ISE bit of the corresponding ICR, and is used for an external interrupt request if ‘0" is

written to the bit.

m Switching Between External Interrupt and DTP Requests

Figure 15.4-1 Switching Between External Interrupt and DTP Requests

Pin

External
interrupt/DTP

— Interrupt controller

ICR | 0

Ryy‘

:

ic 1

190

- -r

I 1//

F2MC-16 CPU

[

DTP
External interrupt

15.5 Notes on Using DTP/External Interrupts

15.5 Notes on Using DTP/External Interrupts

Note carefully the following items when using DTP/external interrupts:

Conditions on the externally connected peripheral when DTP is used
Recovery from standby

External interrupt/DTP operation procedure

External interrupt request level

Notes on Using DTP/External Interrupts

0 Conditions on the externally connected peripheral when DTP is used

DTP supports only external peripherals that automatically clear a request once a transfer is
completed. The system must be designed so that a transfer request is canceled within three
machine cycles (provisional) after transfer operation starts. Otherwise, this resource assumes
that a transfer request is issued.

O Recovery from standby

To use an external interrupt to recover from the standby state in clock stop mode, use an H
level request as an input request. A L level request may result in misoperation. If an edge
request is used, recovery from the standby state in clock stop mode cannot be performed.
O External interrupt/DTP operation procedure
To set registers in the external interrupt/DTP, follow the steps below:
1. Disable the bits corresponding to the enable register.
2. Set the bits corresponding to the request level setting register.
3. Clear the bits corresponding to the cause register.
4. Enable the bits corresponding to the enable register.
(Steps 3. and 4. can be simultaneously performed by word specification.)

To set a register in this resource, ensure that the enable register is disabled. Before enabling
the enable register, ensure that the cause register is cleared. Clearing the cause register
prevents a false interrupt cause from being determined while registers are set or interrupts are
enabled.

O External interrupt request level

To detect an edge for an edge request level, the pulse width must be at least three machine
cycles.

As shown in Figure 15.5-1, when the request input level is related to the level setting, a request
that is input from an external device to the interrupt controller is kept active even if the request is
later canceled because a cause hold circuit has been installed. To cancel the request to the
interrupt controller, the cause hold circuit must be cleared as shown in Figure 15.5-2.

191

CHAPTER 15 DTP/EXTERNAL INTERRUPTS

Figure 15.5-1 Clearing the Cause Hold Circuit Upon Level Set

Level detection — Interrupt cause

Cause F/F (cause hold circuit)

/

The cause is kept held unless cleared.

Enable gate

To interrupt

—=
controller

Figure 15.5-2 Interrupt Cause and Interrupt Request to the Interrupt Controller While Interrupts are

Enabled

Interrupt cause 7‘

Interrupt request to
the interrupt controller

192

H level

Set inactive when the cause F/F is cleared.

CHAPTER 16 A/D Converter

This chapter explains the functions and operations of the A/D converter.

16.1 Features of A/D Converter

16.2 Block Diagram of A/D Converter
16.3 A/D Converter Registers

16.4 Operations of A/D Converter
16.5 Conversion Using EI?0S

16.6 Conversion Data Protection

193

CHAPTER 16 A/D Converter

16.1 Features of A/D Converter

The A/D converter converts analog input voltages into digital values. The A/D
converter has the following features:

m Features of A/D converter

O Conversion time:

26.3 ps min. per channel (at 16 MHz machine clock)
0 RC sequential compare conversion with sample and hold circuit
0 10-bit resolution

O Analog input selected from eight channels by programming
Single conversion mode: One channel is selected for conversion.

Scan conversion mode: Voltages in multiple consecutive channels are converted. Up to eight
channels can be programmed.

Continuous conversion mode: Voltages at the specified channel are converted repeatedly.

Stop conversion mode: Voltages at the specified channel are converted, then the system

pauses and stands by for the next activation. (The conversion start points can be synchronized.)
O Interrupt request

At the end of A/D conversion, a relevant interrupt request can be issued to the CPU. This

interrupt can be used to activate the EI?0OS, which automatically transfers A/D conversion result
to memory. This feature is suitable for continuous processing.

00 Selectable activation cause

The activation can be done by software, external trigger (falling edge), or timer (rising edge).

194

m Analog Input Enable Register
Always write '1' to the ADER bit corresponding to a pin used as analog input.

16.1 Features of A/D Converter

bit 15 14 13 12 11 10 9 8
Address: 00001By| ADE7 | ADE6 | ADE5 | ADE4 | ADE3 | ADE2 | ADEl | ADEO
RW RW RW RW RW RW RW RW

Port 6 pins are controlled as described below.
0: Port input/output mode
1: Analog input mode

1" is set upon a reset.

®m Input Impedance

Initial value
111111115

The sampling circuit of the A/D Converter can be represented with the equivalent circuit shown

below.

3.12K ohm max.

Analog input I>

ADC

Driving impedance to an analog input should be lower than 15.5K ohm when the sampling time
is set to 4us (ST=0 and ST0=0 at 16MHz machine clock). Otheriwse the conversion accuracy
will be worsened. If this is the case, set the sampling time longer (ST1=1 and STO0=1) or add
external capacitor in order to compensate the driving impedance.

195

CHAPTER 16 A/D Converter

16.2 Block Diagram of A/D Converter

Figure 16.2-1 shows a block diagram of the A/D converter.

m Block Diagram of A/D Converter

Figure 16.2-1 Block Diagram of A/D Converter

AVCC
AVR +

AVSS

D/A converter

MPX
ANO —
AN1 — =
AN2—= ©
AN3 —= © Sequential compare register
AN4 —=| §
AN5 —= — 1 |
ANG ; ; ; Comparator
AN7 —= : ‘
Sample and hold circuit
g Data register
§ ADCRO, 1
o}
A/D control register 0
A/D control register 1
Activation by external trigger ADCSO0, 1
ADTG
Activation by timer)
16-bit Reload Timer 1 Operation clock
Q§ Prescaler

196

Data bus

16.3 A/D Converter Registers

16.3 A/D Converter Registers

The A/D converter has the following two types of registers:
» Control status resister
» Data register

m A/D Converter Registers

Figure 16.3-1 A/D Converter Register Configuration

15 8 7
ADCS1 ADCSO0
ADCR1 ADCRO
<=—— 8hit 8bit ——
bit 7 6 5 4 3 2 1 0

Address : 000034y | MD1 | MDO | ANS2 | ANS1| ANSO| ANE2 | ANE1| ANEO

bit 15 14 13 12 11 10 9 8

Address : 00035, | gysy| INT | INTE | PAUS| STS1| STSO | STRT| DA

bit 7 6 5 4 3 2 1 0

Address : 000036y | p7 D6 D5 D4 D3 D2 D1| DO

bit 15 14 13 12 11 10 9 8

Address 1 000037y | g309 | sT1 | sTO | CcT1| CTO| — D9 | D8

Control status registers
(ADCSO0 and ADCS1)

Data registers
(ADCRO and ADCR1)

197

CHAPTER 16 A/D Converter

16.3.1 Control Status Registers (ADCSO0)

The control status register (ADCSO0) controls the A/D converter and indicates the
status. Do not rewrite ADCSO0 during A/D conversion.

m Control Status Registers (ADCS0)

7 6 5 4 3 2 1 0
ADCSO0
\ddress: 000034 MD1 MDO ANS2 | ANS1 | ANSO | ANE2 | ANE1 | ANEO -
0 0 0 0 0 0 0 0 ~ Initial value

RW RW RW RW RW RW RwW Rw -Bitatribute

[bits 7 and 6] MD1 and MDO (A/D converter mode set):

Table 16.3-1 Operation Mode Setting

MD1 MDO Operation mode
0 0 Single mode. Reactivation during operation is allowed.
0 1 Single mode. Reactivation during operation is not allowed.
1 0 Continuous mode. Reactivation during operation is not allowed.
1 1 Stop mode. Reactivation during operation is not allowed.

0 Single mode:
A/D conversion is continuously performed from the channel specified with ANS2 to ANSO to the
channel specified with ANE2 to ANEO. The conversion stops once it has been done for all these
channels.

0 Continuous mode:
A/D conversion is repeatedly performed from the channel specified with ANS2 to ANSO to the
channel specified with ANE2 to ANEO.

0 Stop mode:

A/D conversion is performed from the channel specified with ANS2 to ANSO to the channel
specified with ANE2 to ANEO, pausing for each channel. The A/D conversion is resumed upon
an activation.

Upon a reset, these bits are initialized to '00.’
Note:

When activated in the continuous or stop mode, A/D conversion continues until it is stopped
by the BUSY bit.

The conversion is stopped by writing '0' to the BUSY bit.

Reactivation disabled in single mode, continuous mode, and stop mode applies to all kinds

198

16.3 A/D Converter Registers

of activation by software, an external trigger, and a timer.
[bits 5, 4, and 3] ANS2, ANS1, and ANSO (Analog start channel set):
Use these bits to specify the start channel for A/D conversion.

When the A/D converter is activated, A/D conversion starts from the channel selected with
these bits.

ANS2 ANS1 ANSO Start channel
0 0 0 ANO
0 0 1 AN1
0 1 0 AN2
0 1 1 AN3
1 0 0 AN4
1 0 1 AN5S
1 1 0 ANG
1 1 1 AN7
* Read

During A/D conversion, the current conversion channel is read from these bits. If the system is
stopped in the stop mode, the last conversion channel is read.

* Upon a reset, these bits are initialized to '000.'
[bits 2, 1, and 0] ANE2, ANE1, and ANEO (Analog end channel set):

Use these bits to set the A/D conversion end channel.

ANS2 ANS1 ANSO End channel
0 0 0 ANO
0 0 1 AN1
0 1 0 AN2
0 1 1 AN3
1 0 0 AN4
1 0 1 ANS5S
1 1 0 ANG6
1 1 1 AN7
Note:

When the same channel is written to ANE2 to ANEO and ANS2 to ANSO, conversion is
performed for one channel only (single conversion).

In the continuous or stop mode, operation returns to the start channel specified in ANS2 to
ANSO after the conversion is completed for the channel specified in ANE2 to ANEO.

If the ANS value is greater than the ANE value, conversion starts from the ANS channel.
Then, once conversion is complete up to channel 7, operation returns to channel 0 and

199

CHAPTER 16 A/D Converter

conversion is performed up to the ANE channel.

Upon a reset, these bits are initialized to '000.'

Example: ANS=6, ANE=3, single mode

Conversion is performed in the following sequence: CH6, CH7, CHO, CH1, CH2, CH3

200

16.3 A/D Converter Registers

16.3.2 Control Status Register (ADCS1)

The control status register (ADCS1) controls the A/D converter and indicates the

status.

m Control Status Register (ADCS1)

ADCS1

Address: 0000354

15 14 13 12 11 10 9 8

BUSY INT INTE PAUS STS1 STSO STRT DA

0 0 0 0 0 0 0 0 < Initial value
R/W R/W R/W R/W R/W R/W w R/W < Bit attribute

[bit 15] BUSY (busy flag and stop):

- Read

This bit indicates the A/D converter operation.

This bit is set when A/D conversion starts and is cleared when the conversion ends.
- Write

Writing "0" to this bit during A/D conversion forces the conversion to terminate.

The above feature is used for forced stop in continuous or stop mode.

"1" cannot be written to the BUSY bit. With a read-modify-write (RMW) instruction, "1" is
read from this bit. In single mode, this bit is cleared at the end of A/D conversion.

In continuous or stop mode, this bit is not cleared until conversion is stopped by writing "0."
This bit is initialized to "0" upon a reset.

Do not perform a forced stop and activation by software simultaneously (BUSY =0, STRT =
1).

[bit 14] INT (Interrupt):

This bit is set when conversion data is written to ADCR.

An interrupt request is issued if this bit is set while bit 5 (INTE) is '1." In addition, the EIOS is
activated if it is enabled. Writing '1' has no effect.

This bit is cleared by writing '0" or by the EI20S interrupt clear signal.
Note: To clear this bit by writing '0," ensure that A/D conversion is not in progress.

This bit initialized to '0" upon a reset.

[bit 13] INTE (Interrupt enable):

This bit is used to enable or disable interrupts at the end of conversion.
- 0: Interrupts are disabled.

- 1: Interrupts are enabled.

Set this bit when using the EI20S. The EI?0S is activated when an interrupt request is

201

CHAPTER 16 A/D Converter

issued.
Upon a reset, this bit is initialized to '0.'
[bit 12] PAUS (A/D conversion pause):
This bit is set when the A/D conversion is paused.

Only one register is available for storing the A/D conversion result. Therefore, unless the

conversion results are transferred by the EI?OS, the result data would be continuously
updated and destroyed in continuous conversion.

To prevent the above condition, the system is designed so that a data register value must be
transferred by the EI°0OS before the next conversion data is saved. A/D conversion pauses
during that period. A/D conversion is resumed at the end of transfer by the EI?0S.
This register is valid only when the EI?0S is used.
Note:
For the conversion data protection function, see Section 16.4, "Operations."
Upon a reset, this bit is initialized to '0.'
[bits 11 and 10] STS1 and STSO (Start source select):
Upon a reset, these bits are initialized to '00.'

These bits are used to select the A/D conversion activation source.

STS1 STSO Function
0 0 Activation by software
0 1 Activation by external pin trigger and software
1 0 Activation by timer and software
1 1 Activation by external pin trigger, timer, and software

In a mode allowing two or more activation factors, A/D conversion is activated by the souce
that occures first.

The activation source setting changes as soon as it is updated. Thus, take care when
updating it during A/D conversion.

Note:

The external pin trigger is detected by the falling edge. If this bit is updated to external trigger
activation while the external trigger input level is 'L," A/D may be activated at once.

When timer is selected, the 16-bit Reload Timer 1 is selected.
[bit 9] STRT (Start):

A/D conversion is activated when '1' is written to this bit.

To reactivate A/D conversion, write '1' to this bit again.

Upon a reset, this bit is initialized to '0.'

In the stop mode, a reactivation during the operation is not supported. Check the BUSY bit
before writing '1'".

Do not perform a forced stop and activation by software simultaneously. (BUSY=0, STRT=1)

202

16.3 A/D Converter Registers

[bit 8] DA
This is a test bit. Always write '0' to this bit.

203

CHAPTER 16 A/D Converter

16.3.3 Data Registers (ADCR1 and ADCRO0)

These registers are used to store the digital values produced as a result of the
conversion. ADCR1 stores the most significant two bits of the conversion result, while
ADCRO stores the lower eight bits. These register values are updated each time
conversion is completed. Usually, the final conversion value is stored in these bits.

m Data Registers (ADCR1 and ADCRO)

ADCRO bit ! 6 ° 4 3 2 t 0
Address : 000036 | p7 D6 | D5 D4 D3 D2 D1 | DO
ADCRL bit 15 14 13 12 11 10 9 8
Address : 000037 | g10 | ST1 STO | CT1 | CTO — D9 D8
Initial value
w w w W w R R 000010XX

'0' is always read from the bits 10 to 15 of ADCRL1.

The conversion data protection function is available. See Section 2.7.4, "Operations."
Ensure that no data is written to these registers during A/D conversion.

[bits 15] S10

This bit specifies the resolution of the conversion. When it is set to "0", the 10-bit A/D
convertion is performed. Otherwise the 8-bit A/D conversion is performed and the result is
stored in the D7 to DO.

Reading this bit always returns "0".
[bits 14 and 13] ST1 and STO (Sampling time):

ST1 STO Function
0 0 64 machine cycles (4us at 16MHZz)
0 1 Reserved
1 0 Reserved
1 1 4096 machine cycles (256us at 16MHz)

These bits determins the duration of the voltage sampling time at the inuput.

Reading these bits always returns "00".

204

16.3 A/D Converter Registers

[bits 12 and 11] CT1 and CTO (Compare time):

CT1 CTO0 Function
0 0 176 machine cycles (22us at 8MHz)
0 1 352 machine cycles (22us at 16MHz)
1 0 Reserved
1 1 Reserved

These bits determins the duration of the compare operation time.

Do not set to '00' unless the machine clock is 8MHz. Otherwise the conversion accuracy is
not guranteed.

Reading these bits always returns "00".

205

CHAPTER 16 A/D Converter

16.4 Operations of A/D Converter

The A/D converter operates employs the sequential compare technique, and has a 10-
bit resolution.

Since the A/D converter has only one register (16 bits) for storing the conversion
result, the conversion data registers (ADCRO and ADCR1) are updated each time
conversion is completed. Thus, the A/D converter alone must not be used for the

continuous conversion. Use the F 2MC-16 intelligent I/O service (EI 20S) function to
transfer converted data to memory while conversion is in progress.
The operation modes are explained below.

m Single Mode

In this mode, the converter sequentially converts the analog inputs specified with the ANS and
ANE bits. The converter stops operation after the conversion is completed for the end channel
specified with the ANE bits. If the start and end channels are the same (ANS=ANE), conversion
is performed only for one channel.

Example:
ANS=000, ANE=011
Start -> ANO -> AN1 -> AN2 -> AN3 -> End

ANS=010, ANE=010
Start -> AN2 -> End

m Continuous Mode

In this mode, the converter sequentially converts the analog inputs specified with the ANS and
ANE bits. After the conversion is completed for the end channel specified with the ANE bits,
conversion is repeated from the analog inputs of the ANS. If the start and end channels are the
same (ANS=ANE), conversion for one channel is repeated.

Example:
ANS=000, ANE=011
Start -> ANO -> AN1 -> AN2 -> AN3 -> ANO -> Repeat

ANS=010, ANE=010
Start -> AN2 -> AN2 -> AN2 -> Repeat

In continuous mode, conversion is repeated until ‘0" is written to the BUSY bit. (Writing ‘0" to the
BUSY bit forces the operation to end.) If the operation is terminated forcibly, conversion stops
before conversion is completed. (Upon a forced stop, the conversion register stores the last
data that has been converted completely.)

m Stop Mode

In this mode, the converter sequentially converts the analog inputs specified with the ANS and

206

16.4 Operations of A/D Converter

ANE bits, pausing each time conversion for one channel is completed. To release pausing,
activate the converter again.

After the conversion is completed for the end channel specified with the ANE bits, conversion is
repeated from the analog inputs of the ANS. If the start and end channels are the same
(ANS=ANE), conversion is performed only for one channel.

Example:

ANS=000, ANE=011

Start -> ANO -> End -> Restart -> AN1 -> End -> Restarte -> AN2 -> End ->
-> Restart -> AN3 -> End -> Restart --->ANO Repeat

ANS=010, ANE=010
Start -> AN2 -> End -> Restart -> AN2 -> End -> Restarte -> AN2 Repeat

Only the activation sources specified with STS1 and STSO are used.

Using this mode, start of conversion can be synchronized with the activation source.

207

CHAPTER 16 A/D Converter

16.5 Conversion Using El 20S

Figure 16.5-1 shows the processing flow from the start of A/D conversion to the
transfer of converted data (in continuous mode).

m Conversion Using El 20s

Figure 16.5-1 A/D conversion processing flow from the start to converted data transfer (in continuous

Starting A/D conversion

!

Sample and hold

!

Conversion

!

End of conversion

¢

mode)

Starting EIY0S

Transferring data

Interrupt processing

Issuing interrupt

Clearing interrupt

The portion indicated by the star (%) is determined according to the EI20S setting.

208

16.5 Conversion Using EI20S

16.5.1 Starting El OS in Single Mode

Follow the steps below to start the EI 20S in single mode.

» To terminate conversion after analog inputs AN1 to AN3 are converted
» To transfer conversion data sequentially to addresses 200H to 206H

» To start conversion by software

» To use the highest interrupt level

m Starting EI 20S in Single Mode

Settings Sample program Function
EI20S setting MOV ICR3 #08H Specifies the highest interrupt level, EI0S
activation upon an interrupt, and the descriptor
address.

MOV BAPL, #00H Specifies the transfer destination address of
converted data.

MOV BAPM, #02H

MOV BAPH, #00H

MOV ISCS, #08H Specifies word data transfer. The transfer
destination address is incremented after
transfer. Data is transferred from I/O to memory.
Transfer is terminated in response to a request
from a resource.

MOV I/ OA, #38H

MOV DCT, #03H EI20S transfer is performed three times. This
count is the same as the conversion count.
A/D converter MOV ADCSO0 #0BH Specifies single mode, start channel AN1, and
setting end channel AN3.

MOV ADCS1 #A2H Specifies activation by software and start of A/D
conversion.

Interrupt RET Specifies return from an interrupt.
sequence

ICR3: Interrupt control register
BAPL: Buffer address pointer, low-order
BAPM: Buffer address pointer, medium-order

BAPH: Buffer address pointer, high-order

ISCS: EI?0S status register
I/OA: 1/O address counter

209

CHAPTER 16 A/D Converter

DCT : Data counter

Activation = AN1 — Interrupt — EI20S transfer
AN2 — | Interrupt — EI20S transfer

AN3 —> Interrupt — EI20S transfer

End . Interrupt sequenc

L— Parallel processing—

210

16.5 Conversion Using EI20S

16.5.2 Starting El “OS in Continuous Mode

Follow the steps below to start the EI 20S in continuous mode.

» To convert analog inputs AN3 to AN5 and obtain two conversion data items for each
channel

» To transfer conversion data sequentially to addresses 600H to 60CH

» To start conversion by external edge input

» To use the highest interrupt level

m Starting EI 20S in Continuous Mode

Settings Sample program

Function

EI20S setting MOV ICR3 #08H

Specifies the highest interrupt level, EI20S
activation upon an interrupt, and the
descriptor address.

MOV BAPL, #00H

MOV BAPM, #06H

MOV BAPH, #00H

Specifies the transfer destination address of
converted data.

MOV ISCS, #08H

Specifies word data transfer. The transfer
destination address is incremented after
transfer. Data is transferred from 1/O to
memory. Transfer is terminated in response
to a request from a resource.

MOV | / OA, #38H

Transfer source address

MOV DCT, #06H

EI?0S transfer is performed six times. Data
is transferred for three channels X 2.

A/D converter setting | MOV ADCSO0 #9DH

Specifies continuous mode, start channel
AN3, and end channel ANS5.

MOV ADCS1 #A4H | Specifies activation by external edge and
start of A/D conversion.
Interrupt sequence MOV ADCS1 #00H | Specifies return from an interrupt.
RET

ICR3 : Interrupt control register
BAPL : Buffer address pointer, low-order
BAPM : Buffer address pointer, medium-order

BAPH : Buffer address pointer, high-order

ISCS : EI?OS status register

211

CHAPTER 16 A/D Converter

I/OA : 1/O address counter
DCT : Data counter

Activation = AN3 —Interrupt — EROS transfer

)

AN4 —!Interrupt — EOS transfer

J |

AN5 - Interrupt — EPOS transfer

After six transfers

—

Interrupt sequenc

}

212

End

16.5.3 Starting El 2OS in Stop Mode

16.5 Conversion Using EI20S

Follow the steps below to start the El

20S in stop mode.

To convert analog input AN3 12 times at fixed intervals
To transfer conversion data sequentially to addresses 600H to 618H

To start conversion by external edge input
To use the highest interrupt level

Starting EI 20S in Stop Mode

Settings Sample program

Function

EI20S setting MOV ICR3 #08H

Specifies the highest interrupt level, EI0S
activation upon an interrupt, and the
descriptor address.

MOV BAPL, #00H

MOV BAPM, #06H

MOV BAPH, #00H

Specifies the transfer destination address of
converted data.

MOV ISCS, #08H

Specifies word data transfer. The transfer
destination address is incremented after
transfer.

MOV I/ OA, #38H

Data is transferred from 1/0O to memory.
Transfer is terminated in response to a
request from a resource.

MOV DCT, #0CH

Transfer source address

A/D converter setting MOV ADCSO0 #DBH

EI20S transfer is performed 12 times.

MOV ADCS1 #A4H Specifies continuous mode, start channel
AN3, and end channel AN3 (one-channel
conversion).
Interrupt sequence MOV ADCS1 #00H Specifies activation by external edge and
start of A/D conversion.
RET Specifies return from an interrupt.

ICR3 : Interrupt control register
BAPL : Buffer address pointer, low-order
BAPM : Buffer address pointer, medium-order

BAPH : Buffer address pointer, high-order

ISCS : EI?OS status register
I/OA : 1/0 address counter

213

CHAPTER 16 A/D Converter

DCT : Data counter

!
Activation —= AN3 - Interrupt - EI?OS transfer After 12 transfers

!

Stop
Activation by external edge Iunterrupt sequenc

End

214

16.6 Conversion Data Protection

16.6 Conversion Data Protection

The A/D converter has a conversion data protection function that enables continuous

conversion and preservation of multiple data items using El 20s.

Since there is only one conversion data register, its value is updated each time
conversion is completed. Thus, continuous data conversion results in the loss of the
previous data due to storage of the new data. To prevent this situation, the A/D
converter pauses after conversion if the previous data item has not been transferred to

memory by El 20S. The converted data is not saved until the previous data is
transferred to memory.

m Conversion Data Protection

The pause is released after data is transferred to memory by EI20S.

If the previous data has been transferred to memory, the A/D converter continues operation
without pausing.

Note:
This function is related to the INT and INTE bits of ADCS1.
The data protection function operates only when interrupts are enabled (INTE=1).

If interrupts are disabled (INTE=0), this function is disabled. Continuous A/D conversion
results in loss of previous data, since the converted data items are saved to the register one
after another.

If EI?OS is not used while interrupts are enabled (INTE=1), the INT bit is not cleared. Thus,
the data protection function works and the A/D converter pauses. In this case, clearing the
INT bit in the interrupt sequence releases the pause.

If the A/D converter is pausing during EI20S operation, disabling interrupts may restart the
A/D converter. In this case, the value in the conversion data register may be changed
without being transferred.

Restarting the A/D converter while it is pausing destroys the standby data.

215

CHAPTER 16 A/D Converter

m Flow of Data Protection Function (When EI 20S is Used)

‘ Setting El 20s ‘
v

‘ Starting continuous A/D conversion ‘
]

‘ Ending first conversion ‘

‘ Saving the result in the data register i

]
‘ Ending second conversion‘ ‘ Starting EI20S ‘
End EI0S?

NO
\ : .
| Pausing A/D conversion H
YES
- - - YES NO
‘ Saving the result in the data register W

]
‘ Ending third conversion } } Starting EI20S ‘
i
¥ Continued
‘ Ending the last conversion} } Starting EI?0S ‘
Interrupt routine
End i Stooping A/D conversion ‘

m Notes on using the conversion data protection function

To start the A/D converter upon an external trigger or internal timer, A/D activation factor bits
STS1 and STSO of the ADCS1 register are used. Ensure that the input values of the external
trigger or internal timer are inactive. If the values are active, A/D conversion may start
immediately.

When setting STS1 and STSO, ensure that '1' (input) is specified for ADTG and '0' (output) is
specified for the internal timer (timer 2).

216

CHAPTER 17 UARTO

This chapter explains the UARTO functions and operations.

17.1 Feature of UARTO

17.2 UART Block Diagram

17.3 UART Registers

17.4 UARTO Operation

17.5 Baud Rate

17.6 Internal and External Clock

17.7 Transfer Data Format

17.8 Parity Bit

17.9 Interrupt Generation and Flag Set Timings
17.10 UARTO Application Example

217

CHAPTER 17 UARTO

17.1 Feature of UARTO

The UART is a serial 1/0 port for asynchronous or CLK synchronous communication.
The MB90590 Series contains three UART's. The follwoing sections only describe the
functionality of the UART 0. The remaining UART's have the identical function and the
register addresses should be found in the I/O map.

m Feature of UARTO

UARTO has the follwoing features.

218

Full duplex double buffer

Supports CLK synchronous and CLK asynchronous start-stop data transfer.
Multiprocessor mode support (mode 2)

Internally dedicated baud rate generator (12 types)

Supports flexible baud rate setting using an external clock input or internal timer.
Variable data length (7 to 9 bits, [no parity]; 6 to 8 bits [with parity]).

Error detect function (framing, overrun, and parity)

Interrupt function (receive and transmit interrupts)Error detect function (framing, overrun, and
parity)
NRZ type transfer format

17.2 UART Block Diagram

17.2 UART Block Diagram

Figure 17.2-1 shows a block diagram of the UART.

m UART Block Diagram

Figure 17.2-1 UART Block Diagram

CONTROL BUS

Receive interrupt
(to CPU)
Dedicated baud rate clock
, SCKO
Transmit clock Transmit interrupt
16-bit reload timer 0 Clock select Receive clock (to CPU)
G— circuit l
SCKO
Receive control circuit Transmit control circuit
SINO gtr?:ﬁnb it detect Transmit start circuit
Receive bit counter Transmit bit counter
Receive parity Transmit parity
counter counter
\
‘ SOTO0
Receive status Receive shifter Transmit shifter
evaluation circuit — gl
Receive
complete Transmit start
A
UIDR UODR
. Receive error

indication signal
for EI0S (to CPU)

Data bus
h
y
—— PEN —— RDRF BCH
——{ SBL - ORFE RC3
UMe | — Mc1 UsR | — PE URD RC2
register —> MCO register [— TDRE register RC1
s SMDE | RIE RCO
" RrFC] TE BCHO
5| SCKE s RBF P
7 soe 7 TBF D8
CONTROL BUS

219

CHAPTER 17 UARTO

17.3 UART Registers

The UART has the following four registers:
» Serial mode control register

» Status register

» Input data register/output data register
* Rate and data register

m UART Registers

Serial mode control register

7 6 5 4 3 2 1 0 b= Bit number
Address: chO 000020+

PEN SBL MC1 MCO | SMDE | RFC SCKE | SOE UMCO

Readiwrite , (RW) (RW) (RMW) (RW) (RW) W) (RW) (RW)
Initial value => (0) (0) (0) (0) (0) @ ©) ©)

Status register 15 14 13 12 11 10 9 8 < Bit number
Address: ch0 000021H
RDRF | ORFE PE TDRE RIE TIE RBF TBF USRO
Read/write o> (R) (R) (R) (R) (RW) (RIW) (R) R)
Initial value => (0) (0) (0) 1) (0) (0) (0) (0)

Input data register/)
Output data register 7 6 5 4 3 2 1 0 <5 Bit number
Address: ch0 000022+

D7 D6 D5 D4 D3 D2 D1 DO UIDRO(read)
UODRO(write)

Read/write o, (RW) (RMW) (RW) (RW) (RW) ([RMW) (RMW) (RW)
Initial value => X) X) X) X) X) X) X) X)

Rate and data register 15 14 13 12 11 10 9 8 < Bit number
Address: ch0 000023+

BCH RC3 RC2 RC1 RCO | BCHO P D8 URDO

Readiwrte ., (RW) (RW) (RW) (RW) (RW) (RW) (RMW) (RW)
Initial value => (0) (0) (0) (0) (0)) 0 X)

220

17.3 UART Registers

17.3.1 Serial Mode Control Register (UMC)

UMC specifies the operation mode of UARTO. Set the operation mode while operation
is halted. However, the RFC bit can be accessed during operation.

m Layout of Serial Mode Control Register (UMC)

Serial mode control register

7 6 5 4 3 2 1 <HOBit number
Address: chO 000020+

PEN SBL MC1 MCO | SMDE | RFC SCKE | SOE UMCO

Readiwrite _, (RIW) (RW) (RW) (RW) (RW) W) (RW) (RW)
Initial value > (0) (0) (0) (0) (0) 1) (0) (0)

m Serial Mode Control Register (UMC) Contents
[Bit 7] PEN (Parity enable)

Specifies whether to add (for transmit) or detect (for receive) a parity bit in serial data 1/O.
Set to "0" in mode 2.

0: Do not use parity
1. Use parity
[Bit 6] SBL (Stop bit length)

Specifies the number of stop bits for transmit data. For receive data, the first stop bit only is
recognized and any second stop bit is ignored.

0: 1 bit length
1: 2 bits length
[Bits 5, 4] MC1, MCO (Mode control)

These bits control the length of the transferred data. Table 17.3-1 lists the four transfer
modes (data lengths) selectable by these bits.

Table 17.3-1 UART Operation Modes

Mode MC1 MCO Data Length 1
0 0 0 7 (6)
1 0 1 8 (7)
22 1 0 8+1
3 1 1 9(8)

*1: The figures enclosed in parentheses indicate the data length with parity.

*2: Mode 2 is used when a number of slave CPUs are connected to a single host CPU. As the
receive parity check function cannot be used, set PEN in the UMC register to "0" (see Section
17.4 "Operation" for details). The transmit data length is 9 bits and no parity bit can be added.

221

CHAPTER 17 UARTO

[Bit 3] SMDE (Synchro mode enable)
This bit selects the transfer method.

0:Start-stop CLK synchronous transfer (clocked synchronous transfer using start and stop
bits.)

1:Start-stop CLK asynchronous transfer
[Bit 2] RFC (Receiver flag clear)

Writing "0" to this bit clears the RDRF, ORFE, and PE flags in the USR register. Writing "1"
has no effect. Reading always returns "1".

Note:

When receive interrupts are enabled during UARTO operation, only write "0" to RFC when
either RDRF, ORFE, or PE is "1".

[Bit 1] SCKE (SCLK enable)

Writing "1" to this bit in CLK synchronous mode switches the port pin to the UARTO serial
clock output pin and outputs the synchronizing clock. Set to 0 in CLK asynchronous mode or
external clock mode.

0: The pin functions as a general purpose I/O port and does not output the serial clock. The
pin functions as the external clock input pin when the port is set to input mode (DDR=0) and
RC3to O are setto "1111".

1: The pin functions as the UARTO serial clock output pin.
Note:

The corresponding bit of the Port Direction register should be set to "1" when the port pin is
used as the clock output. This is for UARTO only.

[Bit 0] SOE (Serial output enable)

Writing "1" to this bit switches the port pin to the UARTO serial data output pin and enables
serial output.

0: The pin functions as a port pin and does not output serial data.
1: The pin functions as the UARTO serial data output pin (SOT).
Note:

The corresponding bit of the Port Direction register should be set to "1" when the port pin is
used as the serial output. This is for UARTO only.

222

17.3.2 Status Register (USR)

17.3 UART Registers

USR indicates the current state of the UARTO port.

m Status Register (USR) Layout

Status register
Address: chO 000021w

Read/write
Initial value =>

15 14 13 12 11 10 9 8 <= Bit number
RDRF| ORFE| PE | TDRE| RIE | TIE | RBF | TBF USRO
(R) (R) (R R RW) RW) (R) (R)

©)

m Status Register (USR) Contents
[Bit 15] RDRF (Receiver data register full)

©

©

@

©)

©)

©)

©)

This flag indicates the state of the UIDRO (input data register). The flag is set when the
receive data is loaded into UIDRO. Reading UIDRO or writing "0" to RFC in the UMCO
register clears the flag. If RIE is active, a receive interrupt request is generated when RDRF

is set.

0: No data in UIDRO
1. Data present in UIDRO

[Bit 14] ORFE (Over-run/framing error)

The flag is set when an overrun or framing error occurs in receiving. Writing "0" to RFC in the
UMCO register clears the flag. When this flag is set, the data in UIDRO is invalid and the load
from the receive shifter to UIDRO is not performed. If RIE is active, a receive interrupt
request is generated when ORFE is set.

0: No error

1: Error

Table 17.3-2lists the UIDRO states after receive completion by RDRF or ORFE.

Table 17.3-2 UIDR State after Receive Completion

RDRF ORFE UIDRO Data State
0 0 Empty
0 1 Framing error
1 0 Valid data
1 1 Overrun error

The data in UIDR is invalid if an overrun or framing error has occurred. Next data can be

received after clearing the flag(s).

223

CHAPTER 17 UARTO

[Bit 13] PE (Parity error)

The flag is set when a receive parity error occurs. Writing "0" to RFC in the UMC register
clears the flag. When this flag is set, the data in UIDRO is invalid and the load from the
receive shifter to UIDRO is not performed. If RIE is active, a receive interrupt request is
generated when PE is set.

0: No parity error
1: Parity error
[Bit 12] TDRE (Transmitter data register empty)

This flag indicates the state of the UODRO (output data register). Writing transmit data to the
UODRO register clears the flag. The flag is set when the data is loaded to the transmit shifter
and the transmission is started. If TIE is active, a transmit interrupt request is generated
when TDRE is set.

0: Data present in UODRO
1: No data in UODRO
[Bit 11] RIE (Receiver interrupt enable)
Enables receive interrupt requests.
0: Disable interrupts.
1: Enable interrupts.
[Bit 10] TIE (Transmitter interrupt enable)

Enables transmit interrupt requests. A transmit interrupt is generated immediately if transmit
interrupts are enabled when TDRE is "1".

0: Disable interrupts.
1: Enable interrupts.
[Bit 9] RBF (Receiver busy flag)

This flag indicates that UARTO is receiving input data. The flag is set when the start bit is
detected and cleared when the stop bit is detected.

0: Receiveridle
1: Receiver busy
[Bit 8] TBF (Transmitter busy flag)

This flag indicates that UARTO is transmitting input data. The flag is set when transmit data
is written to the UODRO register and cleared when transmission completes.

0: Transmitter idle

1: Transmitter busy

224

17.3 UART Registers

17.3.3 Input Data Register (UIDR) and Output Data Register
(UODR)

UIDR (input data register) is the serial data input register. UODR (output data register)

is the serial data output register.

The most significant two bits (D7 and D6) are ignored if the data length is 6 bits and
the most significant bit (D7) is ignored if the data length is 7 bits. Write to UODR only
when TDRE ="1" in the USR register. Read UIDR only when RDRF ="1" in the USR

register.

m Input Data Register (UIDR) and Output Data Register (UODR)

Input data register/

Output data register 7 6 5 4 3 2 1 0 <5 Bit number
Address: ch0 000022+
D7 D6 D5 D4 D3 D2 D1 DO UIDRO(read)
UODRO(write)

Readiwrite o, (RW) (RW) (RW) (RW) (RW) (RMW) (RMW) (RW)
Initial value => (X) X) X) (X) X) (X) (X) (X)

225

CHAPTER 17 UARTO

17.3.4 Rate and Data Register (URD)

URD selects the data transfer speed (baud rate) for UARTO. The register also holds the
most significant bit (bit 8) of the data when the transmit data length is 9 bits. Set the
baud rate and parity when UARTO is halted.

m Layout of Rate and Data Register (URD)

Rate and data register 15
Address: chO 000023+

Read/write o (RW)
Initial value > (0)

©)

m Rate and Data Register (URD) Contents
[Bits 15, 10] BCH, BCHO (Baud rate clock change)

Specifies the machine cycles for the baud rate clock (see Section 17.4 "Operation" for

details).

© ©

Table 17.3-3 Clock Input Selection

©)

©)

14 13 12 11 10 9 8 <« Bit number
BCH RC3 RC2 RC1 RCO | BCHO P D8 URDO
RW) (RW) RW) RW) [RW) ([RW) (R/W)

©))

BCH BCHO Divider ratio Setting Example for Each Machine Cycle
0 0 - - Prohibited setting -
0 1 Divide by 4 For a 16-MHz machine cycle: 16/4 = 4 MHz
1 0 Divide by 3 For a 12-MHz machine cycle: 12/3 =4 MHz
1 1 Divide by 5 For a 10-MHz machine cycle: 10/5 =2 MHz
Note:

Do not set BCH and BCHO to "00".
[Bits 14 to 11] RC3, RC2, RC1, RCO (Rate control)

Selects the clock input for the UARTO port (see Section 17.4 "Operation” for details).

Table 17.3-4 Clock Input Selection

RC3 to RCO

Clock Input

"0000" to "1011"

Dedicated baud rate generator

“1101"

16-bit Reload Timer 0

"1111"

External clock

226

17.3 UART Registers

Note:
Do not set the rate control bits to "1100" "1110".
[Bit9] P
Sets even or odd parity when parity is active (PEN ="1").
0: Even parity
1: Odd parity
[Bit 8] D8

Holds the bit 8 of the transfer data in mode 2 or 3 (9-bit data length) and no parity. Treated
as bit 8 of the UIDRO register for reading. Treated as bit 8 of the UODR register for writing.
The bit has no meaning in the other modes. Write to D8 only when TDRE = "1" in the USRO
register.

227

CHAPTER 17 UARTO

17.4 UARTO Operation

Table 17.4-1 lists the operating modes for UARTO. Set the UMC register to switch
between modes.

m UARTO Operation Modes

Table 17.4-1 UARTO Operating Modes

Mode Parity Data Length Clock Mode Length of Stop Bits "

On 6

0
Off 7
On 7

1
Off 8 CLK asynchronous or CLK 1 bit or 2 bits

synchronous

2 Off 8+1
On 8

3
Off 9

*. The number of stop bits can only be set for transmission. The number of receive stop bits is
always set to one. Do not set modes other than those listed above. UARTO does not operate if
an invalid mode is set.

Note:

UARTO uses start-stop clock synchronous transfer. Therefore, a start and stop bit are added
to the data even in clock synchronous transfer.

228

17.5 Baud Rate

17.5 Baud Rate

When the dedicated baud rate generator is used, the following two types of baud rates
are available:

* CLK synchronous baud rate

e CLK asynchronous baud rate

m CLK Synchronous Baud Rate

The five URD register bits: BCH, BCHO and RC3, RC2, RC1 select the baud rate for CLK
synchronous transfer.

First select the machine clock divider ratio using BCH and BCHO.

BCH BCHO
0 1 => Divide by 4 [For example, at 16 MHz: 16/4 = 4 MHZz]
1 0 => Divide by 3 [For example, at 12 MHz: 12/3 = 4 MHZz]
1 1 => Divide by 5 [For example, at 10 MHz: 10/5 = 2 MHZz]

Then, set the division ratio for the clock selected above in RC3, RC2, and RC1. The following
three settings are available for CLK synchronous transfer. Other settings are prohibited.

RC3 RC2 RC1

0 1 0 => Divide by 2 [For example, at 4 MHz: 4/2 = 2.0 M (bps)]
0 1 1 => Divide by 4 [For example, at 4 MHz: 4/4 = 1.0 M (bps)]
1 0 0 = Divide by 8 [For example, at 4 MHz: 4/8 = 0.5 M (bps)]

(At 2 MHz, the speed becomes half the above examples.)

m CLK Asynchronous Baud Rate

The six URD register bits: BCH, BCHO and RC3, RC2, RC1, RCO select the baud rate for CLK
asynchronous transfer.

First select the machine clock divider ratio using BCH and BCHO.

BCH BCHO
0 1 => Divide by 4 [For example, at 16 MHz: 16/4 = 4 MHz]
1 0 => Divide by 3 [For example, at 12 MHz: 12/3 = 4 MHz]
1 1 => Divide by 5 [For example, at 10 MHz: 10/5 = 2 MHZz]

Then, set the asynchronous transfer clock division ratio for the clock selected above in RC3,
RC2, RC1, and RCO. The following settings are available.

229

CHAPTER 17 UARTO

RC3 RC2 RC1 RCO

oo 0 0 0O Divide by 8 x1 O

0 . O g y =

0o 1 0 0O Divide by 8 x2 g x [0 O Divide by 12 B

E 0 1 1 O Divideby8x4 Bl O Divide by 13 [J

01 0 0 O Diidebyg8xg 3 O O
0 a

0 0 1 O Notdivided 0 0O Prohibited setting
1 0O Divide by 8 1 O Divide by 8

The above 12 baud rates can be selected. The following formula shows how to calculate the
CLK synchronous baud rate.

w4
2m-T

o

2m-T

Baud rate = [bps] (machine cycle = 16 MHz)

Baud rate = [bps] (machine cycle = 12 MHz)

5 .
Baud rate = —chlnT [bps] (machine cycle = 10 MHz)
where @is a machine cycle and m is in decimal notation for RC3 to 1.
Note:

The above formula for m=0 or m=1 cannot be calculated.

Data transfer is possible if the CLK asynchronous baud rate is in the range -1% to +1%. The
baud rate is the CLK synchronous baud rate divided by 8 X 13, 8 X 12, or 8.

Table 17.5-1 shows examples for 16 MHz, 12 MHz, and 10 MHz machine cycles. However,
do not use the settings marked as '_' in the table.

Table 17.5-1 Baud Rate

CLK asynchronous (ps/Baud) CLK CLK synchronous (ps/Baud)
16 MHz 12 MHz 10 MHz asynchron 16 MHz 12 MHz 10 MHz
ousdivider
RC RC RC RC BCH/ BCH/ BCH/ ratio BCH/ BCH/ BCH/
3 2 1 0 0=01 0=10 0=11 0=01 0=10 0=11
0O 0 0O O - - 48/ 20833 8x12 - - -
0O 0 0 1 26/ 38460 | 26/ 38460 | 52/ 19230 8x13 - - -
0 0 1 o - - - 8 - - -
0 0 1 1 2/500000 | 2/500000 | 4/250000 8 - - -
0 1 0 O 48/ 20833 | 48/ 20833 | 96/10417 8x12 - - -
0 1 0 1 52/ 19230 | 52/ 19230 | 104/ 9615 8 X 13 0.5/2M 0.5/2M 1/1M
0 1 1 O 96/10417 | 96/10417 | 192/ 5208 8x12 - - -

230

Table 17.5-1 Baud Rate (Continued)

17.5 Baud Rate

CLK asynchronous (ps/Baud)

CLK synchronous (ps/Baud)

CLK
16 MHz 12 MHz 10 MHz asynchron 16 MHz 12 MHz 10 MHz
ous divider

RC RC RC R BCH/ BCH/ BCH/ ratio BCH/ BCH/ BCH/
3 2 1 O 0=01 0=10 0=11 0=01 0=10 0=11
0 1 1 1 104/ 9615 | 104/ 9615 | 208/ 4808 8 X 13 1/1M 1/1M 2 /500K
1 0 0 O 192/ 5208 | 192/ 5208 - 8 X 12 - - -
1 0 0 1 208/ 4808 | 208/ 4808 | 416/ 2404 8 X 13 2 /500K | 2/500K 4 | 250K
1 0 1 O - - - 8
1 0 1 1 16/ 62500 | 16/ 62500 | 32/ 31250 8 - - -

231

CHAPTER 17 UARTO

17.6

Internal and External Clock

Setting RC3 to 0 to "1101" selects the clock signal from the 16-bit Reload Timer.
Setting RC3 to 0 to "1111" selects the external clock.

m Internal and External Clock

The CLK asynchronous baud rate is the CLK synchronous baud rate divided by 8. Also, data
transfer is possible if the CLK asynchronous baud rate is in the range -1% to +1% of the
selected baud rate. Table 17.6-1 lists the baud rates when the internal timer is selected as the
clock. The values in this table are calculated for a machine cycle of 7.3728 MHz. However, do

not use the settings marked as '_' in the table.

o/ X
Baudrate= ____ [bps]
8 x 2 (n+1)
O @ Machine cycle O
|:| . - . |:|
0O X: Divider ratio for the count clock source for [
O theinternal timer O
O O
O n: Reload value (decimal) O
Table 17.6-1 Baud Rate and Reload Value
Reload Value
X =21 X =28
Baud Rate (divide machine cycle by 2) (divide machine cycle by 8)
76800 2 -
38400 5 -
19200 11 2
9600 23 5
4800 47 11
2400 95 23
1200 191 47
600 383 95
300 767 191

232

The values in the table are the reload values (decimal) for reload count operation of the 16-bit

Reload Timer.

17.7 Transfer Data Format

17.7 Transfer Data Format

UARTO only handles NRZ (non-return-to-zero) type data. Figure 17.7-1 shows the
relationship between the transmit/receive clock and the data for CLK synchronous
mode.

m Transfer Data Format

Figure 17.7-1 Transfer Data Format

o Uy L

SINO, SOTO

0 1 0 1 1 0 0 1 0 1 1
Start LSB MSB Stop S Depends
D8 Stop 5 on the mode.
The transferred data is 01001101s (mode 1) or 101001101e (mode 3).

As shown in Figure 17.7-1 "Transfer Data Format", the transfer data always starts with the start
bit (L level data), the specified number of data bits are transmitted with the LSB first, then
transmission ends with the stop bit ('H' level data). Always input a clock if external clock
operation is selected. When an internal clock (the dedicated baud rate generator or 16-bit
Reload Timer) is selected, the clock is output continuously. When using CLK synchronous
transfer, do not start data transfer until the selected baud rate clock has stabilized (for two baud
rate clock cycles).

When using CLK asynchronous transfer, set the SCKE bit in the UMCO register to "0" to disable
clock output. The transfer data format of SINO and SOUTO is the same as shown in Figure 17.7-
1 "Transfer Data Format".

233

CHAPTER 17 UARTO

17.8 Parity Bit

The P bit in the URDO register specifies whether to use even or odd parity when parity
is enabled. The PEN bit in the UMCO register enables parity.

m Parity Bit

Inputting the data shown in Figure 17.8-1 to SIN when even parity is set causes a receive parity
error. Figure 17.8-1 also shows the data transmitted when sending 001101g with even parity

and odd parity.

Figure 17.8-1 Serial Data with Parity Enabled

SINO _| [(Receive parity error occurs P = 0)
0 1 0 1 1 0 0 0 1
Start LSB MSB (Pé}ity) Stop
SOTO _| — (Even parity transmission P = 0)
0 1 0 1 1 0 0 1 1
Start LSB MSB(P aﬁity) Stop
SOTO _| — (Odd parity transmission P = 1)
0 1 0 1 1 0 0 0 1
Start LSB MSB ® a@ity) Stop

234

17.9 Interrupt Generation and Flag Set Timings

17.9 Interrupt Generation and Flag Set Timings

UARTO has two interrupt causes and six flags. The two interrupt causes are the
receive and transmit interrupts. The six flags are RDRF, ORFE, PE, TDRE, RBF, and
TBF. For reception, the RDRF, ORFE, and PE flags request an interrupt. For
transmission, the TDRE flag requests an interrupt.

m Set Timings of the Six Flags

U RDRF flag
The RDRF flag is set when receive data is loaded into the UIDR register. The flag is cleared by
writing "0" to RFC in the UMC register or by reading the UIDRO register.

O ORFE flag
The ORFE flag is an overrun or framing error flag. The flag is set when a receive error occurs
and is cleared by writing "0" to RFC in the UMCO register.

O PEflag

The PE flag is a reception parity error flag. The flag is set when a receive parity error occurs
and is cleared by writing "0" to RFC in the UMCO register. Note that the parity detect function is
not available in mode 2.

O TDRE flag

The TDRE flag is set when the UODRO register becomes empty and is available for writing. The
flag is cleared by writing to the UODRO register. The above four flags (RDRF, ORFE, PE, and
TDRE) trigger transmit or receive interrupts.

O RBF and TBF flags

The RBF and TBF flags indicate that reception or transmission is in progress. The RBF flag
becomes active during reception, and the TBF flag becomes active during transmission.

235

CHAPTER 17 UARTO

17.9.1 Flag Set Timings for a Receive Operation (in Mode O, 1, or

3)

The RDRF, ORFE, and PE flags are set and an interrupt request to the CPU generated
when the final stop bit is detected indicating the end of reception transfer. The data in
UIDRO is invalid when either the ORFE or PE bit is active.

m Flag set Timings for a Receive Operation (in Mode 0, 1, or 3)

Figures 17.9-1, 17.9-2, and 17.9-3 show the set timings of the RDRF, ORFE, and PE flags

respectively.

Figure 17.9-1 RDRF Set Timing (Mode 0, 1, or 3)

Data

RDRF

=

(Stop)

Receive interrupt

Figure 17.9-2 ORFE Set Timing (Mode 0, 1, or 3)

Receive interrupt

(Overrun error)

)

Data ‘< Stop Data
RDRF =1 RDRF =0
ORFE ORFE

Receive interrupt

(Framing error)

Figure 17.9-3 PE Set Timing (Mode 0, 1, or 3)

Stop

Data >‘

PE

(Stop)

Receive interrupt

236

17.9 Interrupt Generation and Flag Set Timings

17.9.2 Flag set timings for a receive operation (in mode 2)

The RDRF flag is set when the final stop bit is detected and reception transfer ends
with the last data bit (D8) having the value "1".

The ORFE flag is set when the final stop bit is detected, irrespective of the value of the
last data bit (D8). The data in UIDRO is invalid when the ORFE bit is active.

The interrupt request to the CPU is generated when either of the flags are set (see
Section 17.10 "Application Example" for details on using mode 2).

m Flag Set Timings for a Receive Operation (in Mode 2)

Figure 17.9-4 RDRF Set Timing (Mode 2)

Data D6 ’< D7 >‘ D8 ‘ Stop (Stop)

RDRF

Receive interrupt

Figure 17.9-5 ORFE Set Timing (Mode 2)

Data D7 >‘ D8 ‘ Stop Data D7 >‘ D8 >‘ Stop | /

RDRF =1 RDRF =0
ORFE ORFE
Receive interrupt Receive interrupt
(Overrun error) (Framing error)

237

CHAPTER 17 UARTO

17.9.3 Flag set Timings for a Transmit Operation

TDRE is set and an interrupt request to the CPU is generated when the data written in
UODRO register is transferred to the internal shift register and the next data can be

written to UODRO.

m Flag Set Timings for a Transmit Operation

Figure 17.9-6 TDRE Set Timing (Mode 0)

UODR write —|

-

TDRE

Transmit interrupt

/

Interrupt request to the CPU

SOTO output

ST

DO

D1| D2| D3 |D4 | D5| D6

D7 | SP SP

ST

DO

D1

D2

D3

ST: Start bit

238

DO to D7: Data bits

SP: Stop bit

17.9 Interrupt Generation and Flag Set Timings

17.9.4 Status Flag During Transmit and Receive Operation

RBF is set when the start bit is detected and cleared when a stop bit is detected. The
receive data in UIDRO at the RBF clear timing is not yet valid. The data in UIDRO
becomes valid at the RDRF set timing.

m Status Flag during Transmit and Receive Operation
Figure 17.9-7 shows the relationship between the RBF and receive interrupt flag timing.

Figure 17.9-7 RBF Set Timing (Mode 0)

SINO input ST|DO|D1| D2|D3|D4 | D5| D6 | D7 | SP

RBF

RDRF, PE, ORFE

ST: Start bit DO to D7: Data bits SP: Stop bit

Writing the transmission data to UODRO sets TBF. TBF is cleared when transmission
completes.

Figure 17.9-8 TBF Set Timing (Mode 0)

UODR write |_|

SOTO output

ST| DO|D1| D2| D3 |D4 | D5| D6 [D7 | SP SP

TBF

ST: Start bit DO to D7: Data bits SP: Stop bit

Note:

Receive operation starts after releasing a reset unless the SIN input pin is fixed at "1".
Therefore, before setting the mode, write "0" to RFC in the UMCO register to clear any
receive flags that have been set.

Set the communication mode when the RBF and TBF flags in the USRO register are "0". The
data transmitted and received during mode setting cannot be guaranteed.

239

CHAPTER 17 UARTO

m EI°0S (Extended intelligent I/O service)

See the Section 3.7 "Extended intelligent I/O service (EI20S)" for details on EI?0S.

240

17.10 UARTO Application Example

17.10 UARTO Application Example

Mode 2 is used when a number of slave CPUs are connected to a host CPU (see Figure

17.10-1.)

m Application Example

Figure 17.10-1 RBF Set Timing (mode 0)

SINO input ST|DO|D1| D2|D3|D4 | D5| D6 |D7 | SP
RBF
RDRF, PE, ORFE
ST: Start bit DO to D7: Data bits SP: Stop bit

As shown in Figure 17.10-2, communication starts with the host CPU transmitting address data.
The ninth bit (D8) of the address data is set to "1". The address selects the slave CPU with
which communication will be established. The selected slave CPU communicates with the host
CPU using a protocol determined by the user. In normal data, D8 is set to "0". Unselected
slave CPUs wait in standby until the next communication session starts. Figure 17.10-3 shows
a flowchart of operation in this mode.

Because the parity check function is not available in this mode, set the PEN bit in the UMCO
register to "0".

Figure 17.10-2 Example System Configuration Using Mode 2

SOTO g >
SINO g

Host CPU

SOTO SINO SOTO SINO

Slave CPU #0 Slave CPU #1

241

CHAPTER 17 UARTO

Figure 17.10-3 Communication Flowchart for Mode 2 Operation

(Host CPU) (Slave CPU)
(Start > (Start >
Set the transfer mode to 3 Set the transfer mode to 2

. Receive a byte
Set the slave CPU selection vt

in DO to D7. Set D8 to “1”.
Transfer the byte.

Selected?

Set D8 to “0” and perform
communications

|

Set the transfer mode to 3
(End) and enable SOTO output

Perform communications
with the master CPU

|

Use the status flag to
confirm transfer completion,
then set the transfer mode to
2 and disable SOTO output

242

CHAPTER 18 SERIAL I/O

This chapter explains the functions and operations of the serial 1/0.

18.1 Outline of Serial 1/0

18.2 Serial I/0O Registers

18.3 Serial I/0O Prescaler (CDCR)
18.4 Serial 1/0O Operation

18.5 Negative Clock Operation

243

CHAPTER 18 SERIAL I/O

18.1 Outline of Serial I/0

The serial I/O interface operates in two modes:

 Internal shift clock mode: Data is transferred in synchronization with the internal
clock.

» External shift clock mode: Data is transferred in synchronization with the clock
supplied via the external pin (SCK3). By manipulating the general-purpose port
sharing the external pin (SCK3), data can also be transferred by a CPU instruction in
this mode.

m Serial /0 Block Diagram

This block is a serial I/O interface that allows data transfer using clock synchronization. The
interface consists of a single eight-bit channel. Data can be transferred from the LSB or MSB.

Figure 18.1-1 Extended Serial I/O Interface Block Diagram

Internal data bus

(MSB first) D7 to DO ‘ D7 to DO (LSB first)

‘ Transfer direction selection

SIN3

% Read
SDR (Serial data register) ’ Write

i
E%T— :

» Control circuit Shift clock counter

Internal clock <>

(2 (4 (6 1

SMD2|SMD1| SMDO| SIE SIR |BUSY [STOP|STRTMODE| BDS | SOE [SCOE

} Interrupt
request

Internal data bus

SCK3

244

18.2 Serial /0 Registers

18.2 Serial I/O Registers

The serial I/0O has the following two registers:
» Serial mode control status register (SMCS)
» Serial data register (SDR)

m Serial I/O Resisters

15 14 13 12 11 10 9 8
. il trol
Address : 00002Dy| sMD2| SMD1| SMDO| SIE | SIR | BUSY | STOP | STRT | Siaias regisior (SCS)
7 6 5 4 3 2 10
Address : 00002Cy | — — — — |MODE| BDS | SOE |SCOE
7 6 5 4 3 2 10
Address : 00002Ey | p7 D6 | D5 D4 | D3 D2 D1 | DO | Serial data register (SDR)

245

CHAPTER 18 SERIAL I/O

18.2.1 Serial Mode Control Status Register (SMCS)

The serial mode control status register (SMCS) controls the serial 1/0 transfer mode.

m Serial Mode Control Status Register (SMCS)

15 14 13 12 11 10 9 8 N
SMCS Initial value
Address: 00002D,| SMD2| SMD1 SMDO| SIE | SIR | BUSY | STOP |STRT | (000010,
RW RW RW RW RW R RW RW
! f
*1)
SMCS 7 6 5 4 3 2 10 "
Address: 00002C,, Initial value
— | — | — | — |MODE| BDS | SOE |SCOE| ..gg00,

, R/W R/W RW R/W
*1: Only '0' can be written.

*2: Only '1' can be written. '0' is always read.

m Bit functions of Serial Mode Control Status Register (SMCS)
[bit 3] Serial mode selection bit (MODE)

The serial mode selection bit is used to select the conditions to start the transfer operation
from the stop state. This bit must not be updated during operation.

Table 18.2-1 Setting the Serial Mode Selection Bit

MODE Operation
0 Transfer starts when STRT=1. [Default]
1 Transfer starts when the serial data register is read or written to.

This bit is initialized to a '0' upon a reset, and can be read or written to. To activate the
intelligent 1/0 service, ensure that '1' is written to this bit.

[bit 2] Bit direction select bit (BDS)

When serial data is input or output, this bit determines from which bit data is to be
transferred first, the least significant bit (LSB first) or the most significant bit (MSB first), as
shown in Table 18.2-2.

Table 18.2-2 Setting the Transfer Direction Selection Bit

0 LSB first [default]

1 MSB first

Note:
Specify the bit ordering before any data is written to SDR.

246

18.2 Serial /0 Registers

[bit 1] Serial output enable bit (SOE: Serial out enable)

This bit controls the output from the serial I/O output external pins (SOT1 and 2) as shown in
Table 18.2-3.

Table 18.2-3 Setting the Serial Output Enable Bit

0 General-purpose port pin [default]

1 Serial data output

This bit is initialized to '0' upon a reset. This bit is readable and writable.
[bit 0] Shift clock output enable bit (SCOE: SCK1 output enable)

This bit controls the output from the shift clock I/O output external pins (SCK1 and 2) as
shown in Table 18.2-4.

Table 18.2-4 Setting the Shift Clock Output Enable Bit

0 General-purpose port pin, transfer for each instruction [default]

1 Shift clock output pin

Ensure that '0' is written to this bit when data is transferred for each instruction in external
shift clock mode.

This bit is initialized to '0' upon a reset. This bit is readable and writable.

[Bits 15, 14, and 13] Shift clock selection bits (SMD2, SMD1, SMDO: Serial shift clock
mode)

These bits are used to select the serial shift clock mode, as shown in Table 18.2-5.

Table 18.2-5 Setting the Serial Shift Clock Mode

SMD2 SMD1 SMDO ¢=16MHz @=8MHz @=4MHz
div=8 div=4 div=4
0 0 0 1 MHz 1 MHz 500 kHz
0 0 1 500 kHz 500 kHz 250 kHz
0 1 0 125 kHz 125 kHz 62.5 kHz
0 1 1 62.5 kHz 62.5 kHz 31.25 kHz
1 0 0 31.25 kHz 31.25 kHz 5.625 kHz
1 0 1 External shift clock mode
1 1 0 Reserved
1 1 1 Reserved
div M1 DIV3 DIvV2 DIVl DIVO Recommended
machine cycle
3 1 1 1 0 1 6 MHz
4 1 1 1 0 0 8 MHz
5 1 1 0 1 1 10 MHz

247

CHAPTER 18 SERIAL I/O

div M1 DIV3 DIV2 DIVl DIVO Recommended
machine cycle
6 1 1 0 1 0 12 MHz
7 1 1 0 0 1 14 MHz
8 1 1 0 0 0 16 MHz

Setting of the Serial /0O prescaler (CDCR)
* For details, see 2.6.4 "Serial I/O Prescaler".

These bits are initialized to '000" upon a reset. These bits must not be updated during data
transfer.

Five types of internal shift clock and an external shift clock are available. Do not set 110 or
111 in SMD2, SMD1, and SMDO as these values are reserved.

Shift operation can be performed for each instruction by specifying SCOE =0 during clock
selection and by using the ports that share the SCK1 and SCK2 pins.

[bit 12] Serial I/O interrupt enable bit (SIE: Serial I/O interrupt enable)

This bit controls the serial I/O interrupt request as shown in Table 18.2-6.

Table 18.2-6 Setting the Interrupt Request Enable Bit

0 Serial 1/0 interrupt disabled [initial value]

1 Serial 1/0O interrupt enabled

This bit is initialized to '0' upon a reset. This bit is readable and writable.
[bit 11] Serial I/O interrupt request bit (SIR: Serial I/O interrupt request)

When serial data transfer is completed, '1' is set to this bit. If this bit is set while interrupts are
enabled (SIE=1), an interrupt request is issued to the CPU. The clear condition varies with
the MODE bit.

When '0' is written to the MODE bit, the SIR bit is cleared by writing '0'. When '1' is written to
the MODE bit, the SIR bit is cleared by reading or writing to SDR. When the system is reset
or '1' is written to the STOP bit, the SIR bit is cleared regardless of the MODE bit value.

Writing '1' to the SIR bit has no effect. '1' is always read by a read operation of a read-
modify-write instruction.

[bit 10] Transfer status bit (BUSY)

The transfer status bit indicates whether serial transfer is being executed.

Table 18.2-7 Setting the Transfer Status Bit

BUSY Operating
0 Stopped, or standing by for serial data register R/W [default]
1 Serial transfer

This bit is initialized to '0" upon a reset. This is a read-only bit.
[bit 9] Stop bit (STOP)

The stop bit forcibly terminates serial transfer. When '1' is written to this bit, the transfer is

248

stopped.

18.2 Serial /0 Registers

Table 18.2-8 Setting the Stop Bit

STOP Operating
0 Normal operation
1 Transfer stop by STOP=1 [initial value]

This bit is initialized to '1' upon a reset. This bit is readable and writable.

[bit 8] Start bit (STRT: Start)

The start bit activates serial transfer. Writing '1' to this bit starts the data transfer when the
MODE bit is set to 0. When the MODE bit is set to 1 and the STRT bit is set to 1, writing the
data into serial data register starts the transfer.

Writing '1' is ignored while the system is performing serial transfer or standing by for a serial
shift register read or write. Writing '0" has no effect.'0' is always read.

249

CHAPTER 18 SERIAL I/O

18.2.2 Serial Shift Data Register (SDR)

This serial data register stores the serial 1/0 transfer data. During transfer, the SDR

must not be read or written to.

m Serial Shift Data Register (SDR)

SDR 7 6 5 4 3 2 1

0

Address : 00002Ey | p7 D6 | D5 D4 | D3 D2 D1

DO

RW RW RW RW RW RW R/W R/W

250

Initial value XXy
(undefined)

18.3 Serial I/O Prescaler (CDCR)

18.3 Serial I/O Prescaler (CDCR)

The Serial 1/0 Prescaler provides the shift clock for the Serial I/0.

The operation clock for the Serial I/O is obtained by dividing the machine clock. The
Serial 1/0O is designed so that a constant baud rate can be obtained for a variety of
machine clocks by the user of the communication prescaler. The CDCR register
controls the machine clock division.

m Serial I/O Prescaler (CDCR)

15 14 13 12 11 10 9 8 Initial value
CDCR
Address: 00006Dy MD — — — DIV3 DIV2 DIV1 DIVO | 0---1111p
R/W R/W R/W R/W R/W

[bit 15] MD (Machine clock divide mode select):
This bit is used to control the operation of the communication prescaler.
0: The Serial /0 Prescaler is disabled.
1: The Serial I/O Prescaler is enabled.

[bits 11, 10, 9, and 8] DIV3 to DIVO (Divide 3 to 0):

These bits are used to determine the machine clock division ratio.

Table 18.3-1 Machine Clock Division Ratio

DIV3to O Division ratio

1101g 3

11005

1011g

10105

10015

0| Nl o] b

10005

Note:

When the division ratio is changed, allow two cycles for the clock to stabilize before starting
communication.

251

CHAPTER 18 SERIAL I/O

18.4 Serial I/O Operation

The extended serial 1/0 consists of the serial mode control status register (SMCS) and
shift register (SDR), and is used for input and output of 8-bit serial data.

m Serial I/O Operation

252

The bits in the shift register are serially output via the serial output pin (SOT1 pin) at the falling
edge of the serial shift clock (external clock or internal clock). The bits are serially input to the
shift register (SDR) via the serial input pin (SIN1 pin) at the rising edge of the serial shift clock.
The shift direction (transfer from MSB or LSB) is specified by the direction specification bit
(BDS) of the serial mode control status register (SMCS).

At the end of serial data transfer, this block is stopped or stands by for a read or write of the
data register according to the MODE bit of the serial mode control status register (SMCS). To
start transfer from the stop or standby state, follow the procedure below.

To resume operation from the stop state, write '0' to the STOP bit and '1' to the STRT bit.
(The STOP and STRT bits can be set simultaneously.)

To resume operation from the serial shift data register R/W standby state, read or write to
the data register.

18.4 Serial 1/0 Operation

18.4.1 Shift Clock

There are two modes of shift clock: internal or external shift clock. These two modes
are selected by setting the SMCS. To switch the modes, ensure that serial I/0O transfer
is stopped. To check whether the serial 1/O transfer is stopped, read the BUSY bit.

Internal Shift Clock Mode

In internal shift clock mode, data transfer is based on the internal clock. As a synchronization
timing output, a shift clock of 50% duty ratio can be output from the SCK pin. Data is transferred
at one bit per clock. The transfer speed is expressed as follows:

A

Transfer speed (s)=
P ©) /Internal clock machine cycle (Hz)

"A" is the division ratio indicated by the SMD bits of SMCS. The value can be 10, 20, 80, 160, or
320.

m External Shift Clock Mode

In external shift clock mode, the data transfer is based on the external clock supplied via the
SCKa3 pin. Data is transferred at one bit per clock.

The transfer speed can be between DC and 1/(5 machine cycles). For example, the transfer
speed can be up to 2 MHz when 1 machine cycle is equal to 0.1 ms.

A data bit can also be transferred by software, which is enabled as described below.

Select external shift clock mode, and write '0' to the SCOE bit of SMCS. Then, write '1' to the
direction register for the port sharing the SCK3 pin, and place the port in output mode. Then,
when '1' and '0" are written to the data register (PDR) of the port, the port value output via the
SCKa3 pin is fetched as the external clock and transfer starts. Ensure that the shift clock starts
from 'H.'

Note:
The SMCS or SDR must not be written to during serial I/O operation.

253

CHAPTER 18 SERIAL I/O

18.4.2 Serial I/O Operation

There are four serial I/O operation statuses:

« STOP
* Halt

* SDR R/W standby

* Transfer

m Serial I/O Operation

254

STOP

The STOP state is initiated upon RESET or when '1' is written to the STOP bit of SMCS. The
shift counter is initialized, and '0' is written to SIR.

To resume operation from the STOP state, write '0' to STOP and '1' to STRT. (These two bits
can be written to simultaneously.) Since the STOP bit overrides the STRT bit, transfer cannot be
started by writing '1' to STRT while '1' is written to STOP.

Halt

When transfer is completed while the MODE bit is '0,' '0" is set to BUSY and '1' is set to SIR of
the SMCS, the counter is initialized, and the system stops. To resume operation from the stop
state, write '1' to STRT.

Serial data register R/W standby

When transfer is completed while the MODE bit is '1,' ‘0" is set to BUSY and '1' is set to SIR of
the SMCS, and the system enters the serial data register R/W standby state. If the interrupt
enable flag is set, an interrupt signal is output from this block.

To resume operation from R/W standby state, read or write to the serial data register. This sets
the BUSY bit to '1' and starts data transfer.
Transfer

1" is set to the BUSY bit and serial transfer is being performed. According to the MODE bit, the
halt state or R/W standby state comes next.

Figures 18.4-1 is diagrams of the operation transitions.

18.4 Serial 1/0 Operation

Figure 18.4-1 Extended I/O Serial Interface Operation Transitions

STOP=0 & STRT=0

y Reset

End of transfer

STRT=0, BUSY=0

STOP=1

STOP

STRT=0, BUSY=0

STOP=1

MODE=0
MODE=0
STOP=0 | &
& STOP=0
STRT=1 | &
END
Transfer

STRT=1, BUSY=1

MODE=1 & END & STOP=0

Serial data register R/W standby

Serial data

SOT3 Data bus
SIN3 Read
Write

Interrupt output

STRT=1, BUSY=0

MODE=1
SDR R/W & MODE=1
Figure 18.4-2 Serial Data Register Read/write
Data bus
7 Read CPU
7 Write
N
O a Interrupt input

Extended 1/0O
serial interface

Data bus

Interrupt controller

1. If '1' is written to MODE, transfer ends according to the shift clock counter. The read/write
standby state starts when '1' is written to SIR. If '1' is written to the SIE bit, an interrupt signal
is generated. No interrupt signal is generated when SIE is inactive or transfer has been

terminated by writing '1' to STOP.

2. Reading or writing to the serial data register clears the interrupt request and starts serial

transfer.

255

CHAPTER 18 SERIAL I/O

18.4.3 Shift Operation Start/Stop Timing

To start the shift operation, set the STOP bit to "0" and the STRT bit to "1" in SMCS.

The system may stop the shift operation at the end of transfer or when "1" is set in the

STOP bit.

e Stop by STOP=1 -> The system stops with SIR=0 regardless of the MODE bit.

» Stop by end of transfer -> The system stops with SIR=1 regardless of the MODE
bit.

Regardless of the MODE bit, the BUSY bit becomes '1' during serial transfer and

becomes '0' during stop or R/W standby state. To check the transfer status, read this

bit.

m Shift Operation Start/Stop Timing

O Internal shift clock mode (LSB first)

Figure 18.4-3 Shift Operation Start/Stop Timing (Internal Clock)

ot

scks L 11— ‘oupu
(Transfer start) (Transfer end)

STRT ____| If MODE=0 '

BUSY o |

SOT3 X DOO0 X ' . X DO7 (Data maintained)

0 External shift clock mode (LSB first)

Figure 18.4-4 Shift Operation Start/Stop Timing (External Clock)
sCk3 o _..r

(Transfer start) (Transfer end)
STRT ___ | If MODE=0 '
BUSY .- |
SOT3 X poo X+ X DO?7 (Data maintained)

O External shift clock mode with instruction shift (LSB first)

256

Figure 18.4-5 Shift Operation Start/Stop Timing (External Shift Clock Mode with Instruction Shift)

SCK3
STRT
BUSY

SOT3

18.4 Serial 1/0 Operation

---— SCK=0'inPDR | . SCK=0'in PDR
SCK="1"in PDR (Transfer end)
If MODE=0 |
o |
e X DO6 Y DO7 (Data maintained)

* For an instruction shift, 'H" is output when '1" is written to the bit corresponding to SCK of PDR,

and 'L' is output when '0" is written. (When SCOE=0 in external shift clock mode)

O Stop by STOP=1 (LSB first, internal clock)

Figure 18.4-6 Stop Timing when '1'is Written to the STOP Bit

[O B
SCK3

(Transfer start) (Transfer stop)

STRT ---- J If MODE=0 |

susY - |

STOP ---- |

SOT3 o ° .:>< DO3 >< DO4 >< DO5 (Data maintained)

Note: DO7 to DOO indicate output data.

During serial data transfer, data is output from the serial output pin (SOT2) at the falling edge of

the shift clock, and input from the serial input pin (SIN) at the rising edge.

Figure 18.4-7 Serial Data 1/O Shift Timing
[1_LSB first (When the BDS bit is '0")

scK3 N s Y s s Y ey U ey U s) s SO
: SIN Input :

SINZ { pwo pu ¥ b2 | b3 b4 Y pi1s f D16) D17
: SOT Output

SOT3 { poo \ po1) po2 \ Dpo3) Do4 Dos f DO6) DO7

[0 MSB first (When the BDS bit is '1')

scK3 e Y e U s e Y s A s (N e N
, SIN Input .
SIN3 { p17 bie) p15 | D14 p13 X p12 f D11) D10
SOT Output
SOT3 { po7 { poe) Dos | Do4) Do3 X Do2 | DO1) DOO

257

CHAPTER 18 SERIAL I/O

18.4.4 Interrupt Function of the Extended Serial I/O Interface

This block can issue an interrupt request to the CPU. At the end of data transfer, the
SIR bit is set as an interrupt flag. When '1" is written to the interrupt enable bit (SIE bit)
of SMCS, an interrupt request is issued to the CPU.

m Interrupt Function of the Extended Serial 1/0O Interface

258

Figure 18.4-8 Interrupt Signal Output Timing of the Extended Serial I/O Interface

] S N S
SCK3 (Transfer end) * When MODE=1
I
BUSY SIE=1 | |
SIR
SDR RD/WR
SOT3 DO6 >< DO7 (Data is maintained.)

18.5 Negative Clock Operation

18.5 Negative Clock Operation

The MB90590 Series supports the negative clock operation of the Serial I/O. In this
opearation, the shift clock signal is simply negated by a inverter. Therefore the
definition of the shift clock signal in the preceeding sections of the Serial 1/0 is
inversed from the logic low level to logic high level, from the negative edge to the
positive edge and vise-versa. This is the same for both the serial clock input and
output.

m Negative Clock Operation

SES 7 6 5 4 3 2 1 0 N
Address : 00002F | | | | - I NEG Initial value
R/W

Table 18.5-1 Setting the NEG Bit

NEG Operation
0 Normal operation [default]
1 The shift clock signal is inverted

259

CHAPTER 18 SERIAL I/O

260

CHAPTER 19 CAN CONTROLLER

This chapter explains the functions and operations of the CAN controller.

19.1 Features of CAN Controller

19.2 Block Diagram of CAN Controller

19.3 List of Overall Control Registers

19.4 List of Message Buffers (ID Registers)

19.5 List of Message Buffers (DLC Registers and Data Registers)
19.6 Classifying the CAN Controller Registers

19.7 Transmission of CAN Controller

19.8 Reception of CAN Controller

19.9 Reception Flowchart of CAN Controller

19.10 How to Use the CAN Controller

19.11 Procedure for Transmission by Message Buffer (x)
19.12 Procedure for Reception by Message Buffer (x)
19.13 Setting Configuration of Multi-level Message Buffer

261

CHAPTER 19 CAN CONTROLLER

19.1 Features of CAN Controller

The CAN controller is a module built into a 16-bit microcontroller (F 2MC-16LX). The
CAN (Controller Area Network) is the standard protocol for serial communication
between automobile controllers and is widely used in industrial applications.

m Features of CAN Controller

The CAN controller has the following features:

0 Conforms to CAN Specification Version 2.0 Part A and B

Supports transmission/reception in standard frame and extended frame formats
O Supports transmitting of data frames by receiving remote frames

0 16 transmitting/receiving message buffers
29-bit ID and 8-byte data

Multi-level message buffer configuration

O Supports full-bit comparison, full-bit mask and partial bit mask filtering.

Two acceptance mask registers in either standard frame format or extended frame formats

O Bit rate programmable from 10 Kbits/s to 1 Mbits/s (when input clock is at 16 MHz)

262

19.2 Block Diagram of CAN Controller

19.2 Block Diagram of CAN Controller

Figure 19.2-1 shows a block diagram of the CAN controller.

m Block Diagram of CAN Controller

Figure 19.2-1 Block Diagram of CAN Controller

TQ (Operating clock)

P F2MC-16LX bus

Prescaler e Ny
Clock 1 to 64 frequency division Bit timing generation SYNC, TSEG1, TSEG2
PSC 4
PR
le—{ BTR
PH
RSJ
TOE
TS
RS
a1 CSR | HALT IDLE, INT, SUSPND,
Bus state transmit, receive,
NIE =1 Node status change Node status machine ERR, OVRLD
NT interrupt generation [~ change interrupt l
NS1, 0
Error
RTEC control
Transmitting/receiving| b
BVALR sequencer Bl
!
Le— TBFX, clear t 1
fe—1 TREQR Transmitting Error frame [~
buffer x decision [TBFX Data | Acceptance generation
counter| filter control
Overload |
frame
generation
TDLC RDLC IDSEL
TBFx BITER, STFER, Output
] Ttcanr l L] CRCER, FRMER, — ARBLOST driver —ETX
ACKER
fe—1 TRTRR I
Transmission
] RFWTR > shift register [I"
TCR le— TBFX, set, clear J CRC ACK. -
g generation| | generation
™1 Transmission complete l’gamnslnggswon TbLC
interrupt generation interrupt
1 TIER CRCER
fe— RBFX, set
[RCR - RDLC [* crc generation/error STFER
'[check
: Reception
Reception complete 1 1
<1 RIER interrupt generation [~ ﬁﬁg}?uetf - N - -
1 P Receive shift Destufﬂngéstu;hng 14
B register - error checl
l«— RBFX, TBFX, set, clear
g RRTRR T
l«— RBFx, set IDSEL
- ROVRR {
Arbitration i
ARBLOST —e—i bitra
AMSR | 1— fe——
BITER Bit error e
—~—~—
L] 0 — check
AMRO 1 — Acceptance - Receiving buffer x " PH1
I B ey filter decision ACKER Acknowledgment
|] AVRL - error check [+ l
RBF: FRMER F I it
X orm error npu
IDRO to 15 ~ check latch —QRX
DLCRO to 15
le«—»{ DTROt0 15
RAM
RAM address
[e— generation fee—— RBFx, TBFx, RDLC, TDLC, IDSEL
et LEIR

263

CHAPTER 19 CAN CONTROLLER

19.3 List of Overall Control Registers

Table 19.3-1 lists overall control registers.

m List of Overall Control Registers

Table 19.3-1 List of Overall Control Registers

Address o
Register Abb'rewa Access Initial Value
CANO CAN1 tion

000070H | 000080, -

Message buffer valid BVALR RIW 00000000 00000000
000071H 000081, | "egister
000072, | 000082, -

Transmit request TREQR RIW 00000000 00000000
000073, | 000083, | register
000074, | 000084,

Transmit cancel register TCANR wW 00000000 00000000
000075, | 000085y,
000076,, | 000086y, :

Transmit complete TCR RIW 00000000 00000000
000077, | 000087, | register
000078, | 000088, -

Receive complete RCR RIW 00000000 00000000
000079, | 000089, | register
00007A, | OO008A

Remote request RRTRR RIW 00000000 00000000
OOOO?BH OOOOSBH receiving reglster
00007C,; | 00008C :

Recelve overrun ROVRR RW 00000000 00000000
00007Dy | 00008D, | fegister
00007E,, | OOOOSEy o

Receiveinterruptenable | p - p RIW 00000000 00000000
00007F, | O00008F, | register
001C00, | 001D00

Control status register CSR R/W, R 00---000 0----001
001C01, | 001DO1
001C02,, | 001D02y -

La;t event indicator LEIR RW | e 000-0000
001C03, | 001D03, | register
001C04, | 001D04 : -

Receive/transmit error RTEC R 00000000 00000000
001C05, | 001DO5, | counter
001C06,, | 001DO06

Bit timing register BTR R/W -1111111 1111121212
001C07, | 001D07

264

19.3 List of Overall Control Registers

Table 19.3-1 List of Overall Control Registers (Continued)

Address i
Register Abb.rewa Access Initial Value
CANO CAN1 tion
001C08y 001D08y
IDE register IDER R/W XXXXXXXX XXXXXXXX
001C09y 001D09y
001COA 001DO0A
Transmit RTR register TRTRR R/W 00000000 00000000

001COB, | 001DOBy

001COCH 001DOCH Remote frame receive

m ! RFWTR RIW XXXXXXXX XXXXXXXX
OOlCODH 001DODH Waltlng reglster
001COE, | 001DOE -
1Ta?ﬁ”“t"ﬁe”“pt TIER RIW 00000000 00000000
001COFy | O001DOFy | enableregister
001C10, | 001D10y
XXXXXXXK XXXXXXXX
001C11, | 001D1ly
Acqeptance mask select AMSR RIW
001C12,, | 001D12,, | "egister
XXXXXXXK XXXXXXXX

001C13, | 001D13,

001C14y | 001D14y

XXXXXXKXX XXXXXXXX

001C15y | 001D15y | acceptance mask

ster 0 AMRO R/W
O0LC10: 001p16y | O XXXXXK--- XXX XXXXX
001C17y 001D17y
001C18y 001D18y
XXXXXXXX XXXXXXXX
001C19y 001D19y Acceptance mask AMR1 RIW

001C1A 001D1A register 1
XXXXX === XXXXXXXX

001C1B, | 001D1By

265

CHAPTER 19 CAN CONTROLLER

19.4 List of Message Buffers (ID Registers)

Table 19.4-1 lists message buffers (ID registers).

m List of Message Buffers (ID registers)

Table 19.4-1 List of Message Buffers (ID Registers)

Address ;
Register Abb.rewa Access Initial Value
CANO CAN1 -fion
001A004 001B00y XXXXXXXX
o to General-purpose _ RIW to
001A1Fy 001B1Fy RAM XXXXXXXX
001A204 001B20y4
XXXXXXXX XXXXXXXX
001A21y 001B21y
ID register O IDRO R/W
001422 001822 XXXX K== XXXXXXXX
001A234 001B23y4
001A24y 001B24y
XXXXXXXX XXXXXXXX
001A25, 001B25y
ID register 1 IDR1 R/W
00AZH 001826 XXXX K== XXXXXXXX
001A27y 001B274
001A28y 001B28y
XXXXXXXX XXXXXXXX
001A29y, 001B29y4
ID register 2 IDR2 R/W
00LAZAw 001B2Aw XXXXXK === XXXXXXXX
001A2By 001B2By
001A2C 001B2C
XXXXXXXX XXXXXXXX
001A2D 001B2Dy
ID register 3 IDR3 R/W
O0TAZEH 001B2En XXXX K== XXXXXXXX
001A2F 001B2F
001A304 001B30y4
XXXXXXXX XXXXXXXX
001A31y 001B31y
ID register 4 IDR4 R/W
001A32H 001B32"
XXXXXK === XXXXXXXX
001A33y4 001B33y4

266

19.4 List of Message Buffers (ID Registers)

Table 19.4-1 List of Message Buffers (ID Registers) (Continued)

Address ;
Register Abb.rewa Access Initial Value
CANO CAN1 -tion
001A344 001B34y
XXXXXXXX XXXXXXXX
001A354 001B354
ID register 5 IDR5 R/W
001A364 001B36y
XXXX K== XXXXXXXX
001A374 001B374
001A384 001B38y
KXXXXXXX XXXXXXXX
001A39, 001B39y
ID register 6 IDR6 R/W
001A3A4 001B3A4
XXXXX-== XXXXXXXX
001A3By 001B3By
001A3Cy 001B3Cy
KXXXXXXX XXXXXXXX
001A3Dy 001B3Dy
ID register 7 IDR7 R/W
001A3Ey 001B3Ey
XXXX K== XXXXXXXX
001A3Fy 001B3Fy
001A404 001B40y
XXXXXXXX XXXXXXXX
001A41H 001B41H
ID register 8 IDR8 R/W
001A42H 001B42H
XXXX K== XXXXXXXX
001A43H 001B43H
001A44, 001B44y
KXXXXXXX XXXXXXXX
001A45, 001B45,
ID register 9 IDR9 R/W
001A464 001B46
XXXXX-== XXXXXXXX
001A474 001B474
001A48, 001B48y
KXXXXXXX XXXXXXXX
001A49, 001B49,
ID register 10 IDR10 R/W
001A4A4 001B4Ay4
XXXX K== XXXXXXXX
001A4By 001B4By
001A4Cy 001B4Cy
XXXXXXXX XXXXXXXX
001A4Dy 001B4Dy
ID register 11 IDR11 R/W
001A4Ey 001B4Ey
XXXX K== XXXXXXXX
001A4F 001B4F

267

CHAPTER 19 CAN CONTROLLER

Table 19.4-1 List of Message Buffers (ID Registers) (Continued)

Address ;
Register Abb.rewa Access Initial Value
CANO CAN1 -tion
001A504 001B504
XXXXXXXX XXXXXXXX
001A514 001B514
ID register 12 IDR12 R/W
001A52, 001B52y
XXXXXK=-= XXXXXXXX
001A534 001B534
001A54, 001B54H
):0.9.9.9.9.9.0.9.9,.9.9.9,.9.9,.0.
001A55, 001B55H
ID register 13 IDR13 R/W
001A56 001B56
XXXX K== XXXXXXXX
001A574 001B57y4
001A58, 001B58y
):0.9.9.9.0.90.0.9.9,.9.9.9,.9.9,0.
001A59, 001B59
ID register 14 IDR14 R/W
001A5A4 001B5A4
XAXXXXK=-= XXXXXXXX
001A5By 001B5By
001A5CH 001B5Cy
XXXXXXXX XXXXXXXX
001A5Dy 001B5Dy
ID register 15 IDR15 R/W
001A5Ey 001B5Ey
XAXXX K== XXXXXXXX
001A5Fy 001B5Fy

268

19.5 List of Message Buffers (DLC Registers and Data Registers)

19.5 List of Message Buffers (DLC Registers and Data Registers)

Table 19.5-1 lists message buffers (DLC registers), and Table 19.5-2 lists message
buffers (data registers).

m List of Message Buffers (DLC Registers and Data Registers)

Table 19.5-1 List of Message Buffers (DLC Registers and Data Registers)

Address

Register Abb'rewa Access Initial Value
CANO CAN1 -tion

001A604 001B60y
DLC register 0 DLCRO R/W ---=XXXX

001A61H 001B61y

001A62y 001B62y
DLC register 1 DLCR1 R/W ----XXXX

001A634 001B63y

001A64H 001B64H
DLC register 2 DLCR2 R/W ----XXXX

001A654 001B65y

001A66 001B66
DLC register 3 DLCR3 R/W ---=XXXX

001A67 001B67h

001A68y 001B68y
DLC register 4 DLCR4 R/W ----XXXX

001A69 001B69y

001A6AH 001B6Ay
DLC register 5 DLCR5 R/W ----XXXX

001A6By 001B6By

001A6C 001B6CH
DLC register 6 DLCR6 R/W ---=XXXX

001A6Dy 001B6Dy

001A6Ey 001B6Ey
DLC register 7 DLCR7 R/W ---=XXXX

001A6Fy 001B6Fy

001A704 001B704
DLC register 8 DLCR8 R/W ----XXXX

001A714 001B71y

001A72, 001B72y
DLC register 9 DLCR9 R/W ---=XXXX

001A734 001B734

001A744 001B74y
DLC register 10 DLCR10 R/W ----XXXX

001A75, 001B754

269

CHAPTER 19 CAN CONTROLLER

Table 19.5-1 List of Message Buffers (DLC Registers and Data Registers) (Continued)

Address ;
Register Abb.rewa Access Initial Value
CANO CAN1 -tion
001A764 001B764
DLC register 11 DLCR11 R/W - XXXX
001A77y4 001B77y4
001A78y 001B78y
DLC register 12 DLCR12 R/W - XXXX
001A794 001B794
001A7AL 001B7Ay4
DLC register 13 DLCR13 R/W - XXXX
001A7By 001B7By
001A7Cy 001B7Cy
DLC register 14 DLCR14 R/W - XXXX
001A7Dy 001B7Dy
001A7EH 001B7EH
DLC register 15 DLCR15 R/W - XXXX
001A7Fy 001B7Fy

270

19.5 List of Message Buffers (DLC Registers and Data Registers)

m List of Message Buffers (Data Registers)

Table 19.5-2 List of Message Buffers (Data Registers)

Address

Register Abb'rewa Access Initial Value
CANO CAN1 -tion
001A804 001B80y XXXXXXXX
to to Data register 0 (8 bytes) DTRO R/W to
001A87, 001B87y XXXXXXXX
001A88y 001B88y XXXXXXXX
to to Data register 1 (8 bytes) DTR1 R/W to
001A8F 001B8F XXXXXXXX
001A904 001B90y XXXXXXXX
to to Data register 2 (8 bytes) DTR2 R/W to
001A97y 001B97y4 XXXXXXXX
001A98y 001B98y XXXXXXXX
to to Data register 3 (8 bytes) DTR3 R/W to
001A9F 001B9F XXXXXXXX
001AAOH 001BAOH XXXXXXXX
to to Data register 4 (8 bytes) DTR4 R/W to
001AA7y 001BA7y XXXXXXXX
001AA8H 001BA8H XXXXXXXX
to to Data register 5 (8 bytes) DTR5 R/W to
001AAF 001BAF XXXXXXXX
001ABOH 001BBOH XXXXXXXX
to to Data register 6 (8 bytes) DTR6 R/W to
001AB74 001BB74 XXXXXXXX
001AB8H 001BB8H XXXXXXXX
to to Data register 7 (8 bytes) DTR7 R/W to
001ABF 001BBF XXXXXXXX
001ACOH 001BCOH XXXXXXXX
to to Data register 8 (8 bytes) DTR8 R/W to
001AC7y 001BC7y XXXXXXXX
001ACS8H 001BC8H XXXXXXXX
to to Data register 9 (8 bytes) DTR9 R/W to
001ACFy 001BCFy XXXXXXXX
001Q)DOH 001It30D0H Data register 10 (8 TR0 W XXX)t(é(XXX
001AD7,, 0018D7,, | V'S XXXXXXXX
001QD8H 001tBoD8H Data register 11 (8 TR W XXX)t(é(XXX
001ADF, 001BDF, | V') XXXXXXXX
001@E0H OOlE;EOH Data register 12 (8 N - xxx>t<;<xxx
001AE7, 001BE7, | PVt XXXXXXXX

271

CHAPTER 19 CAN CONTROLLER

Table 19.5-2 List of Message Buffers (Data Registers) (Continued)

Address ;
Register Abb.rewa Access Initial Value
CANO CAN1 -tion
001QE8H 0015;E8H Data register 13 (8 . - xxx>t<(>)<xxx
001AEF, 001BEF, | PV XXXXXXXX
0012F0H 0015)F0H Data register 14 (8 - - xxx>t<(>)<xxx
001AF7,, 001BF7, | PY'es) XXXXXXXX
001AF8H 001BF8H . XXXXXXXX
to to E atteaS;eg'Ster 158 DTR15 RIW to
001AFFH | 001BFFH | XXXXXXXX

272

19.6 Classifying the CAN Controller Registers

19.6 Classifying the CAN Controller Registers

There are three types of CAN controller registers:
» Overall control registers

» Message buffer control registers

* Message buffers

m Overall Control Registers

The overall control registers are the following four registers:

Control status register (CSR)

Last event indicator register (LEIR)
Receive and transmit error counter (RTEC)
Bit timing register (BTR)

m Message Buffer Control Registers

The message buffer control registers are the following 14 registers:

Message buffer valid register (BVALR)

IDE register (IDER)

Transmission request register (TREQR)
Transmission RTR register (TRTRR)

Remote frame receiving wait register (RFWTR)
Transmission cancel register (TCANR)
Transmission complete register (TCR)
Transmission interrupt enable register (TIER)
Reception complete register (RCR)

Remote request receiving register (RRTRR)
Receive overrun register (ROVRR)
Reception interrupt enable register (RIER)
Acceptance mask select register (AMSR)

Acceptance mask registers 0 and 1 (AMRO and AMR1)

m Message Buffers

The message buffers are the following three registers:

L]

L]

L]

ID register x (x = 0 to 15) (IDRx)
DLC register x (x = 0 to 15) (DLCRX)
Data register x (x = 0 to 15) (DTRX)

273

CHAPTER 19 CAN CONTROLLER

19.6.1 Control Status Register (CSR)

Control status register (CSR) is prohibited from executing any bit manipulation
instructions (Read-Modify-Write instructions).

m Control Status Register (CSR)

15 14 13 12 11 10 9 8
Address: 001C01 (CANO) TS RS — — — NT NS1 NSO
001D01, (CAN1)
Read/write: (R) (R) (—) (—) (—) (R/W) R) R)
Initial value: (0) (0) —) (—) =) 0) (0) 0)
7 6 5 4 3 2 1 0
Address: 001C00y (CANO) TOE — — — — NIE Reserved HALT
001D00y (CAN1)
Read/write (RIW) =) =) =) =) (RIW) (W) (RIW)
Initial value; 0) (—) (—) (—) (—) 0) 0) Q)

274

[Bit 15] TS: Transmit status bit

This bit indicates whether a message is being transmitted.
0: Message not being transmitted

1. Message being transmitted
This bit is 0 even while error and overload frames are transmitted.

[Bit 14] RS: Receive status bit

This bit indicates whether a message is being received.
0: Message not being received

1. Message being received

While a message is on the bus, this bit becomes 1. Therefore, this bit is also 1 while a
message is being transmitted. This bit does not necessarily indicates whether a receiving
message passes through the acceptance filter.

As a result, when this bit is 0, it implies that the bus operation is stopped (HALT = 0); the bus
is in the intermission/bus idle or a error/overload frame is on the bus.

[Bit 10] NT: Node status transition flag

If the node status is changed to increment, or from Bus Off to Error Active, this bit is set to 1.

In other words, the NT bit is set to 1 if the node status is changed from Error Active (00) to
Warning (01), from Warning (01) to Error Passive (10), from Error Passive (10) to Bus Off
(11), and from Bus Off (11) to Error Active (00). Numbers in parentheses indicate the values

of NS1 and NSO bits.

19.6 Classifying the CAN Controller Registers

When the node status transition interrupt enable bit (NIE) is 1, an interrupt is generated.
Writing O sets the NT bit to 0. Writing 1 to the NT bit is ignored. 1 is read when a Read
Modify Write instruction is performed.

[Bits 9 to 8] NS1 and NSO: Node status bits 1 and 0

These bits indicate the current node status.

Table 19.6-1 Correspondence between NS1 and NSO and Node Status

NS1 NSO Node Status
0 0 Error active
0 1 Warning (error active)
1 0 Error passive
1 1 Bus off

Note:

Warning (error active) is included in the error active in CAN Specification 2.0B for the node
status, however, indicates that the transmit error counter or receive error counter has
exceeded 96. The node status change diagram is shown in Figure 19.6-1.

Figure 19.6-1 Node Status Transition Diagram

Hardware reset

l REC: Receive error counter
TEC: Transmit error counter

REC >= 96 After 0 has been written to the HALT bit of
or the register (CSR, continuous 11-bit High
TEC >= 96 levels (recessive bits) are input 128 times
to the receive input pin (RX).
REC < 96
and
TEC <96
Warning
(Error active)
REC >= 128
or
TEC >= 7
REC < 128
and
TEC <128
Error pas- Bus off
sive (HALT=1)
TEC >= 256

[Bit 7] TOE: Transmit output enable bit

Writing 1 to this bit switches from a general-purpose port pin to a transmit pin of the CAN
controller.

0: General-purpose port pin
1: Transmit pin of CAN controller
[Bit 2] NIE: Node status transition interrupt enable bit

This bit enables or disables a node status transition interrupt (when NT = 1).

275

CHAPTER 19 CAN CONTROLLER

0: Node status transition interrupt disabled

1: Node status transition interrupt enabled
[Bit 1] Reserved

The is a reserved bit. Do not write "1" to this bit.
[Bit 0] HALT: Bus operation stop bit

This bit sets or cancels bus operation stop, or displays its state.

276

19.6 Classifying the CAN Controller Registers

19.6.2 Bus Operation Stop Bit (HALT = 1)

The bus operation stop bit sets or cancels stopping of bus operation, or indicates its
status

m Conditions for Setting Bus Operation Stop (HALT=1)
There are three conditions for setting bus operation stop (HALT = 1):
o After hardware reset
« When node status changed to bus off
e By writing 1 to HALT
Note:

The bus operation should be stopped by writing 1 to HALT before the F2MC-16LX is
changed in low-power consumption mode (stop mode, timer mode, and hardware stand-by
mode).

If transmission is in progress when 1 is written to HALT, the bus operation is stopped (HALT
= 1) after transmission is terminated. If reception is in progress when 1 is written to HALT,
the bus operation is stopped immediately (HALT = 1). If received messages are being
stored in the message buffer (x), stop the bus operation (HALT = 1) after storing the
messages.

To check whether the bus operation has stopped, always read the HALT bit.

m Conditions for Canceling Bus Operation Stop (HALT = 0)
e By writing 0 to HALT
Note:

Canceling the bus operation stop after hardware reset or by writing 1 to HALT as above
conditions is performed after O is written to HALF and continuous 11-bit High levels
(recessive bits) have been input to the receive input pin (RX) (HALT = 0).

Canceling the bus operation stop when the node status is changed to bus off as above
conditions is performed after O is written to HALF and continuous 11-bit High levels
(recessive bits) have been input 128 times to the receive input pin (RX) (HALT = 0). Then,
the values of both transmit and receive error counters reach 0 and the node status is
changed to error active.

m State during Bus Operation Stop (HALT = 1)
e The bus does not perform any operation, such as transmission and reception.
e The transmit output pin (TX) outputs a High level (recessive bit).
e The values of other registers and error counters are not changed.
Note:
The bit timing register (BTR) should be set during bus operation stop (HALT = 1).

277

CHAPTER 19 CAN CONTROLLER

19.6.3 Last Event Indicator Register (LEIR)

This register indicates the last event.
The NTE, TCE, and RCE bits are exclusive. When the corresponding bit of the last
event is set to 1, other bits are set to 0s.

m Last Event Indicator Register (LEIR)

7 6 5 4 3 2 1 0
Address: 001C02, (CANO) NTE TCE RCE — MBP3 MBP2 MBP1 MBPO
001D02;; (CAN1)
Read/write (R/W) (RIW) (R/W)) (RIW) (R/W) (R/W) (R/W)
Initial value: (0) (0) (0) () 0) 0) (0) 0)

278

[Bit 7] NTE: Node status transition event bit

When this bit is 1, node status transition is the last event.
This bit is set to 1 at the same time the NT bit of the control status register (CSR) is set.

This bit is also set to 1 irrespective of the setting of the node status transition interrupt enable
bit (NIE) of CSR.

Writing O to this bit sets the NTE bit to 0. Writing 1 to this bit is ignored.

1 is read when a Read Modify Write instruction is executed.

[Bit 6] TCE: Transmit completion event bit

When this bit is 1, it indicates that transmit completion is the last event.

This bit is set to 1 at the same time as any one of the bits of the transmit completion register
(TCR). This bit is also set to 1, irrespective of the settings of the bits of the transmit interrupt
enable register (TIER).

Writing O sets this bit to 0. Writing 1 to this bit is ignored.
1 is read when a Read Modify Write instruction is performed.

When this bit is set to 1, the MBP3 to MBPO bits are used to indicate the message buffer
number completing the transmit operation.

[Bit 5] RCE: Receive completion event bit

When this bit is 1, it indicates that receive completion is the last event.

This bit is set to 1 at the same time as any one of the bits of the receive complete register
(RCR). This bit is also set to 1 irrespective of the settings of the bits of the receive interrupt
enable register (RIER).

Writing O sets this bit to 0. Writing 1 to this bit is ignored.
1 is read when a Read Modify Write instruction is performed.

When this bit is set to 1, the MBP3 to MBPO bits are used to indicate the message buffer
number completing the receive operation.

19.6 Classifying the CAN Controller Registers

[Bits 3 to 0] MBP3 to MBPO: Message buffer pointer bits

When the TCE or RCE bit is set to 1, these bits indicate the corresponding numbers of the
message buffers (0 to 15). If the NTE bit is set to 1, these bits have no meaning.

Writing O sets these bits to 0s. Writing 1 to these bits is ignored.
1s are read when a Read Modify Write instruction is performed.

If LEIR is accessed within an CAN interrupt handler, the event causing the interrupt is not
neccessarily the same as indicated by LEIR. In the time from interrupt request to the LEIR
access by the interrupt handler there may occur other CAN events.

279

CHAPTER 19 CAN CONTROLLER

19.6.4 Receive and Transmit Error Counters (RTEC)

The receive and transmit error counters indicate the counts for transmission errors
and reception errors defined in the CAN specifications. These registers can only be
read.

m Receive and Transmit Error Counters (RTEC)

15 14 13 12 11 10 9 8
Address: 001CO05, (CANO)| TEC7 TEC6 TEC5 TEC4 TEC3 TEC2 TEC1 TECO
001D05,; (CAN1)
Read/write: (R) (R) (R) (R) (R) (R) (R) (R)
Initial value: (0) (0) (0) (0) 0) 0) 0) 0)
7 6 5 4 3 2 1 0

Address: 001C04,, (CANO) | REC7 REC6 REC5 REC4 REC3 REC2 REC1 RECO
001D04,; (CAN1)
Read/write: (R) (R) (R) (R) (R) (R) (R) (R)

Initial value: 0) 0) 0) 0) 0) 0) 0) 0)

[Bits 15 to 8] TECY to TECO: Transmit error counter
These are transmit error counters.

TEC7 to TECO values indicate 0 to 7 when the counter value is more than 256, and the
subsequent increment is not counted for counter value. In this case, Error Passive is
indicated for the node status (NS1 and NSO of control status register CSR = 11).

[Bits 7 to 0] REC7 to RECO: Receive error counter
These are receive error counters.

REC7 to RECO values indicate 0 to 7 when the counter value is more than 256, and the
subsequent increment is not counted for counter value. In this case, Bus Off is indicated for
the node status (NS1 and NSO of control status register CSR = 10).

280

19.6.5 Bit Timing Register (BTR)

19.6 Classifying the CAN Controller Registers

Bit timing register (BTR) stores the prescaler and bit timing setting.

m Bit Timing Register (BTR)

15 14 13 12 11 10 9 8
Address: 001CO07, (CANO) — TS2.2 TS2.1 TS2.0 TS1.3 TS1.2 TS1.1 TS1.0
001D07y (CAN1)
Read/write: =) (R/W) (R/W) (R/W) (RIW) (RIW) (RIW) (RIW)
Initial value: (—) Q) Q) Q) 1) Q) Q) Q)
7 6 5 4 3 2 1 0
Address: 001C06y (CANO) RSJ1 RSJO PSC5 PSC4 PSC3 pPSC2 PSC1 PSCO
001D06y (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (R/W) (R/W) (RIW) (R/W)
Initial value: Q) Q) Q) Q) Q) (1) (1) 1)
Note

This register should be set during bus operation stop (HALT = 1).
[Bits 14 to 12] TS2.2 to TS2.0: Time segment 2 setting bits 2 to 0

These bits define the number of the time quanta (TQ's) for the time segment 2 (TSEGZ2).
The time segment 2 is equal to the phase buffer segment 2 (PHASE_SEG2) in the CAN
specification.

[Bits 11 to 8] TS1.3to TS1.0: Time segment 1 setting bits 3 to 0

These bits define the number of the time quanta (TQ's) for the time segment 1 (TSEG1).
The time segment 1 is equal to the propagation segment (PROP_SEG) + phase buffer
segment 1 (PHASE_SEG1) in the CAN specification.

[Bits 7 and 6] RSJ1 and RSJO: Resynchronization jump width setting bits 1 and 0

These bits define the number of the time quanta (TQ's) for the resynchronization jump width.
[Bits 5 to 0] PSC5 to PSCO: Prescaler setting bits 5to 0

These bits define the time quanta (TQ) of the CAN controller.

The bit time segments defined in the CAN specification, and the CAN controller are shown
in Figures 19.6-2 and 19.6-3 respectively.

281

CHAPTER 19 CAN CONTROLLER

282

Figure 19.6-2 Bit Time Segment in CAN Specification

i Nominal bit time i

SYNC_SEG PROP_SEG | PHASE_SEG] PHASE_SEG]

1

Sample point

Figure 19.6-3 Bit Time Segment in CAN Controller

i Nominal bit time i

SYNC_SEG TSEG1 TSEG2

1

Sample point

The relationship between PSC = PSC5 to PSCO, TSI = TS1.3 to TS1.0, TS2 = TS2.2 to TS1.0,
and RSJ = RSJ1 and RSJO when the input clock (CLK), time quanta (TQ), bit time (BT),
synchronous segment (SYNC_SEG), time segment 1 and 2 (TSEG1 and TSEG2), and
resynchronization jump width [(RSJ1 and RSJO0) +1] frequency division is shown below.

The input clock is supplied with the machine clock.
TQ =(PSC+1)X CLK
BT =SYNC_SEG + TSEG1 + TSEG2
A+ (TS1+1)+(TS2+1))XTQ
=(3+TS1+TS2) TQ
RSJW = (RSJ + 1) X TQ
For correct operation, the following conditions should be met.
BT >=8TQ
TSEG2 >= RSJW + 2TQ*1
TSEG1 >= delay time*2 + RSJW
*1) 2TQ: Data processing time

*2) Delay time: Twice as long as the sum of the bus propagation, input comparator and output
driver delay

19.6.6 Message Buffer Valid Register (BVALR)

19.6 Classifying the CAN Controller Registers

Message buffer valid register (BVALR) stores the validity of the message buffers or

displays their state.

m Message Buffer Valid Register (BVALR)

Address: 0000714 (CANO) | BVAL15

000081, (CAN1)
Read/write: (R/W)

Initial value: 0)

Address: 0000704 (CANO) | BVAL7

000080, (CAN1)

15 14 13 12 11 10 9 8
BVAL14 | BVAL13 | BvAL12 | BvAL11l | BvAL10 | BvAL9 | BvALS
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

(0) (0) (0) (0) (0) (0) (0)

7 6 5 4 3 2 1 0
BVAL6 | BVAL5 | BvAL4 | BvAL3 | BvAL2 | BvALL | BVALO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Read/write: (R/W)

Initial value: 0)

0: Message buffer (x) invalid

©)

1: Message buffer (x) valid

If the message buffer (x) is set to invalid, it will not transmit or receive messages.

©)

©)

©)

©)

©)

©

If the buffer is set to invalid during transmission operating, it becomes invalid (BVALx = 0) after
the transmission is completed or terminated by an error.

If the buffer is set to invalid during reception operating, it immediately becomes invalid (BVALX =
0). If received messages are stored in a message buffer (x), the message buffer (x) is invalid
after storing the messages.

Note:

x indicates a message buffer number (x = 0 to 15).

When invaliding a message buffer (x) by writing 0 to a bit (BVALX), execution of a bit
manipulation instruction is prohibited until the bit is set to 0.

283

CHAPTER 19 CAN CONTROLLER

19.6.7 IDE register (IDER)

This register stores the frame format used by the message buffers (x) during
transmission/reception.

m |IDE Register (IDER)

15 14 13 12 11 10 9 8

Address: 001C09y (CANO) | IDE15 IDE14 IDE13 IDE12 IDE11 IDE10 IDE9 IDES
001D09,; (CAN1)
Read/write: ~ (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: (X) (X) (X) X) X) X) X) X)
7 6 5 4 3 2 1 0
Address: 001C08y (CANO) IDE7 IDE6 IDES IDE4 IDE3 IDE2 IDE1 IDEO
001D08y (CANL1)
Read/write: (RIW) (R/W) (R/W) (RIW) (RIW) (R/W) (R/W) (RIW)
Initial value: (X) X) X) X) X) (X) (X) (X)

0: The standard frame format (ID11 bit) is used for the message buffer (x).
1: The extended frame format (ID29 bit) is used for the message buffer (x).
Note:

This register should be set when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) = 0). Setting when the buffer is valid (BVALX = 1) may cause
unnecessary received messages to be stored.

284

19.6 Classifying the CAN Controller Registers

19.6.8 Transmission Request Register (TREQR)

Transmission request register (TREQR) stores transmission requests to the message
buffers (x) or displays their state.

m Transmission Request Register (TREQR)

15 14 13 12 11 10 9 8

Address: 000073y (CANO) | TREQ15 | TREQ14 | TREQ13 | TREQ12 | TREQ11 | TREQ10 | TREQ9 | TREQS8
000083, (CAN1)

Readiwrite: ~ (RIW) (RIW) (RW) (RIW) (RIW) (RW) (RW) (RW)
Initial value: (0) (0) (0) (0) (0) (0) (0) (0)
7 6 5 4 3 2 1 0

Address: 000072, (CANO) | TREQ7 | TREQ6 | TREQ5 | TREQ4 | TREQ3 | TREQ2 | TREQ1 | TREQO
000082, (CAN1)
Readiwrite: (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: 0)) 0) 0) 0) (0) (0) (0)

When 1 is written to TREQX, transmission to the message buffer (x) starts. If RFWTx of the
remote frame receiving wait register (RFWTR)*1 is 0, transmission starts immediately.
However, if RFWTx = 1, transmission starts after waiting until a remote frame is received
(RRTRx of the remote request receiving register (RRTRR)*1 becomes 1). Transmission
starts*2 immediately even when RFWTx = 1, if RRTRx is already 1 when 1 is written to TREQX.

*1: For RFWTR and TRTRR, see 19.6.9 and 19.6.10.

*2: For cancellation of transmission, see 19.6.11 and 19.6.12.
Writing 0 to TREQX is ignhored.

0 is read when a Read Modify Write instruction is performed.

If clearing (to 0) at completion of the transmit operation and setting by writing 1 are concurrent,
clearing is preferred.

If 1 is written to more than one bit, transmission is performed, starting with the lower-numbered
message buffer (x).

TREQXx is 1 while transmission is pending, and becomes 0 when transmission is completed or
canceled.

285

CHAPTER 19 CAN CONTROLLER

19.6.9 Transmission RTR Register (TRTRR)

This register stores the RTR (Remote Transmission Request) bits for the message

buffers (x).

m Transmission RTR Register (TRTRR)

Address: 001CO0By (CANO)
001D0OBy (CAN1)
Read/write:

Initial value:

Address: 001COAy (CANO)
001DO0Ay (CAN1)
Read/write:

Initial value:

15 14 13 12 11 10 9 8
TRTR15 | TRTR14 | TRTR13 | TRTR12 | TRTR11 | TRTR10 | TRTR9 | TRTR8
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
©) ©) ©) ©) ©) ©) ©) ©)

7 6 5 4 3 2 1 0
TRTR7 | TRTR6 | TRTR5S | TRTR4 | TRTR3 | TRTR2 | TRTRL1 | TRTRO
(R/W) (RIW) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

©)

0: Data frame

1: Remote frame

286

©)

©)

©)

©)

©)

©)

©)

19.6 Classifying the CAN Controller Registers

19.6.10 Remote Frame Receiving Wait Register (RFWTR)

Remote frame receiving wait register (RFWTR) stores the conditions for starting

transmission when a request for data frame transmission is set (TREQx of the

transmission request register (TREQR) is 1 and TRTRx of the transmitting RTR register

(TRTRRY) is 0).

e 0: Transmission starts immediately

» 1: Transmission starts after waiting until remote frame received (RRTRx of remote
request receiving register (RRTRR) becomes 1)

m Remote Frame Receiving Wait Register (RFWTR)

Address: 001CODy (CANO) | RFWT15

001D0D}; (CAN1)
Read/write: (RIW)

Initial value: (X)

Address: 001COCy (CANO) | RFWT7

001D0C,; (CAN1)

15 14 13 12 11 10 9 8
RFWT14 | RFWT13 | RFWT12 | RFWT11 | RFWT10 | RFWT9 | RFWTS
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
(X) (X) (X) (X) (X) (X) (X)
7 6 5 4 3 2 1 0
RFWT6 | RFWT5 | RFwT4 | RFWT3 | RFWT2 | RFWT1 | RFWTO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Read/write: (R/W)

Initial value: X)

Note:

)

)

)

)

)

)

)

Transmission starts immediately if RRTRx is already 1 when a request for transmission is

set.

For remote frame transmission, do not set RFWTx to 1.

287

CHAPTER 19 CAN CONTROLLER

19.6.11 Transmission Cancel Register (TCANR)

When 1 is written to TCANYX, this register cancels a pending request for transmission

to the message buffer (x).

At completion of cancellation, TREQXx of the transmission request register (TREQR)

becomes 0. Writing 0 to TCANKX is ignored.
This is a write-only register and its read value is always O.

m Transmission Cancel Register (TCANR)

15 14 13 12 11 10 9 8
Address: 000075, (CANO) | TCAN15 | TCAN14 | TCAN13 | TCAN12 | TCAN1l1 | TCAN10 TCAN9 TCANS8
000085y (CANL1)
Read/write: (W) (W) (W) (W) (W) (W) (W) W)
Initial value: (0) 0) 0) 0) 0) 0) 0) 0)
7 6 5 4 3 2 1 0
Address: 000074 (CANO) | TCAN7 TCANG6 TCAN5 TCAN4 TCAN3 TCAN2 TCAN1 TCANO
000084y (CANL1)
Read/write: (W) (W) (W) (W) (W) (W) (W) (W)
Initial value: 0) 0) 0) 0) 0) ©) 0) 0)

288

19.6.12 Transmission Complete Register (TCR)

19.6 Classifying the CAN Controller Registers

At completion of transmission by the message buffer (x), the corresponding TCx

becomes 1.

If TIEx of the transmission complete interrupt enable register (TIER) is 1, an interrupt

OcCcurs.

m Transmission Complete Register (TCR)

Address: 000077, (CANO)
000087 (CANL1)
Read/write:

Initial value:

Address: 0000764 (CANO)
000086y (CAN1)
Read/write:

Initial value:

15 14 13 12 11 10 9 8
TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

(0) (0) 0) (0) (0) (0) (0) (0)

7 6 5 4 3 2 1 0
TC7 TC6 TC5 TC4 TC3 TC2 TC1 TCO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

©)

©)

O Conditions for TCx =0

e Write 0 to TCx.
« Write 1 to TREQXx of the transmission request register (TREQR).
After the completion of transmission, write 0 to TCx to set it to 0. Writing 1 to TCx is ignored.

1 is read when a Read Modify Write instruction is performed.

Note:

©)

©)

©)

©)

©)

©)

If setting to 1 by completion of the transmit operation and clearing to 0 by writing occur at the
same time, the bit is setto 1.

289

CHAPTER 19 CAN CONTROLLER

19.6.13 Transmission Interrupt Enable Register (TIER)

This register enables or disables the transmission interrupt by the message buffer (x).
The transmission interrupt is generated at transmission completion (when TCx of the
transmission complete register (TCR) is 1).

m Transmission Interrupt Enable Register (TIER)

15 14 13 12 11 10 9 8

Address: 001COFy (CANO) TIE15 TIE14 TIE13 TIE12 TIE11 TIE1O0 TIE9 TIE8

001DOF, (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: 0) 0) 0) 0) 0) 0) 0) 0)
7 6 5 4 3 2 1 0
Address: 001COE (CANO) TIE7 TIE6 TIES TIE4 TIE3 TIE2 TIEL TIEO
001DOE,; (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value:))) 0)))))

0: Transmission interrupt disabled

1: Transmission interrupt enabled

290

19.6 Classifying the CAN Controller Registers

19.6.14 Reception Complete Register (RCR)

At completion of storing received message in the message buffer (x), RCx becomes 1.

If RIEx of the reception complete interrupt enable register (RIER) is 1, an interrupt

occurs.

m Reception Complete Register (RCR)

Address: 000079 (CANO)
000089y (CAN1)
Read/write:

Initial value:

Address: 000078, (CANO)
000088, (CAN1)
Read/write:

Initial value:

15 14 13 12 11 10 9 8
RC15 RC14 RC13 RC12 RC11 RC10 RC9 RC8
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

©) ©) ©) ©) ©) ©) ©) ©)

7 6 5 4 3 2 1 0
RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

©)

©)

O Conditions for RCx =0
Write O to RCx.

©)

©)

©)

©)

©)

©)

After completion of handling received message, write 0 to RCx to set it to 0. Writing 1 to RCx is

ignored.

1 is read when a Read Modify Write instruction is perforrmed.

Note:

If setting to 1 by completion of the receive operation and clearing to 0 by writing occur at the

same time, the bit is set to 1.

291

CHAPTER 19 CAN CONTROLLER

19.6.15 Remote Request Receliving Register (RRTRR)

After a remote frame is stored in the message buffer (x), RRTRx becomes 1 (at the
same time as RCx setting to 1).

m Remote Request Receiving Register (RRTRR)

15 14 13 12 11 10 9 8
Address: 00007B,, (CANO) | RRTR15 | RRTR14 | RRTR13 | RRTR12 | RRTR11 | RRTR10 | RRTR9 | RRTRS
00008By, (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: 0)) 0) 0) 0) 0) 0) 0)
7 6 5 4 3 2 1 0
Address: 00007A, (CANO) | RRTR7 | RRTR6 | RRTRS | RRTR4 | RRTR3 | RRTR2 | RRTR1 | RRTRO
00008A,; (CAN1)
Read/write: (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: 0) 0) 0) 0) 0) 0) 0) 0)

0 Conditions for RRTRx =0
* Write 0 to RRTRX.

« After a received data frame is stored in the message buffer (x) (at the same time as RCx
setting to 1).

« Transmission by the message buffer (x) is completed (TCx of the transmission complete
register (TCR) is 1).

Writing 1 to RRTRX is ignored.
1 is read when a Read Modify Write instruction is performed.
Note:

If setting to 1 by completion of the recieve operation and clearing to O by writing occur at the
same time, the bit is set to 1.

292

19.6 Classifying the CAN Controller Registers

19.6.16 Receive Overrun Register (ROVRR)

If RCx of the reception complete register (RCR) is 1 when completing storing of a
received message in the message buffer (x), ROVRx becomes 1, indicating that
reception has overrun.

m Receive Overrun Register (ROVRR)

15 14 13 12 11 10 9 8

Address: 00007Dy (CANO) | ROVR15 | ROVR14 | ROVR13 | ROVR12 | ROVR11 | ROVR10 | ROVR9 | ROVRS
00008D}; (CAN1)

Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)

Initial value:)))) 0) 0)))

7 6 5 4 3 2 1 0

Address: 00007Cy (CANO) | ROVR7 | RovVR6 | ROVR5 | ROVR4 | ROVR3 | ROVR2 | ROVRL | ROVRO
00008C,; (CAN1)

Readiwrite: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RW)

Initial value: 0) 0) 0) 0) 0) 0) 0) 0)

Writing 0 to ROVRX results in ROVRx = 0. Writing 1 to ROVRX is ignored. After checking that
reception has overrun, write 0 to ROVRX to set it to O.

1 is read when a Read Modify Write instruction is performed.

Note:

If setting to 1 by completion of the recieve operation and clearing to 0 by writing occur at the
same time, the bit is setto 1.

293

CHAPTER 19 CAN CONTROLLER

19.6.17 Reception Interrupt Enable Register (RIER)

Reception interrupt enable register (RIER) enables or disables the reception interrupt

by the message buffer (x).

The reception interrupt is generated at reception completion (when RCx of the

reception completion register (RCR) is 1).

m Reception Interrupt Enable Register (RIER)

15 14 13 12 11 10 9 8
Address: 00007Fy (CANO) RIE15 RIE14 RIE13 RIE12 RIE11 RIE10 RIE9 RIE8
00008Fy (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: (0) 0) 0) 0) 0)) 0) 0)
7 6 5 4 3 2 1 0
Address: 00007E (CANO) RIE7 RIE6 RIE5S RIE4 RIE3 RIE2 RIE1 RIEO
00008E,, (CAN1)
Read/write: (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: 0) 0) 0)

0: Reception interrupt disabled

1. Reception interrupt enabled

294

©)

©)

©)

©)

©)

19.6 Classifying the CAN Controller Registers

19.6.18 Acceptance Mask Select Register (AMSR)

This register selects masks (acceptance mask) for comparison between the received

message ID's and the message buffer ID's.

m Acceptance Mask Select Register (AMSR)

BYTEO 7 6 5 4 3 2 1 0
Address: 001C10y (CANO) | AmMS3.1 | AMS3.0 | AMS2.1 | AMS2.0 | AMS1.1 | AMS1.0 | AMS0.1 | AMS0.0
001D10y (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: (X) (X) (X) (X) X) (X) (X) (X)
BYTE1l 15 14 13 12 11 10 9 8
Address: 001C11,(CANO) | AMS7.1 | AMS7.0 | AMS6.1 | AMS6.0 | AMS5.1 | AMS5.0 | AMS4.1 | AMS4.0
001D11y (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (R/W) (RIW) (RIW)
Initial value: (X) (X) (X) (X) (X))) x)
BYTE2 7 6 5 4 3 2 1 0
Address: 001C12, (CANO) | AMS11.1 | AMS11.0 | AMS10.1 | AMS10.0 | AMS9.1 | AMS9.0 | AMS8.1 | AMS8.0
001D12, (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTE3 15 14 13 12 11 10 9 8
Address: 001C13y (CANO) | AMS15.1 | AMS15.0 | AMS14.1 | AMS14.0 | AMS13.1 | AMS13.0 | AMS12.1 | AMS12.0
001D13 (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: X) (X) (X)

*)

Table 19.6-2 Selection of Acceptance Mask

*)

*)

*)

*)

AMSx.1 AMSx.0 Acceptance Mask
0 0 Full-bit comparison
0 1 Full-bit mask
1 0 Acceptance mask register 0 (AMRO)

295

CHAPTER 19 CAN CONTROLLER

Table 19.6-2 Selection of Acceptance Mask (Continued)

AMSx.1

AMSx.0

Acceptance Mask

1

1

Acceptance mask register 1 (AMR1)

Note:

AMSx.1 and AMSx.0 should be set when the message buffer (x) is invalid (BVALx of the
message buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALXx = 1)
may cause unnecessary received messages to be stored

296

19.6 Classifying the CAN Controller Registers

19.6.19 Acceptance Mask Registers 0 and 1 (AMRO and AMR1)

There are two acceptance mask registers, AMRO and AMRL1, both of which are available
either in the standard frame format or extended frame format.

AM28 to AM18 (11 bits) are used for acceptance masks in the standard frame format
and AM28 to AMO (29 bits) are used for acceptance masks in the extended format.

m Acceptance Mask Registers 0 and 1 (AMRO and AMR1)

AMRO BYTEO 7 6 5 4 3 2 1 0

Address: 001C14,, (CANO) | Am28 AM27 AM26 AM25 AM24 AM23 AM22 AM21
001D14,, (CAN1)

Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
AMRO BYTE1 15 14 13 12 11 10 9 8

Address: 001C15, (CANO) | AM20 AM19 AM18 AM17 AM16 AM15 AM14 AM13
001D15, (CAN1)

Readiwrite: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: (X) (X) (X) (X) X) X) X) (X)
AMRO BYTE2 7 6 5 4 3 2 1 0
Address: 001C16, (CANO) | AM12 AM11 AM10 AM9 AM8 AM7 AM6 AM5
001D16,, (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
AMRO BYTE3 15 14 13 12 11 10 9 8
Address: 001C17, (CANO) AM4 AM3 AM2 AM1 AMO — — —
001D174 (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) =) =) =)

Initial value: (X) x) X X) x) —) =) =)

297

CHAPTER 19 CAN CONTROLLER

AMR1 BYTEO 7 6 5 4 3 2 1 0

Address: 001C18, (CANO) | Am28 AM27 AM26 AM25 AM24 AM23 AM22 AM21
001D18,; (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: X) X) X) X) X) (X) (X) (X)

AMR1 BYTE1 15 14 13 12 11 10 9 8

Address: 001C19y (CANO) | AM20 AM19 AM18 AM17 AM16 AM15 AM14 AM13
001D19, (CAN1)

Readiwrite: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: X) X) X) X) X) X) X) X)
AMR1 BYTE2 7 6 5 4 3 2 1 0
Address: 001C1Ay (CANO) | AM12 AM11 AM10 AM9 AM8 AM7 AM6 AM5
001D1Ay (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: X) X) X) X) X) (X) X) X)
AMR1 BYTE3 15 14 13 12 1 10 9 8
Address: 001C1B, (CANO) | AM4 AM3 AM2 AM1 AMO — — —
001D1By (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIw) (RIw) =) =) =)
Initial value: X) (X) (X) X) X) (—) =) =)
0 0: Compare

Compare the bit of the acceptance code (ID register IDRx for comparing with the received
message ID) corresponding to this bit with the bit of the received message ID. If there is no
match, no message is received.

0 1: Mask

Mask the bit of the acceptance code ID register (IDRx) corresponding to this bit. No comparison
is made with the bit of the received message ID.

Note:

AMRO and AMR1 should be set when all the message buffers (x) selecting AMRO and AMR1
are invalid (BVALx of the message buffer valid register (BVALR) is 0). Setting when the
buffers are valid (BVALx = 1) may cause unnecessary received messages to be stored.

298

19.6 Classifying the CAN Controller Registers

19.6.20 Message Buffers

There are 16 message buffers. Message buffer x (x = 0 to 15) consists of an ID register
(IDRx), DLC register (DLCRXx), and data register (DTRX).

m Message Buffers

O The message buffer (x) is used both for transmission and reception.

O The lower-numbered message buffers are assigned higher priority.

At transmission, when a request for transmission is made to more than one message buffer,
transmission is performed, starting with the lowest-numbered message buffer (See 19.7).

At reception, when the received message ID passes through the acceptance filter
(mechanism for comparing the acceptance-masked ID of received message and message
buffer) of more than one message buffer, the received message is stored in the lowest-
numbered message buffer (See 19.8).

O When the same acceptance filter is set in more than one message buffer, the message buffers
can be used as a multi-level message buffer. This provides allowance for receiving time (See
19.12).

Note:

A write operation to message buffers and general-purpose RAM areas should be performed
in words to even addresses only. A write operation in bytes causes undefined data to be
written to the upper byte at writing to the lower byte. Writing to the upper byte is ignored.

When the BVALX bit of the message buffer valid register (BVALR) is 0 (Invalid), the message
buffers x (IDRx, DLCRx, and DTRX) can be used as general-purpose RAM.

During the receive/transmit operation of the CAN controller, the CAN Controller write/read to/
from the message buffers. If the CPU tries to write/read to/from the message buffers in this
period, the CPU has to wait a maximum time of 64 machine cycles.

This is also true for the general-purpose RAM.

299

CHAPTER 19 CAN CONTROLLER

19.6.21 ID Register x (x = 0 to 15) (IDRx)

IDRegister x (x = 0 to 15) (IDRX) is the ID register for message buffer (x).

m |D Register x (x = 0 to 15) (IDRx)

BYTEO 7 6 5 4 3 2 1 0

ID22 ID21

Address: 001A20y + 4x (CANO) D28 D27 ID26 ID25 D24 ID23

001B20y + 4x (CAN1)
Readiwrite: (R/W) (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: X) X) (X) (X) (X) (X) (X) (X)
BYTE1 15 14 13 12 11 10 9 8
Address: 001A21,, + 4x (CANO) | 1D20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

001B21, + 4x (CAN1)
Readiwrite: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: X) (X) (X) (X) (X) (X) (X) (X)
BYTE2 7 6 5 4 3 2 1 0
Address: 001A22 + 4x (CANO) ID12 ID11 ID10 D9 ID8 ID7 ID6 ID5

001B22,; + 4x (CAN1)
Read/write: (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: (X) (X) (X) (X) (X) (X) (X) X)
BYTE3 15 14 13 12 11 10 9 8
Address: 001A23,, + 4x (CANO) ID4 ID3 ID2 ID1 IDO — — —
001B23 + 4x (CAN1)
Read/write: (RIW) (RIW) (RIW) (RIW) (RIW) =) =) =)
Initial value: (X) (X) (X) (X) (X) [[[

When using the message buffer (x) in the standard frame format (IDEx of the IDE register
(IDER) = 0), use 11 bits of ID28 to ID18. When using the buffer in the extended frame format

(IDEx = 1), use 29 bits of ID28 to IDO.

ID28 to IDO have the following functions:
« Set acceptance code (ID for comparing with the received message ID).

« Set transmitted message ID.
Note: In the standard frame format, setting 1s to all bits of ID28 to ID22 is prohibited).

« Store the received message ID.
Note: All received message ID bits are stored (even if bits are masked). In the standard frame

300

19.6 Classifying the CAN Controller Registers

format, ID17 to IDO stores image of old message left in the receive shift register.
Note:

A write operation to this register should be performed in words. A write operation in bytes
causes undefined data to be written to the upper byte at writing to the lower byte. Writing to
the upper byte is ignored.

This register should be set when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALx = 1) may cause
unnecessary received messages to be stored.

301

CHAPTER 19 CAN CONTROLLER

19.6.22 DLC Register x (x = 0 to 15) (DLCRX)

DLC Register x (x = 0 to 15) (DLCRX) is the DLC register for message buffer x.

m DLC Register x (x = 0 to 15) (DLCRX)

7 6 5 4 3 2 1 0
Address: 001A60y + 2x (CANO) — — — — DLC3 DLC2 DLC1 DLCO
001B60y + 2x (CAN1)
Read/write: () =) =) =) (R/W) (R/W) (R/W) (R/W)
Initial value: (—) (—) —) (—) X) (X) (X) (X)

0 Transmission
Set the data length (byte count) of a transmitted message when a data frame is transmitted

(TRTRXx of the transmitting RTR register (TRTRR) is 0).
Set the data length (byte count) of a requested message when a remote frame is transmitted

(TRTRx = 1).

Note:
Setting other than 0000 to 1000 (0 to 8 bytes) is prohibited.

0 Reception
Store the data length (byte count) of a received message when a data frame is received

(RRTRx of the remote frame request receiving register (RRTRR) is 0).
Store the data length (byte count) of a requested message when a remote frame is received

(RRTRx = 1).

Note:
A write operation to this register should be performed in words. A write operation in bytes
causes undefined data to be written to the upper byte at writing to the lower byte. Writing to

the upper byte is ignored.

302

19.6 Classifying the CAN Controller Registers

19.6.23 Data Register x (x = 0 to 15) (DTRX)

Data register x (x = 0 to 15) (DTRX) is the data register for message buffer (x).
This register is used only in transmitting and receiving a data frame but not in
transmitting and receiving a remote frame.

m Data Register x (x = 0 to 15) (DTRX)

BYTEO 7 6 5 4 3 2 1 0
Address: 001A80,, + 8x (CANO) D7 D6 D5 D4 D3 D2 D1 DO
001B80y + 8x (CAN1)
Read/write: (R/W) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: (X) (X) (X) (X) (X) (X) (X) (X)
BYTE1 15 14 13 12 11 10 9 8
Address: 001A81 + 8x (CANO) D7 D6 D5 D4 D3 D2 D1 DO
001B81, + 8x (CAN1)
Read/write: (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
Initial value: X) X) X) X) (X) (X) (X) (X)
BYTE2 7 6 5 4 3 2 1 0
Address: 001A82, + 8x (CANO) D7 D6 D5 D4 D3 D2 D1 DO

001B82; + 8x (CAN1)
Read/write: (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

Initial value: (X) (X) (X) (X) (X) X) x) X)
BYTE3 15 14 13 12 11 10 9 8
Address: 001A83 + 8x (CANO) D7 D6 D5 D4 D3 D2 D1 DO
001B83 + 8x (CAN1)
Read/write: (R/W) (R/W) (R/W) (R/W) (R/W) (RIW) (RIW) (RIW)
Initial value: X) X) (X) (X) (X) (X) (X) (X)

303

CHAPTER 19 CAN CONTROLLER

Address:

Address:

Address:

Address:

304

BYTE4

001A84 + 8x (CANO)
001B84y + 8x (CAN1)
Read/write:

Initial value:

BYTES

001A85y + 8x (CANO)
001B85y + 8x (CANL1)
Read/write:

Initial value:

BYTEG

001A864 + 8x (CANO)
001B86y, + 8x (CAN1)
Read/write:

Initial value:

BYTE7

001A87y + 8x (CANO)
001B874 + 8x (CAN1)
Read/write:

Initial value:

0 Sets transmitted message data (any of O to 8 bytes).

7 6 5 4 3 2 1 0
D7 D6 D5 D4 D3 D2 D1 DO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
X) X) X) X) X) X) X) X)
15 14 13 12 11 10 9 8
D7 D6 D5 D4 D3 D2 D1 DO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (R/W) (R/W)
X)) X) X)) X) X) X)
7 6 5 4 3 2 1 0
D7 D6 D5 D4 D3 D2 D1 DO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)
)) X))))) X)
15 14 13 12 11 10 9 8
D7 D6 D5 D4 D3 D2 D1 DO
(RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW) (RIW)

)

)

)

*)

*)

*)

)

*)

Data is transmitted in the order of BYTEO, BYTEL, ..., BYTE7, starting with the MSB.

0 Stores received message data.
Data is stored in the order of BYTEO, BYTEL, ..., BYTE7, starting with the MSB.

Even if the received message data is less than 8 bytes, the remaining bytes of the data register

(DTRX), to which data are stored, are undefined.

Note:

A write operation to this register should be performed in words. A write operation in bytes
causes undefined data to be written to the upper byte at writing to the lower byte. Writing to

the upper byte is ignored.

19.7 Transmission of CAN Controller

19.7 Transmission of CAN Controller

When 1 is written to TREQXx of the transmission request register (TREQR),
transmission by the message buffer (x) starts. At this time, TREQx becomes 1 and
TCx of the transmission complete register (TCR) becomes 0.

m Starting Transmission of the CAN Controller

If RFWTx of the remote frame receiving wait register (RFWTR) is 0, transmission starts
immediately. If RFWTx is 1, transmission starts after waiting until a remote frame is received
(RRTRx of the remote request receiving register (RRTRR) becomes 1).

If a request for transmission is made to more than one message buffer (more than one TREQx
is 1), transmission is performed, starting with the lowest-numbered message buffer.

Message transmission to the CAN bus (by the transmit output pin TX) starts when the bus is
idle.

If TRTRx of the transmission RTR register (TRTRR) is 0, a data frame is transmitted. If TRTRx
is 1, a remote frame is transmitted.

If the message buffer competes with other CAN controllers on the CAN bus for transmission and
arbitration fails, or if an error occurs during transmission, the message buffer waits until the bus
is idle and repeats retransmission until it is successful.

m Canceling a Transmission Request from the CAN Controller

0 Canceling by transmission cancel register (TCANR)

A transmission request for message buffer (x) having not executed transmission during
transmission pending can be canceled by writing 1 to TCANX of the transmission cancel register
(TCANR). At completion of cancellation, TREQx becomes 0.

O Canceling by storing received message

The message buffer (x) having not executed transmission despite transmission request also
performs reception.

If the message buffer (x) has not executed transmission despite a request for transmission of a
data frame (TRTRx = 0 or TREQx = 1), the transmission request is canceled after storing
received data frames passing through the acceptance filter (TREQx = 0).

Note:

A transmission request is not canceled by storing remote frames (TREQx = 1 remains
unchanged).

If the message buffer (x) has not executed transmission despite a request for transmission of a
remote frame (TRTRx = 1 or TREQx = 1), the transmission request is canceled after storing
received remote frames passing through the acceptance filter (TREQx = 0).

Note:

The transmission request is canceled by storing either data frames or remote frames.

305

CHAPTER 19 CAN CONTROLLER

m Completing Transmission of the CAN Controller

When transmission is successful, RRTRx becomes 0, TREQx becomes 0, and TCx of the
transmission complete register (TCR) becomes 1.

If the transmission complete interrupt is enabled (TIEx of the transmission complete interrupt
enable register (TIER) is 1), an interrupt occurs.

m Transmission Flowchart of the CAN Controller
Figure 19.7-1 shows a transmission flowchart of the CAN controller.
Figure 19.7-1 Transmission Flowchart of the CAN Controller

Transmission request
(TREQx:= 1)

| TCx:=0 |

If there are any other message buffers
meeting the above conditions, select
the lowest-numbered message buffer.

NO
Is the bus idle?

A data frame is transmitted. | | A remote frame is transmitted.

Is transmission NO

successful?

TCANX?

RRTRx:=0 1
TREQx:=0
TCx =1

TREQx:=0

TIEX ?

A transmission complete
interrupt occurs.

(End of transmission)

306

19.8 Reception of CAN Controller

19.8 Reception of CAN Controller

Reception starts when the start of data frame or remote frame (SOF) is detected on the

CAN bus.

m Acceptance Filtering

The received message in the standard frame format is compared with the message buffer (x)
set in the standard frame format (IDEx of the IDE register (IDER) is 0). The received message
in the extended frame format is compared with the message buffer (x) set (IDEx is 1) in the
extended frame format.

If all the bits set to Compare by the acceptance mask agree after comparison between the
received message ID and acceptance code (ID register (IDRx) for comparing with the received
message ID), the received message passes to the acceptance filter of the message buffer (x).

m Storing Received Message

When the receive operation is successful, received messages are stored in a message buffer x
including IDs passed through the acceptance filter.

When receiving data frames, received messages are stored in the ID register (IDRx), DLC
register (DLCRX), and data register (DTRX).

Even if received message data is less than 8 bytes, some data is stored in the remaining bytes
of the DTRx and its value is undefined.

When receiving remote frames, received messages are stored only in the IDRx and DLCRX,
and the DTRx remains unchanged.

If there is more than one message buffer including IDs passed through the acceptance filter, the
message buffer x in which received messages are to be stored is determined according to the
following rules.

e The order of priority of the message buffer x (x = 0 to 15) rises as its nhumber lower; in other
words, message buffer 0 is given the highest and the message buffer 15 is given the lowest
priority.

» Basically, message buffers with the RCx bit of 0 in the receive completion register (RCR) are
preferred in storing received messages.

< |If the bits of the acceptance mask select register (AMSR) are set to All Bits Compare (for
message buffers with the AMSx.1 and AMSx.0 bits set to 00), received messages are stored
irrespective of the value of the RCx bit of the RCR.

« If there are message buffers with the RCx bit of the RCR set to 0, or with the bits of the
AMSR set to All Bits Compare, received messages are stored in the lowest-number (highest-
priority) message buffer x.

« If there are no message buffers above-mentioned, received messages are stored in a lower-
number message buffer x.

« Message buffers should be arranged in ascending numeric order. The lowest message
buffers should be with All Bits Compare, then AMRO or AMR1 masks. And The highest
message buffers should be with All Bits Mask.

Figure 19.8-1 shows a flowchart for determining the message buffer (xX) where received
messages are to be stored. It is recommended that message buffers be arranged in the

307

CHAPTER 19 CAN CONTROLLER

following order: message buffers in which each AMSR bit is set to All Bits Compare, message
buffers using AMRO or AMR1, and message buffers in which each AMSR bit is set to All Bits
Mask.

Figure 19.8-1 Flowchart Determining Message Buffer (x) where Received Messages Stored

(Start)
I

Are message buffers with RCxset to 0 NO
or with AMSx.1 and AMSx.0 set to 00
found?
YES
Select the lowest-numbered Select the lowest-numbered
message buffer. message buffer.

(End)

m Receive Overrun

When a message is stored in the message buffer with the corresponding RCx being already set
to 1, it will results in receive overrun. In this case, the corresponding ROVRX bit in the receive
overrun register ROVRR is set to 1.

m Processing for Reception of Data Frame and Remote Frame

O Processing for reception of data frame
RRTRx of the remote request receiving register (RRTRR) becomes 0.

TREQx of the transmission request register (TREQR) becomes 0 (immediately before storing
the received message). A transmission request for message buffer (x) having not executed
transmission will be canceled.

Note:

A request for transmission of either a data frame or remote frame is canceled.

O Processing for reception of remote frame
RRTRx becomes 1.

If TRTRx of the transmitting RTR register (TRTRR) is 1, TREQx becomes 0. As a result, the
request for transmitting remote frame to message buffer having not executed transmission will
be canceled.

Note:
A request for data frame transmission is not canceled.

For cancellation of a transmission request, see Figure 19.7.

m Completing Reception
RCx of the reception complete register (RCR) becomes 1 after storing the received message.

If a reception interrupt is enabled (RIEx of the reception interrupt enable register (RIER) is 1), an

308

19.8 Reception of CAN Controller

interrupt occurs.
Note:

This CAN controller will not receive any messages transmitted by itself.

309

CHAPTER 19 CAN CONTROLLER

19.9 Reception Flowchart of CAN Controller

Figure 19.9-1 shows a reception flowchart of the CAN controller.

m Reception Flowchart of the CAN Controller

Figure 19.9-1 Reception Flowchart of the CAN Controller

Detection of start of data frame
or remote frame (SOF)

Is any message buffer (x) passing to
the acceptance filter found?

Is reception NO

successful?

Determine message buffer (x) where re-
ceived messages to be stored.

!

Store the received message
in the message buffer (x).

Data frame

RRTRx:= 0

| RCx:= 1 |
1

0

A reception interrupt
occurs.

(End of reception)

310

19.10 How to Use the CAN Controller

19.10 How to Use the CAN Controller

The following settings are required to use the CAN controller:

Bit timing

Frame format

ID

Acceptance filter
Low-power consumption mode

Setting Bit Timing

The bit timing register (BTR) should be set during bus operation stop (when the bus operation
stop bit (HALT) of the control status register (CSR) is 1).

After the setting completion, write 0 to HALT to cancel bus operation stop.

Setting Frame Format

Setting ID

Set the frame format used by the message buffer (x). When using the standard frame format,
set IDEx of the IDE register (IDER) to 0. When using the extended frame format, set IDEXx to 1.

This setting should be made when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALXx = 1) may cause
unnecessary received messages to be stored.

Set the message buffer (x) ID to ID28 to IDO of ID register (IDRx). The message buffer (x) ID
need not be set to ID11 to IDO in the standard frame format. The message buffer (x) ID is used
as a transmission message at transmission and is used as an acceptance code at reception.

This setting should be made when the message buffer (x) is invalid (BVALx of the message
buffer valid register (BVALR) is 0). Setting when the buffer is valid (BVALXx = 1) may cause
unnecessary received messages to be stored.

m Setting Acceptance Filter

The acceptance filter of the message buffer (x) is set by an acceptance code and acceptance
mask set. It should be set when the acceptance message buffer (x) is invalid (BVALX of the
message buffer enable register (BVALR) is 0). Setting when the buffer is valid (BVALx = 1) may
cause unnecessary received messages to be stored.

Set the acceptance mask used in each message buffer (x) by the acceptance mask select
register (AMSR). The acceptance mask registers (AMRO and AMR1) should also be set if used
(For the setting details, see 19.6.18 and 19.6.19).

The acceptance mask should be set so that a transmission request may not be canceled when
unnecessary received messages are stored. For example, it should be set to a full-bit
comparison if only one specific ID is used for the transmission.

m Setting Low-power Consumption Mode

To set the FZMC-16LX in a low-power consumption mode (Stop, Watch, Hardware Standby,

311

CHAPTER 19 CAN CONTROLLER

etc.), write 1 to the bus operation stop bit (HALT) of the control status register (CSR), and then
check that the bus operation has stopped (HALT = 1).

312

19.11 Procedure for Transmission by Message Buffer (x)

19.11 Procedure for Transmission by Message Buffer (x)

After setting the bit timing, frame format, ID, and acceptance filter, set BVALx to 1 to
activate the message buffer (x).

m Procedure for Transmission by Message Buffer (x)

O Setting transmit data length code
Set the transmit data length code (byte count) to DLC3 to DLCO of the DLC register (DLCRX).

For data frame transmission (when TRTRx of the transmission RTR register (TRTRR) is 0), set
the data length of the transmitted message.

For remote frame transmission (when TRTRx = 1), set the data length (byte count) of the
requested message.

Note:
Setting other than 0000 to 1000 (O to 8 bytes) is prohibited.

O Setting transmit data (only for transmission of data frame)

For data frame transmission (when TRTRx of the transmission register (TRTRR) is 0), set data
as the count of byte transmitted in the data register (DTRX).

Note:

Transmit data should be rewritten while the TREQx bit of the transmission request register
(TREQR) set to 0. There is no need for setting the BVALX bit of the message buffer valid
register (BVALR) to 0. Setting the BVALX bit to 0 may cause incoming remote frame to be
lost.
O Setting transmission RTR register
For data frame transmission, set TRTRx of the transmission RTR register (TRTRR) to O.

For remote frame transmission, set TRTRx to 1.

O Setting conditions for starting transmission (only for transmission of data frame)

Set RFWTx of the remote frame receiving wait register (RFWTR) to 0 to start transmission
immediately after a request for data frame transmission is set (TREQx of the transmission
request register (TREQR) is 1 and TRTRx of the transmission RTR register (TRTRR) is 0).

Set RFWTx to 1 to start transmission after waiting until a remote frame is received (RRTRx of
the remote request receiving register (RRTRR) becomes 1) after a request for data frame
transmission is set (TREQx = 1 and TRTRx = 0).

Note:

Remote frame transmission can not be made, if RFWTXx is set to 1.

0 Setting transmission complete interrupt

When generating a transmission complete interrupt, set TIEx of the transmission complete
interrupt enable register (TIER) to 1.

313

CHAPTER 19 CAN CONTROLLER

314

When not generating a transmission complete interrupt, set TIEx to O.

Setting transmission request

For a transmission request, set TREQXx of the transmission request register (TREQR) to 1.

Canceling transmission request

When canceling a pending request for transmission to the message buffer (x), write 1 to TCANXx
of the transmission cancel register (TCANR).

Check TREQx. For TREQx = 0, transmission cancellation is terminated or transmission is
completed. Check TCx of the transmission complete register (TCR). For TCx = 0, transmission
cancellation is terminated. For TCx = 1, transmission is completed.

Processing for completion of transmission

If transmission is successful, TCx of the transmission complete register (TCR) becomes 1.

If the transmission complete interrupt is enabled (TIEx of the transmission complete interrupt
enable register (TIER) is 1), an interrupt occurs.

After checking the transmission completion, write 0 to TCx to set it to 0. This cancels the
transmission complete interrupt.

In the following cases, the pending transmission request is canceled by receiving and storing a
message.

» Request for data frame transmission by reception of data frame
» Request for remote frame transmission by reception of data frame
* Request for remote frame transmission by reception of remote frame

Request for data frame transmission is not canceled by receiving and storing a remote frame.
ID and DLC, however, are changed by the ID and DLC of the received remote frame. Note that
the ID and DLC of data frame to be transmitted become the value of received remote frame.

19.12 Procedure for Reception by Message Buffer (x)

19.12 Procedure for Reception by Message Buffer (x)

After setting the bit timing, frame format, ID, and acceptance filter, make the settings
described below.

m Procedure for Reception by Message Buffer (x)

O Setting reception interrupt
To enable reception interrupt, set RIEx of the reception interrupt enable register (RIER) to 1.

To disable reception interrupt, set RIEx to O.

O Starting reception
When starting reception after setting, set BVALx of the message buffer valid register (BVALR) to
1 to make the message buffer (x) valid.

O Processing for reception completion

If reception is successful after passing to the acceptance filter, the received message is stored
in the message buffer (x) and RCx of the reception complete register (RCR) becomes 1. For
data frame reception, RRTRx of the remote request receiving register (RRTRR) becomes 0.
For remote frame reception, RRTRx becomes 1.

If a reception interrupt is enabled (RIEx of the reception interrupt enable register (RIER) is 1), an
interrupt occurs.

After checking the reception completion (RCx = 1), process the received message.

After completion of processing the received message, check ROVRx of the reception overrun
register (ROVRR).

If ROVRx = 0, the processed received message is valid. Write 0 to RCRx to set it to 0 (the
reception complete interrupt is also canceled) to terminate reception.

If ROVRx = 1, a reception overrun occurred and the next message may have overwritten the
processed message. In this case, received messages should be processed again after setting
the ROVRXx bit to 0 by writing 0 to it.

Figure 19.12-1 shows an example of receive interrupt handling.

315

CHAPTER 19 CAN CONTROLLER

Figure 19.12-1 Example of Receive Interrupt Handling

(Interrupt with RCx= 1)

Read received messages.

!

A = ROVRx
ROVRx=0

NO

(End -\)

316

19.13 Setting Configuration of Multi-level Message Buffer

19.13 Setting Configuration of Multi-level Message Buffer

If the receptions are performed frequently, or if several different ID's of messages are
received, in other words, if there is insufficient time for handling messages, more than
one message buffer can be combined into a multi-level message buffer to provide
allowance for processing time of the received message by CPU.

m Setting Configuration of Multi-level Message Buffer

To provide a multi-level message buffer, the same acceptance filter must be set in the combined
message buffers.

If the bits of the acceptance mask select register (AMSR) are set to All Bits Compare ((AMSx.1,
AMSXx.0) = (0, 0)), multi-level message configuration of message buffers is not allowed. This is
because All Bits Compare causes received messages to be stored irrespective of the value of
the RCx bit of the receive completion register (RCR), so received messages are always stored
in lower-numbered (lower-priority) message buffers even if All Bits Compare and identical
acceptance code (ID register (IDRx)) are specified for more than one message buffer.
Therefore, All Bits Compare and identical acceptance code should not be specified for more
than one message buffer.

Figure 19.13-1 shows operational examples of multi-level message buffers.

317

CHAPTER 19 CAN CONTROLLER

Figure 19.13-1 Examples of Operation of Multi-level Message Buffer

Initialization |_|_|_ AMS15, AMS14, AMS13

AMSRI 10| 10| 10| .. |

[1 |
AMZ2 to AMI8——

[. AMSOI 0000 1111 111 |

ID28 to ID18—\

Select AMRO.

Message buffer 13

0101 0000 000

IDE
/_
0

Message buffer 14

0101 0000 000

Message buffer 15

0101 0000 000

L1 was

|_|_|_ RC15, RC14, RC13
ojojo

RCR
ROVRR

ojogoy ...
I—I—I— ROVR15, ROVR14, ROVR13

’ Message receiving "The received message is stored in message buffer 13.

ID28 to ID18—\

/— IDE

Message receivingl 0101 1111 000 I OI I

Message buffer 13] 0101 1111 000

Message buffer 14

0101 0000 000

Message buffer 15

0101 0000 000

RCR
ROVRR

’ Message receiving "The received message is stored in message buffer 14.

Message receivingl 0101 1111 001 I OI I

Message buffer 13] 0101 1111 000

Message buffer 14

0101 1111 OO01

Message buffer 15

0101 0000 000

RCR
ROVRR

’ Message receiving "The received message is stored in message buffer 15.

Message receivingl 0101 1111 010 I OI I

Message buffer 13] 0101 1111 000

Message buffer 14

0101 1111 OO01

Message buffer 15

0101 1111 010

RCR
ROVRR

’ Message receiving "An overrun occurs (ROVR13= 1) and the received message is stored in message buffer 13.

Message receivingl 0101 1111 011 I OI I

Message buffer 13] 0101 1111 011

Message buffer 14

0101 1111 OO01

Message buffer 15

0101 1111 010

RCR
ROVRR

318

Note:

Four messages are received with the same acceptance filter set in message buffers 13, 14

and 15.

CHAPTER 20 STEPPING MOTOR CONTROLLER

This chapter explains the functions and operations of the stepping motor controller.

20.1 Outline of Stepping Motor Controller
20.2 Stepping Motor Controller Registers
20.3 PWM 1&2 Select

319

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.1 Outline of Stepping Motor Controller

The Stepping Motor Controller consists of two PWM Pulse Generators, four motor
drivers, drivers and Selector Logic.

The four motor drivers have high output drive capabilities and they can be directly
connected to the four ends of two motor coils. The combination of the PWM Pulse
Generators and Selector Logic is designed to control the rotation of the motor. A
synchronization mechanism assures the synchronous operations of the two PWMs.
The following sections describe the Stepping Motor Controller O only. The other
controllers have the same function. The register addresses are found in the I/0O map.

m Block Diagram of Stepping Motor Controller

Figure 20.1-1 shows a block diagram of the stepping motor controller.

Figure 20.1-1 Block Diagram of Stepping Motor Controllerr

Machine Clock
| OE1[— Output enable

CK
—@— - PWML1PO
Prescaler
PWM1 pulse generator Selector
| | EN PWM — PWM1MO
P1 PO
PWM1 Compare register PWML1 Select register
OE2 [— Output enable
— | CK
PWM2P0O
PWMZ2 pulse generator Selector
CE -
L4 EN PWM PWM2MO
T e T
PWM2 Compare register BS PWM2 Select register

320

20.2 Stepping Motor Controller Registers

20.2 Stepping Motor Controller Registers

The stepping motor controller has the following five types of registers:

PWM control 0O register (PWMCDO)
PWM1 compare O register (PWC10)
PWM2 compare 0 register (PWC20)
PWM1 select register (PWS10)
PWM2 select register (PWS20)

Stepping Motor Controller Registers

PWM Control O register

7 6 5 4 3 2 1 0 <o Bit number
Address: 000062+
| OE2 ‘ OE1 ‘ P1 ‘ PO ‘ CE ‘ — ‘ — ‘ TST| PWCO
Read/write . (RIW) (RW) (RW) RW) RW) — —_ (R/W)
Initial value => (0) (0) (0) (0) (0) _ — (0)
PWM1 Compare O register
7 6 5 4 3 2 1 0 <o Bit number
Address: 001950n

|D7‘D6‘D5‘D4‘D3‘D2‘D1‘DO| PWC10

Readwrite ., (RW) (RW) (RW) (RW) RMW) [RW) [RW) (RW)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

PWM2 Compare 0 register 15 14 13 12 11 10 9 8 <5 Bit number
Address: 001951n

|D7‘ D6‘D5‘D4‘ D3‘D2‘D1‘DO| PwcC20

Readwrite ., (RW) (RW) (RW) (RW) (RW) [RW) (RW) (RMW)
Initial value > X) X) X) X) X) (X) (X) (X)

PWM1 Select register

7 6 5 4 3 2 1 0 @Bit number
Address: 001952+
PWS10
| — | — [, | p | o] m| m| wo|
Readfwrite o, — — (RW) RW) RW) RW) [RW) (RW)
Initial value => —— —_— 0) 0) 0) 0) 0) (0)
PWM2 Select register 15 14 13 12 11 10 9 8 < Bit number
Address: 001953+
|— ‘ BS ‘ P2 ‘ P1 ‘ PO ‘ M2 ‘ M1 ‘ Mo | PWS20
Read/write o T RW) (RW) (RW) [RW) RW) (RW) (RW)
Initial value = —— (0) (0) (0) (0) (0) (0) (0)

321

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.2.1 PWM Control O register

The PWM control O register starts and stops the stepping motor controller, controls
interrupts, and sets the external output pins.

m PWM Control O Register

PWM Control O register

Address:

322

7 6 5 4 3 2 1 0 < Bit number
000062+
OE2 | OE1 P1 PO CE _] — TST PWCO
Readwrite —, ~ (RW) (RW) (RW) (RW) RW) — — (RW)
Initial value &> (0) (0) (0) (0) (0) _ — (0)

[bits 7] OE2 : Output enable bit

When this bit is set to "1", the external pins are assigned as PWM2P0 and PWM2MO
outputs. Otherwise they can be used as general purpose 10.

[bits 6] OE1 : Output enable bit

When this bit is set to "1", the external pins are assigned as PWM1P0 and PWM1MO
outputs. Otherwise they can be used as general purpose 10.

[bits 5 to 4] P1 to PO : Operation clock select bits

These bits specify the clock input signal for the PWM pulse generators.

P1 PO Clock input

0 0 Machine clock
0 1 1/2 Machine clock
1 0 1/4 Machine clock
1 1 1/8 Machine clock

[bits 3] CE : Count enable bit

This bit enables the operation of the PWM pulse generators. When it is set to "1", the PWM
pulse generators start their operation. Note that the PWM2 pulse generator starts the
operation one machine clock cycle after the PWML1 pulse generators is started. This is to
help reduce the switching noise from the output drivers.

[bits O] TST : Test bit

This bit is for the device test. In user applications, it should always be set to "0".

20.2 Stepping Motor Controller Registers

20.2.2 PWM1&2 Compare Registers

The contents of the two 8-bit compare registers determine the widths of PWM pulses.
The stored value of "O0H" represents the PWM duty of 0% and "FFH" represents the
duty of 99.6%.

m PWM1&2 Compare Registers

PWM1&2 compare registers are accessible at any time, however the modified values are
reflected to the pulse width at the end of the current PWM cycle after the BS bit of the PWM2
Select register is set to "1".

PWM1 Compare O register
7 6 5 4 3 2 1 0 5 Bitnumber
Address: 001950n

D7 D6 D5 D4 D3 D2 D1 DO PWC10

Readiwrite L, (RW) (RW) (RW) (RW) (RW) (RMW) (RW) (RW)
Initial value => (X) (X) (X) (X) (X) (X) (X) (X)

PWM2 Compare 0 register 15 14 13 12 11 10 9 8 < Bit number
Address: 001951+

D7 D6 D5 D4 D3 | D2 D1 DO PWC20

Readiwrite . (RW) (RW) (RW) (RW) (RW) (RW) ([RW) (RW)
Initial value => X) (X) X) (X) (X) X) X) X)

One PWM Cycle
256 input clock cycles -

Register value
00h

80h |
128 input clock cycles

e LI~

255 input clock cycles

323

CHAPTER 20 STEPPING MOTOR CONTROLLER

20.3 PWM1&2 Select Registers

The PWML1 and PWM2 select registers select 0, 1, the PWM pulse, or high impedance
for the external pin output of the stepping motor controller.

m PWM1&2 Select Registers

PWM1 Select register

7 6 5 4 3 2 1 0 b= Bit number
001952+
PWS10
— | — P2 P1 PO M2 M1 MO
Readfwrite ., — — (RW) (RW) RW) RW) [RW) (RW)
Initial value & — @ — (0) (0) (0) (0) (0) (0)
PWM2 Select register 15 14 13 12 11 10 9 8 < Bit number
001953+
— BS | P2 P1 PO M2 M1 | MO PWS20
Readiwrite ., — (RMW) (RW) (RMW) ([RW) (RW) (RW) (RW)
Initial value = ~ —— (0) (0) 0) 0 (0) (0)

[bits 14] BS : Update bit

This bit is prepared to synchronize the settings for the PWM outputs. Any modifications in
the two compare registers and two select registers are not reflected to the output signals
until this bit is set.

When this bit is set to "1", the PWM pulse generators and selectors load the register
contents at the end of the current PWM cycle. The BS bit is reset to "0" automatically at the
beginning of the next PWM cycle. If the BS bit is set to "1" by software at the same time as
this automatic reset, the BS bit is set to "1" (or remains unchanged) and the automatic reset
is cancelled.

[bits 13 to 11] P2 to PO : Output Select bits

These bits selects the output signal at PWM2PO.
[bits 10 to 8] M2 to MO : Output Select bits

These bits selects the output signal at PWM2MO.
[bits 5 to 3] P2 to PO : Output Select bits

These bits selects the output signal at PWM1PO.
[bits 2 to 0] M2 to MO : Output Select bits

These bits selects the output signal at PWM1MO.

The following table shows the relationship between the output levels and select bits.

P2 P1 PO PWMnPO M2 M1 MO PWMnMO
0 0 0 L 0 0 0 L
0 0 1 H 0 0 1 H

324

20.3 PWM1&2 Select Registers

P2 P1 PO PWMnPO M2 M1 MO PWMnMO
0 PWM pulses 0 PWM pulses
1 X High impedance 1 X High impedance

325

CHAPTER 20 STEPPING MOTOR CONTROLLER

326

CHAPTER 21 SOUND GENERATOR

This chapter explains the functions and operations of the sound generator.

21.1 Outline of Sound Generator

21.2 Sound Generator Registers

327

CHAPTER 21 SOUND GENERATOR

21.1 Outline of Sound Generator

The Sound Generator consists of the Sound Control register, Frequency Data register,
Amplitude Data register, Decrement Grade register, Tone Count register, PWM pulse
generator, Frequency counter, Decrement counter and Tone Pulse counter.

m Block Diagram of Sound Generator

Figure 21.1-1 shows a block diagram of the sound generator.

Figure 21.1-1 Block Diagram of Sound Generator

Clock input
Prescaler 8bit PWM pulse Frequency Toggle
Generator cO | Counter Flip-flop
EN Cco D Q
S1 | SO PWM EN EN
g eload g eload 1/d ®
Amplitude Data DecrementGrade
register register
/ DEC
DEC {
Decrement ®
Counter cl Py
CO @&
EN ® ® SGA
-
DecrementGrade -
register Mix
SGO
Tone Pulse TONE 0
Counter
Cl —
CO
EN L g
Tone Count [INTE | INT | ST |
register

328

IRQ

D

21.2 Sound Generator Registers

21.2 Sound Generator Registers

The sound generator has the following types of registers:
» Sound control register (SGCR)

* Frequency data register (SGFR)

* Amplitude data register (SGAR)

» Decrement grade register (SGDR)

» Tone count register (SGTR)

m Sound Generator Registers

Sound Control register

7 6 5 4 3 2 1 0 <5 Bit number
Address: 00005EH
| S1 ‘ S0 ‘TONE ‘ OE2 ‘ OE1 ‘INTE ‘ INT ‘ ST | SGCR
Readiwrite ., (RIW) (RW) (RW) — — (RIW) (RW) (RIW)
Initial value —=> (0) (0) 0 - (0) (0) (0)
15 14 13 12 11 10 9 8 < Bit number
Address: 00005FH
|TST‘—‘—‘—‘—‘—‘BUSY‘DEC| SGCR
RAeAad/wnte S RW) — N N N N (R) (RIW)
Initial value > (0) _ — — — — (0) (0)
Frequecny Data register
7 6 5 4 3 2 1 0 <5 Bit number
Address: 001946+

|D7‘D6‘D5‘D4‘D3‘D2‘D1‘DO| SGFR

Readiwrite ., (RW) (RW) (RW) (RMW) ([RMW) [RW) [RW) (RW)
Initial value => (X) (X) (X) (X) X) (X) (X) (X)

Amplitude Data register 15 14 13 12 11 10 9 8 <= Bit number
Address: 001947+

|D7‘D6‘D5‘D4‘D3‘D2‘D1‘DO| SGAR

Readiwrite ., (RW) (RW) (RW) (RW) (RMW) (RW) (RW) (RW)
Initial value => (0) (0) (0) (0) (0) (0) (0) (0)

Decrement Grade register
7 6 5 4 3 2 1 0 < Bit number

SGDR

Address: 001948+

|D7‘D6‘D5‘D4‘D3‘D2‘D1‘DO|

Readiwrite ., (RW) (RW) (RMW) (RW) (RW) [RMW) (RW) (RW)
Initial value => (X) X) X) X) X) X) X) X)

Tone Count register 15 14 13 12 11 10 9 8 < Bitnumber
Address: 001949+

|D7‘D6‘D5‘D4‘D3‘D2‘Dl‘DO| SGTR

Read/write o> RW) RW) (RW) RW) [RW) (RW) [RW) (RW)
Initial value => x) X) X) (X)) X) (X) (X)

CHAPTER 21 SOUND GENERATOR

21.2.1 Sound Control Register

The sound control register controls the operation status of the sound generator by
controlling interrupts and setting the external output pins.

m Sound Control Register

Sound Control register

7 6 5 4 3 2 1 0 b= Bit number
Address: 00005EH
s1 S0 | TONE | OE2 OE1l | INTE INT ST SGCR
Read/write —, ~ (RW) (RW) (RW) — — (RIW) (RIW) (RIW)
Initial value &> (0) (0) o - (0) (0) (0)
15 14 13 12 11 10 9 8 <5 Bit number
Address: 00005FH
ST | — | — | — | — — | BUSY | DEC SGCR
R.e.adlwrlte o> (RIW) - - - P R (R) (RIW)
Initial value —=>) _ = - — — (0) 0)

[bits 15] TST : Test bit
This bit is prepared for the device test. In any user applications, it should be set to "0".
[bits 9] BUSY : Busy bit

This bit indicates whether the Sound Generator is in operation. This bit is set to "1" upon the
ST bit is set to "1". It is reset to "0" when the ST bit is reset to "0" and the operation is

completed at the end of one tone cycle. Any write instructions performed on this bit has no
effect.

[bits 8] DEC : Auto-decrement enable bit

The DEC bit is prepared for an automatic de-gradation of the sound in conjunction with the
Decrement Grade register.

If this bit is set to "1", the stored value in the Amplitude Data register is decremented by
1(one), every time when the Decrement counter counts the number of tone pulses from the
toggle flip-flop specified by the Decrement Grade register.

[bits 7 to 6] S1 to SO : Operation clock select bits

These bits specify the clock input signal for the Sound Generator.

S1 SO Clock input

0 0 Machine clock
0 1 1/2 Machine clock
1 0 1/4 Machine clock
1 1 1/8 Machine clock

330

21.2 Sound Generator Registers

[bits 5] TONE : Tone output bit

When this bit is set to "1", the SGO signal becomes a simple square-waveform (tone pulses)
from the toggle flip-flop. Otherwise it is the mixed (AND logic) signal of the tone and PWM
pulses.

[bits 4] OE2 : Sound output enable bit

When this bit is set to "1", the external pin is assigned as the SGO output. Otherwise the pin
can be used as a general purpose 10. To enable the SGO output, the corresponding bit of
the Port Direction register should also be set to "1".

[bits 3] OE1 : Amplitude output enable bit

When this bit is set to "1", the external pin is assigned as the SGA output. Otherwise the pin
can be used as a general purpose 10. To enable the SGA output, the corresponding bit of
the Port Direction register should also be setto "1".

The SGA signal is the PWM pulses from the PWM pulse generator representing the
amplitude of the sound.

[bits 2] INTE : Interrupt enable bit

This bit enables the interrupt signal of the Sound Generator. When this bit is "1" and the INT
bit is set to "1", the Sound Generator signals an interrupt.

[bits 1] INT : Interrupt bit

This bit is set to "1" when the Tone Pulse counter counts the number of the tone pulses
specified by the Tone Count register and Decrement Grade register.

This bit is reset to "0" by writing "0". Writing "1" has no effect and Read-Modify-Write
instructions always result in reading "1".

[bits 0] ST : Start bit

This bit is for starting the operation of the Sound Generator. While this bit is "1", the Sound
Generator perform its operation.

When this bit is reset to "0", the Sound Generator stops its operation at the end of the current
tone cycle. The BUSY bit indicates whether the Sound Generator is fully stopped.

331

CHAPTER 21 SOUND GENERATOR

21.2.2 Frequency Data register

The Frequency Data register stores the reload value for the Frequency counter. The
stored value represents the frequency of the sound (or the tone signal from the toggle
flip-flop). The register value is reloaded into the counter at every transition of the
toggle signal.

The following figure shows the relationship between the tone signal and the register
value.

m Frequency Data Register

Frequency Data register

7 6 5 4 3 2 1 0 < Bit number
Address: 001946

D7 D6 D5 D4 D3 D2 D1 DO SGFR

Readiwrite ., (RW) (RW) (RW) (RW) (RW) (RMW) (RW) (RW)
Initial value —> (X) (X) (X) (X) (X) (X) (X) (X)

Figure 21.2-1 shows the relationship between a tone signal and a register value.

Figure 21.2-1 Relationship between Tone Signal and Register Value

One Tone Cycle
-] P

Tone signal

(register value+1) x | (register value+1) x
One PWM cycle | One PWM cycle
B EE—

It should be noted that modifications of the register value while operation may alter the duty
cycle of 50% depending on the timing of the modification.

332

21.2 Sound Generator Registers

21.2.3 Amplitude Data Register

The Amplitude Data register stores the reload value for the PWM pulse generator. The
register value represents the amplitude of the sound. The register value is reloaded
into the PWM pulse generator at the end of every tone cycle.

m Amplitude Data Register

Amplitude Data register

Address:

15 14 13 12 11 10 9 8 . Bitnumber
001947+

D7 D6 D5 D4 D3 D2 D1 DO SGAR
Readwrite o (RW) (RW) (RW) (RW) (RMW) (RMW) (RW) (RW)

Initial value => (0) (0) (0) (0) (0) 0) 0) 0)

When the DEC bit is "1" and the Decrement counter reaches its reload value, this register value
is decremented by 1(one). And when the register value reaches "00", further decrements are
not performed. However the sound generator continues its operation until the ST bit is cleared.

Figure 12.2-2 shows the relationship between the register value and the PWM pulse.

Figure 21.2-2 Relationship between Register Value and PWM Pulse
One PWM Cycle

256 input clock cycles
Register value < -
on _J1
One input clock cycles
80h |
129 input clock cycles
Feh LI
255 input clock cycles
FFh
256 input clock cycles

When the register value is set to "FF", the PWM signal is always "1".

333

CHAPTER 21 SOUND GENERATOR

21.2.4 Decrement Grade Register

The Decrement Grade register stores the reload value for the Decrement counter. They
are prepared to automatically decrement the stored value in the Amplitude Data
register.

m Decrement Grade Register

Decrement Grade register
7 6 5 4 3 2 1 0 <o Bit number

SGDR

Address: 001948H

D7 D6 D5 D4 D3 D2 D1 DO

Read/write -, (RIW) (RW) (RW) [RMW) RW) ((RW) (RW) (RW)
Initial value => (X) X) X) X) X) X) X) X)

When the DEC bit is "1" and the Decrement counter counts the number of tone pulses up to the
reload value, the stored value in the Amplitude Data register is decremented by 1(one) at the
end of the tone cycle.

This operation realizes automatic de-gradation of the sound with fewer number of CPU
interventions.

It should be noted that the number of the tone pulses specified by this register equals to
"register value +1". When the Decrement Grade register is set to "00", the decrement operation
is performed every tone cycle.

334

21.2 Sound Generator Registers

21.2.5 Tone Count Register

The Tone Count register stores the reload value for the Tone Pulse counter. The Tone
Pulse counter accumulate the number of tone pulses (or number of decrement
operations) and when it reaches the reload value it sets the INT bit. They are intended
to reduce the frequency of interrupts.

m Tone Count Register

Tone Count register 15 14 13 12 11 10 9 8 <= Bit number
Address: 001949+

D7 D6 D5 D4 D3 D2 D1 DO SGTR

Readiwrite . (RMW) (RW) (RW) (RW) (RW) [RW) [RW) (RW)
Initial value =) x) (X) (X) (X) (X) (X) (X)

The count input of the Tone Pulse counter is connected to the carry-out signal from the
Decrement counter. And when the Tone count register is set to "00", the Tone Pulse counter
sets the INT bit every carry-out from the Decrement counter. Thus the number of accumulated
tone pulses is;

((Decrement Grade register) +1) x ((Tone Count register) +1)

i.e. When the both registers are set to "00", the INT bit is set every tone cycle.

335

CHAPTER 21 SOUND GENERATOR

336

CHAPTER 22 ROM CORRECTION

This chapter explains the functions and operations of ROM correction.

22.1 Outline of ROM Correction
22.2 Application Example of ROM Correction

337

CHAPTER 22 ROM CORRECTION

22.1 Outline of ROM Correction

When the setting of the address is the same as the ROM Correction Address registers,
the INT9 instruction will be executed. By processing the INT9 interrupt service routine,
the ROM correction function can be achieved.

There are two address registers, in each containing a compare enable bit. When the
address register and the program counter are in agreement, and when the compare
enable bit is at '1', then the CPU will be forced to execute INT9 instruction.

m Block Diagram of ROM Correction

Figure 22.1-1 shows a block diagram of the ROM correction.

Figure 22.1-1 Block Diagram of ROM Correction

address latch

. INT9
comparitor instruction
ROM correction address
register /

enable bit

F2MC-16 LX

CPU core

F2MC-16LX BUS

m ROM Correction Address Register 0/1 (PADRO/PADR1)

These registers hold the addresses for the comparison with program counter. If there is an
agreement and when the corresponding ADCSR compare enable bit is at '1', this module
demands the CPU to execute the INT9 instruction.

If the corresponding compare enalble bit is '0', nothing will occur even there is a match.

byte byte byte access initial value
PADRO 1FF2H/1FF1H/1FFOH R undefined
PADR1 1FF5H/1FF4H/1FF3H RIW undefined

338

22.1 Outline of ROM Correction

The correspondance to the PACSR will be as follows.

ROM Correction Address register Compare enable bit
PADRO PADR1
ADOE AD1E

m ROM Correction Control Register (PACSR)

The correspondence with PACSR is shown below.

ROM Correction

Control Register 7 6 5 4 3 2 1 0 <o Bit number

Address : 009E |Reserved | Resenved [Resenved |Resened | AD1E| Reserved | ADOE |Reserved | paACSR

Readiwrite & ()))) RW) RW) (RW) (RW)
Initial value = (0)) () ©)) (0)) 0)
This register controls operation of the address detect function and indicates its status.
[bit 7~4]
These are the reserved bits, be sure to write '0'.
[bit 3]: AD1E (Compare Enable 1)
This is the PADR1 enable bit.

When this bit is at '1", this module compares the PADRL1 register and the program counter.
If there is an agreement, the INT9 instruction is sent to the CPU.

[bit 2]:
Reserved bit.

[bit 1]: ADOE (Compare Enable 0)
This is the PADRO enable bit.

When this bit is at '1', this module compares the PADRO register and the program counter. If
there is an agreement, the INT9 instruction is sent to the CPU.

[bit O]:

Reserved bit.

m Operations of ROM Correction

When the program counter indicates the same address as the ROM Correction Address
register, the INT9 instruction will be executed. By processing the INT9 interrupt service routine,
the ROM correction function can be achieved.

There are two address registers, in each containing a compare enable bit. When the address
register and the program counter are in agreement, and when the compare enable bit is at '1/,
then the CPU will be forced to execute INT9 instruction.

Note:

When the address register and the program counter are in agreement, the internal data bus
content will be forced to be '01H', so INT9 instruction will be executed. Before changing the
content of the address register, make sure the compare enable bit is at '0". If it is changed
while the compare enable bit is at '1", there will occur an error.

339

CHAPTER 22 ROM CORRECTION

22.2 Applicat

ion Example of ROM Correction

The ROM correction function is enabled by externally providing an EEPROM and by

storing information

on corrections and a patch program in the EEPROM. Based on the

correction information stored in the EEPROM, the CPU sets addresses requiring
corrections in the ROM correction module and transfers the patch program to RAM.
The processing can be transferred to the patch program by executing the INT9
instruction after address match detection.

m System Structure

Figure 22.2-1 System Structure Example

EPROM
MCU
F2MC16LX
pull up resistor
SIN () connector (UART)

m EEPROM Memory Map

address: content

0000H:
0001H:
0002H:
0003H:
0004H:
0005H:
0006H:
0007H:

0010H

m |nitial Condition

number of bytes of the corrected program No. 0 (0 implies no ROM correction)
bit 7-0 program address No. 0

bit 15-8 program address No. 0

bit 24-16 program address No. 0

number of bytes of the corrected program No. 1 (0 implies no ROM correction)
bit 7-0 program address No. 1

bit 15-8 program address No. 1

bit 24-16 program address No. 1

~: corrected program No. 0/1 body

EEPROM all at ‘0.

340

22.2.1 Correction Example of Program Errors

22.2 Application Example of ROM Correction

Send the body of the corrected program and the program address to the MCU through
the connector (UART). MCU then writes that information into the EEPROM.

m When a Program Error Occurs

ROM

RAM

Figure 22.2-2 shows an example of ROM correction processing when a program error occurs.

Figure 22.2-2 ROM Correction Processing Example

FFFFFFh

=0d

ssalppy Jabbul

Register setting
for ROM correction

External E2PROM

O Number of program byte

O Interrupt Trigger Address
O Corrected program

000000h

Data sent via UART

341

CHAPTER 22 ROM CORRECTION

22.2.2 Example of Correction Processing

After resetting, the MCU reads the contents of the EEPROM. If the byte number of the
corrected program is not '0', the body of the corrected program is read from the
EEPROM and written in the RAM. Then the MCU sets the correction address either on
PADRO or on PADRL1 and sets the compare enable bit. First address of the corrected
program can written in the user-defined location of the RAM if a relocatable correction
program is desired. In this case the INT9 service routine look for this user-defined
location to jump to the corrected program.

m Reset Sequence

Figure 22.2-3 Processing Flow of ROM Correction

Reset

Read the 00h of E 2 PROM

0000h (E2PROM)=0

Read the Address
0001h~0003h (E2PROM)

v MoV
PADRO (MCU)

‘ To Corrected Program
JMP 000400h

Read the corrected Program
0010h~0090h (E2ZPROM) ‘

$ Mov Corrected Program
000400h~000480h (MCU) Execution
‘ 000400h~000480h

Enable compare End of Corrected Program
MOV PACSR, #02h JMP FF0O050h

|

Normal Program Execution

NO

PC=PADRO

342

FFFFh

0090h

0010h

0003h

0002h

0001h

0000h

INT9 Interrupt

22.2 Application Example of ROM Correction

Figure 22.2-4 ROM Correction Processing Flow Diagram

E2 PROM

Corrected Program

Lower Program Address: 00

Middle Program Address: 00

Upper Program Address: FF

Size of Corrected Program in Byte
: 80

—_ FFFFFFh

FFO050h
ROM
FFO000h

—— FEO0000h

—— 001100h

000480h
000400h

000100h

L 000000h

Erroneous Program

Stack Area

RAM Area

Corrected Program

RAM/Register Area

1/0 Area

In the interrupt routine, the address that produces the interrupt can be known by checking the

stacked program counter value. The information stacked during interrupt will be discarded.

343

CHAPTER 22 ROM CORRECTION

344

CHAPTER 23 ROM MIRRORING MODULE

This chapter explains the ROM mirroring module.

23.1 Outline of ROM Mirroring Module
23.2 ROM Mirroring Register (ROMM)

345

CHAPTER 23 ROM MIRRORING MODULE

23.1 Outline of ROM Mirroring Module

The ROM Mirroring module switches whether to mirror the image of the FF bank of the
ROM to the 00 bank.

m Block Diagram of ROM Mirroring Module

Figure 23.1-1 Block Diagram of ROM Mirroring Module

F2MC-16LX BUS

ROM Mirrroring Register

Address Area

| FF bank 00 bank

< ROM

346

23.2 ROM Mirroring Register (ROMM)

23.2 ROM Mirroring Register (ROMM)

Do not access the ROM mirroring register (ROMM) when addresses 004000H to
OOFFFFH are being accessed.

m ROM Mirroring Register (ROMM)

15 14 13 12 11 10 9 8 <3 Bit number
Address : 0006F, _ _ — — — — — MI ROMM
Readiwrite & (-) -) =) =)) =) =) (W)
Initial value & (=))) -))) (1)
[bit 8] : MI

The image of the ROM data in the FF bank can also be found in the 00 bank when '1' is

written to this bit. However, this memory mapping will not be done when this bit is written to
‘0. This bit is write only.

Note:

Only FF4000~FFFFFF is mirrorred to 004000~00FFFF when ROM mirroring functing is
activated. Therefore, addresses FFFO00~FF3FFF will not be mirrorred to 00 bank.

347

CHAPTER 23 ROM MIRRORING MODULE

348

CHAPTER 24 2M/3M-BIT FLASH MEMORY

This chapter describes the functions and operation of the 2M/3M-bit flash memory.
The following three methods are available for writing data to and erasing data from the
flash memory:

» Parallel writer (Minato Electronics Model 1890A)

» Serial writer (Yokogawa Digital Computer Model AF-200)

» Executing programs to write/erase data

This chapter elaborates on Chapter 3, "Executing Programs to Write/Erase Data."

24.1 Outline of 2M/3M-Bit Flash Memory

24.2 Block Diagram of the Entire Flash Memory and Sector Configuration of the
Flash Memory

24.3 Write/Erase Modes

24.4 Flash Memory Control Status Register (FMCS)

24.5 Starting the Flash Memory Automatic Algorithm

24.6 Confirming the Automatic Algorithm Execution State

24.7 Detailed Explanation of Writing to and Erasing Flash Memory
24.8 Notes on Using 2M/3M-Bit Flash Memory

24.9 Reset Vector Address in Flash Memory

24.10 Example of Programming 2M/3M-Bit Flash Memory

349

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.1 Outline of 2M/3M-Bit Flash Memory

The 2M/3M-bit flash memory is mapped to the FC to FF bank in the CPU memory map.
The functions of the flash memory interface circuit enable read-access and program-
access from the CPU in the same way as mask ROM. Instructions from the CPU can be
used via the flash memory interface circuit to write data to and erase data from the
flash memory. Internal CPU control therefore enables rewriting of the flash memory
while it is mounted. As a result, improvements in programs and data can be performed
efficiently.

Selector operations such as enable selector protect cannot be used.

m 2M/3M-bit Flash Memory Features
» Use of automatic program algorithm (Embedded Algorithm: Equivalent to MBM29F400TA)
» Erase pause/restart functions provided
» Detection of completion of writing/erasing using data polling or toggle bit functions
» Detection of completion of writing/erasing using CPU interrupts
e Compatible with JEDEC standard commands
» Sector erase function (any combination of sectors)
e Minimum of 10,000 write/erase operations

Embedded Algorithm is a trademark of Advanced Micro Device, Inc.

m Writing to/Erasing Flash Memory

The flash memory cannot be written to and read at the same time. That is, when data is written
to or erased data from the flash memory, the program in the flash memory must first be copied
to RAM. The entire process is then executed in RAM so that data is simply written to the flash
memory. This eliminates the need for the program to access the flash memory from the flash
memory itself.

m Flash Memory Register

0 Flash Memory Control Status Register (FMCS)

7 6 5 4 3 2 1 0 O Bit No.
Address: 0000AEy INTE RDYINT WE RDY | Reserved | LPM1 |Reserved| LPMO |FMCS
Read/write O (RIW) (RIW) (RIW) (R) (RIW) (RIW) (RIW) (RIW)

Initial value 0))))))))

350

24.2 Block Diagram of the Entire Flash Memory and Sector Configuration of the Flash Memory

24.2 Block Diagram of the Entire Flash Memory and Sector
Configuration of the Flash Memory

Figure 24.2-1 shows a block diagram of the entire flash memory with the flash memory
interface circuit included. Figure 24.2-2 shows the sector configuration of the flash

memory.

m Block Diagram of the Entire

Flash Memory

Figure 24.2-1 Block Diagram of the Entire Flash Memory

Flash memory
interface circuit

F2MC-16
bus

BYTE

AQO to AQ18

DQO to DQ15

INT RY/BY

2Mbit/3Mbit
Flash memory

m Sector Configuration of the 2M/3M-Bit Flash Memory

(to CPU)

External reset signal

L. Write enable interrupt signal

@)

BYTE
CE
OE
WE

AQO to AQ17
AQ-1

DQO to DQ15

RY/BY

RESET

RY/BY write
enable signal

Figure 24.2-2 shows the sector configuration of the 2M/3M-bit flash memory. The addresses in

the figure indicate the high-order and low-order addresses of each sector.

351

CHAPTER 24 2M/3M-BIT FLASH MEMORY

Figure 24.2-2 Sector Configuration of the 2M/3M-Bit Flash Memory

MB90F594A

Writer address CPU address

MB90F591

Writer address CPU address

7FFFFy FFFFFFY 7TFFFF FFFFFFY
SAG6 (16K bytes) SA11 (16K bytes)
SAS (8K bytes) 7BFFFy FFBFFFy SAL0 (8K bytes) 7BFFFy FFBFFF
ytes ytes
SA4 (8K bytes) 79FFFy FFOFFF SAB (8K bytes) T9FFFy FFOFFF,
ytes ytes
SA3 (32K bytes) T7FFFy FF7FFF4 SAS (32K bytes) TTFFFY FF7FFF
es ytes
SA2 (64K bytes) 6FFFFy FEFFFFy SAT (64K bytes) 6FFFFy FEFFFF
es y
5FFFFH FDFFFFy 5FFFFy4 FDFFFFy
SALl (64K bytes) SAG6 (64K bytes)
AFFFFy FCFFFFy 4FFFFy FCFFFFy
SAO (64K bytes) Unused
400004 FC0000y 3FFFFy FBFFFF4
SA5 (16K bytes)
3BFFF, FBBFFFy
SA4 (8K bytes)
39FFFy FBOFFFy
SA3 (8K hytes)
37FFFy FB7FFFy4
SA2 (32K bytes)
2FFFFy FAFFFFy
SA1(64K bytes)
1FFFFy FOFFFF,
SAO (64K bytes)
OFFFFy F8FFFF
Unused
000004 F80000y

*: The writer address is equivalent to the CPU address when data is written to the flash memory
using a parallel writer. When a general writer is used for writing/erasing, this address is used for
writing/erasing.

352

24.3 Write/Erase Modes

24.3 Write/Erase Modes

The flash memory can be accessed in two different ways: Flash memory mode and
alternative mode. Flash memory mode enables data to be directly written to or erased
from the external pins. Alternative mode enables data to be written to or erased from
the CPU via the internal bus. Use the mode external pins to select the mode.

m Flash Memory Mode

The CPU stops when the mode pins are set to 111 while the reset signal is asserted. The flash
memory interface circuit is connected directly to ports 0, 2, 3, and 4, enabling direct control from
the external pins. This mode makes the MCU seem like a standard flash memory to the
external pins, and write/erase can be performed using a flash memory programmer.

In flash memory mode, all operations supported by the flash memory automatic algorithm can
be used.

m Alternative Mode

The flash memory is located in the FC to FF banks in the CPU memory space, and like ordinary
mask ROM, can be read-accessed and program-accessed from the CPU via the flash memory
interface circuit.

Since writing/erasing the flash memory is performed by instructions from the CPU via the flash
memory interface circuit, this mode allows rewriting even when the MCU is soldered on the
target board.

Sector protect operations cannot be performed in these modes.

m Flash Memory Control Signals
Table 24.3-1 lists the flash memory control signals in flash memory mode.

There is almost a one-to-one correspondence between the flash memory control signals and the
external pins of the MBM29F400TA. The V|p (12 V) pins required by the sector protect

operations are MDO, MD1, and MD2 instead of A9, RESET, and OE for the MBM29F400TA.

Since the memory capacity of the MB90OF594A is half of the MBM29F400TA, the AQ18 pin
corresponding to the address signal A17 of the MBM29F400TA is redundant. These pins
should always be set to 1.

In flash memory mode, the external data bus signal width is limited to 8 bits, enabling only one-
byte access. The DQ15 to DQ18 pins are not supported. The BYTE pin should always be set
to 0.

Table 24.3-1 Flash Memory Control Signals

MB90F594A/MB90F591
MBM29F400TA
Pin number Normal function Flash memory mode
1to8 P20 to P27 AQO to AQ7 A-1, AO to A6
9 P30 AQ16 Al5
10 P31 CE CE

353

CHAPTER 24 2M/3M-BIT FLASH MEMORY

Table 24.3-1 Flash Memory Control Signals (Continued)

MB9OF594A/MB90F591
MBM29F400TA
Pin number Normal function Flash memory mode
12 P32 OE OE
13 P33 WE WE
14 to 15 P34 to P35 AQ17 to AQ18 A16 to A17
16 P36 BYTE BYTE
17 P37 RY/BY RY/BY
18 to 22 P40 to P44 AQ8 to AQ12 A7 to A1l
24 to 26 P45 to P47 AQ13 to AQ15 Al2to Al4
49 MDO MDO A9 (V|p)
50 MD1 MD1 RESET (Vp)
51 MD2 MD2 OE (Vp)
85 to 92 P00 to P07 DQO to DQ7 DQO to DQ7
77 RST RESET RESET
Not supported DQ8 to DQ15

354

24.4 Flash Memory Control Status Register (FMCS)

24.4 Flash Memory Control Status Register (FMCS)

The flash memo ry cont rol status register (FMCS), together with the flash memo ry
interface ci rcuit, is used to write data to and erase dataf rom the flash memo ry.
m Flash Memory Control Status Register (FMCS)
7 6 5 4 3 2 1 0 < Bit No.
Address: 0000AEy INTE RDYINT WE RDY Reserved | LPM1 | Reserved | LPMO JFMCS
Read/write = (RIW) (RIW) (RIW) (R) (RIW) (RIW) (RIW) (RIW)
Initial value = ©) ©) ©) € ©) ©) ©) ©)

O Explanation of bits
[Bit 7] INTE (interrupt enable)

L]

L]

This bit generates an interrupt to the CPU when flash memory write/erase terminates.

An interrupt to the CPU is generated when the INTE and RDYINT bits are 1. No interrupt is
generated when the INTE bit is 0.

0: Disables interrupts when write/erase terminates.

1. Enables interrupts when write/erase terminates.

[Bit 6] RDYINT (ready interrupt)

This bit indicates the operating state of the flash memory.

This bit is set to 1 when flash memory write/erase terminates. Data cannot be written to or
erased from the flash memory while this bit is O after a flash memory write/erase. Flash
memory write/erase is enabled when write/erase terminates and this bit is set to 1.

Writing O clears this bit to 0. Writing 1 is ignored. This bit is set to 1 at the termination timing
of the flash memory automatic algorithm (see Section 1.4, "Starting the Flash Memory
Automatic Algorithm™). When the read-modify-write (RMW) instruction is used, 1 is always
read.

0: Write/erase is being executed.

1: Write/erase has terminated (interrupt request generated).

[Bit 5] WE (write enable)

This bit enables writing to the flash memory area.

When this bit is 1, writing after the command sequence (see Section 1.4, "Starting the Flash
Memory Automatic Algorithm") is issued to the FC to FF bank writes to the flash memory
area. When this bit is 0, the write/erase signal is not generated. This bit is used when the
flash memory Write/Erase command is started.

If write/erase is not performed, it is recommended that this bit be set to 0 to prevent data
from being mistakenly written to the flash memory.

0: Disables flash memory write/erase.

355

CHAPTER 24 2M/3M-BIT FLASH MEMORY

356

1: Enables flash memory write/erase.

[Bit 4] RDY (ready)

This bit enables flash memory write/erase.

Flash memory write/erase is disabled while this bit is 0. However, Suspend commands,
such as the Read/Reset command and Sector Erase Suspend command, can be accepted
even if this bit is 0.

0: Write/erase is being executed.

1: Write/erase has terminated (next data write/erase enabled).

[Bits 3 and 1] Reserved bits

These bits are reserved for testing. During regular use, they should always be set to 0.

[Bits 2 and 0] LPM1 and LPMO (low power mode)

These bits control the current consumed by the flash memory when the flash memory is
accessed. Since the access time to the flash memory from the CPU is largely dependent on
this setting, select a setting value based on the operating frequency of the CPU.

01: Low power consumption mode (Operates at an internal operating frequency up to 4
MHz.)

10: Low power consumption mode (Operates at an internal operating frequency up to 8
MHz.)

11: Low power consumption mode (Operates at an internal operating frequency up to 10
MHz.)

00: Regular power consumption mode (Operates at an internal operating frequency up to 16
MHz.)

Note:

The RDYINT and RDY bits cannot be changed at the same time. Create a program so that
decisions are made using one or the other of these bits.

Automatic algorithm
Termination timing
RDYINT bit

RDY bit

<+“—>

1 machine cycle

24.5 Starting the Flash Memory Automatic Algorithm

24.5 Starting the Flash Memory Automatic Algorithm

Four types of commands are available for starting the flash memory automatic

algorithm: Read/Reset, Write, and Chip Erase. Control of suspend and restart is

enabled for sector erase.

m Command Sequence Table

Table 24.5-1 lists the commands used for flash memory write/erase. All of the data written to
the command register is in bytes, but use word access to write. The data of the high-order
bytes at this time is ignored.

Table 24.5-1 Command Sequence Table

Command Bus 1st bus write cycle 2nd bus write 3rd bus write 4th bus write 5th bus write 6th bus write
sequence write cycle cycle cycle cycle cycle
access
Address Data |Address | Data Address |Data Afdress Data Address Data Adgress Data
Rea?ff)esm 1 FXXXXX | XXFO
ReagllF;esm 4 FXAAAA | XXAA | Fx5554 | XX55 | FXAAAA | XXFO RA RD
Write PA PD
program 4 FXAAAA XXAA Fx5554 XX55 FXAAAA | XXAO (even) (word)
Chip Erase 6 FXAAAA XXAA Fx5554 XX55 FXAAAA XX80 FXAAAA | XXAA Fx5554 XX55 FXAAAA XX10
Sector Erase 6 FXAAAA XXAA Fx5554 XX55 FXAAAA XX80 FXAAAA | XXAA Fx5554 XX55 (e%: n) XX30
Sector Erase Suspend Entering address FxXXXX data (xxBOH) suspends erasing during sector erase.
Sector Erase Restart Entering address FxXXXX data (xx3OH) restarts erasing after erasing is suspended during sector erase.

Notes:

« The addresses Fx in the table mean FF, FE, FD, and FC. Use these addresses as the
access target bank values for operations.

e The addresses in the table are the values in the CPU memory map. All addresses and data
are represented using hexadecimal notation. However, the letter X is an optional value.

« RA:
o PA:

¢ SA:
* RD: Read data
« PD:

Read address

Write address. Only even addresses can be specified.

Write data. Only word data can be specified.

Sector address. See Section 1.2, "2M/3M-Bit Flash Memory Sector Configuration."

*1 Both of the two types of Read/Reset commands can reset the flash memory to read mode.

357

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6 Confirming the Automatic Algorithm Execution State

Because the write/erase flow of the flash memory is controlled using the automatic
algorithm, the flash memory has hardware for posting its internal operating state and
completion of operation. This automatic algorithm enables confirmation of the
operating state of the built-in flash memory using the following hardware sequences.

m Hardware Sequence Flags

358

The hardware sequence flags are configured from the four-bit output of DQ7, DQ6, DQ5, and
DQ3. The functions of these bits are those of the data polling flag (DQ7), toggle bit flag (DQ6),
timing limit exceeded flag (DQ5), and sector erase timer flag (DQ3). The hardware sequence
flags can therefore be used to confirm that writing or chip sector erase has been completed or
that erase code write is valid.

The hardware sequence flags can be accessed by read-accessing the addresses of the target
sectors in the flash memory after setting of the command sequence (see Table 24.5-1 in
Section 24.5, "Starting the Flash Memory Automatic Algorithm"). Table 24.6-1 lists the bit
assignments of the hardware sequence flags.

Table 24.6-1 Bit Assignments of Hardware Sequence Flags

Bit No. 7 6 5 4 3 2 1 0

Hardware sequence flag | DQ7 DQ6 DQ5 - DQ3 - - -

To determine whether automatic writing or chip sector erase is being executed, the hardware
sequence flags can be checked or the status can be determined from the RDY bit of the flash
memory control register (FMCS) that indicates whether writing has been completed. After
writing/erasing has terminated, the state returns to the read/reset state. When creating a
program, use one of the flags to confirm that automatic writing/erasing has terminated. Then,
perform the next processing operation, such as data read. In addition, the hardware sequence
flags can be used to confirm whether the second or subsequent sector erase code write is valid.
The following sections describe each hardware sequence flag separately. Table 24.6-2 lists the
functions of the hardware sequence flags.

24.6 Confirming the Automatic Algorithm Execution State

Table 24.6-2 Hardware Sequence Flag Functions

State DQ7 DQ6 DQ5 DQ3
State Write --> Write completed (write DQ7 --> Toggle --> 0--> 0-->
change for | address specified) DATA:7 DATA:6 DATA:5 DATA:3
normal)
operation Chip/sector erase --> Erase 0->1 Toggle --> 0->1 1
completed Stop
Sector erase wait --> Erase started 0 Toggle 0 0->1
Erase --> Sector erase suspended 0->1 Toggle --> 0 1-50
(sector being erased) 1
Sector erase suspend --> Erase 1-->
restarted (sector being erased) 1->0 Toggle 0 0->1
Se_ctor erase suspended (sector not DATA:7 DATA'6 DATA'S DATA:3
being erased)
Abnormal Write DQ7 Toggle 1 0
operation -
Chip/sector erase 0 Toggle 1 1

359

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.1 Data Polling Flag (DQ7)

The data polling flag (DQ7) uses the data polling function to post that the automatic
algorithm is being executed or has terminated

m Data Polling Flag (DQ7)

Tables 24.6-3 and 24.6-4 list the state transitions of the data polling flag.

Table 24.6-3 Data Polling Flag State Transitions (State Change for Normal Operation)

Sector erase Sector erase Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait suspend Restarted
state Completed . . (sector not
Completed | --> Started | (sector being (sector being :
being erased)
erased) erased)
DQ7 DQ7 --> 0-->1 0 0->1 1->0 DATA:7

360

Table 24.6-4 Data Polling Flag State Transitions (State Change for Abnormal Operation)

Operating Write Chip/sector
state erase
DQ7 DQ7 0

Write

Read-access during execution of the automatic write algorithm causes the flash memory to
output the opposite data of bit 7 last written, regardless of the value at the address specified by
the address signal. Read-access at the end of the automatic write algorithm causes the flash
memory to output bit 7 of the read value of the address specified by the address signal.

Chip/sector erase

For a sector erase, read-access during execution of the chip erase/sector erase algorithm
causes the flash memory to output O from the sector currently being erased. For a chip erase,
read-access causes the flash memory to output O regardless of the value at the address
specified by the address signal. Read-access at the end of the automatic write algorithm
causes the flash memory to output 1 in the same way.

Sector erase suspend

Read-access during a sector erase suspend causes the flash memory to output 1 if the address
specified by the address signal belongs to the sector being erased. The flash memory outputs
bit 7 (DATA: 7) of the read value at the address specified by the address signal if the address
specified by the address signal does not belong to the sector being erased. Referencing this
flag together with the toggle bit flag (DQ6) enables a decision to be made on whether the flash
memory is in the erase suspended state and which sector is being erased.

Note:

When the automatic algorithm is being started, read-access to the specified address is
ignored. Since termination of the data polling flag (DQ7) can be accepted for a data read

24.6 Confirming the Automatic Algorithm Execution State

and other bits output, data read after the automatic algorithm has terminated should be
performed after read-access has confirmed that data polling has terminated.

361

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.2 Toggle Bit Flag (DQ6)

Like the data polling flag, the toggle bit flag (DQ6) uses the toggle bit function to post
that the automatic algorithm is being executed or has terminated.

m Toggle Bit Flag (DQ6)
Tables 24.6-5 and 24.6-6 list the state transitions of the toggle bit flag.

Table 24.6-5 Toggle Bit Flag State Transitions (State Change for Normal Operation)

Sector erase Sector erase Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait | suspend Restarted
state Completed . . (sector not
Completed --> Started | (sector being (sector being .
being erased)
erased) erased)
DQ6 Toggle -> | Toggle > | 110 Toggle --> 1 1 --> Toggle DATA:6
DATA:6 Stop 99 99 99 :

362

Table 24.6-6 Toggle Bit Flag State Transitions (State Change for Abnormal Operation)

Operating Write Chip/sector
state erase
DQ6 Toggle Toggle

Write/chip sector erase

Continuous read-access during execution of the automatic write algorithm and chip/sector erase
algorithm causes the flash memory to toggle the 1 or O state for every read cycle, regardless of
the value at the address specified by the address signal. Continuous read-access at the end of
the automatic write algorithm and chip/sector erase algorithm causes the flash memory to stop
toggling bit 6 and output bit 6 (DATA: 6) of the read value of the address specified by the
address signal.

Sector erase suspend

Read-access during a sector erase suspend causes the flash memory to output 1 if the address
specified by the address signal belongs to the sector being erased. The flash memory outputs
bit 6 (DATA: 6) of the read value at the address specified by the address signal if the address
specified by the address signal does not belong to the sector being erased.

<Note>

For a write, if the sector where data is to be written is rewrite-protected, the toggle bit
terminates the toggle operation after approximately 2us without any data being rewritten.
For an erase, if all of the selected sectors are write-protected, the toggle bit performs
toggling for approximately 100us and then returns to the read/reset state without any data
being rewritten.

24.6 Confirming the Automatic Algorithm Execution State

24.6.3 Timing Limit Exceeded Flag (DQ5)

The timing limit exceeded flag (DQ5) is used to post that execution of the automatic
algorithm has exceeded the time (internal pulse count) prescribed in the flash memory.

m Timing Limit Exceeded Flag (DQ5)

Tables 24.6-7 and 24.6-8 list the state transitions of the timing limit exceeded flag.

Table 24.6-7 Timing Limit Exceeded Flag State Transitions (State Change for Normal Operation)

Sector erase Sector erase Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait | suspend Restarted
state Completed . . (sector not
Completed --> Started | (sector being (sector being .
being erased)
erased) erased)
DQ5 0--> 0->1 0 0 0 DATA:5
DATA:5

Table 24.6-8 Timing Limit Exceeded Bit Flag State Transitions (State Change for
Abnormal Operation)

Operating Write Chip/sector
state erase
DQ5 1 1

O Write/chip sector erase

Read-access after write or chip/sector erase automatic algorithm activation causes the flash
memory to output O if the time is within the prescribed time (time required for write/erase) or to
output 1 if the prescribed time has been exceeded. Because this is done regardless of whether
the automatic algorithm is being executed or has terminated, it is possible to determine whether
write/erase was successful or unsuccessful. That is, when this flag outputs 1, writing can be
determined to have been unsuccessful if the automatic algorithm is still being executed by the
data polling function or toggle bit function.

For example, writing 1 to a flash memory address where 0 has been written will cause the falil
state to occur. In this case, the flash memory will lock and execution of the automatic algorithm
will not terminate. As a result, valid data will not be output from the data polling flag (DQ7). In
addition, the toggle bit flag (DQ6) will exceed the time limit without stopping the toggle operation
and the timing limit exceeded flag (DQ5) will output 1. Note that this state indicates that the
flash memory is not faulty, but has been used correctly. When this state occurs, execute the
Reset command.

363

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.6.4 Sector Erase Timer Flag (DQ3)

The sector erase timer flag (DQ3) is used to post whether the automatic algorithm is
being executed during the sector erase wait period after the Sector Erase command
has been started.

m Sector Erase Timer Flag (DQ3)

Table 24.6-9 Sector Erase Timer Flag State Transitions (State Change for Normal Operation)

Tables 24.6-9 and 24.6-10 list the state transitions of the sector erase timer flag.

Sector erase Sector erase Sector erase
. . Chip/sector | Sector --> Erase suspend -->
Operating | Write --> . suspended
erase --> erase wait | suspend Restarted
state Completed . . (sector not
Completed --> Started | (sector being (sector being .
being erased)
erased) erased)
DQ3 0--> 1 0->1 1-->0 0->1 DATA:3
DATA:3

364

Table 24.6-10 Sector Erase Timer Flag State Transitions (State Change for Abnormal
Operation)

Operating Write Chip/sector
state erase
DQ3 0 1

Sector erase

Read-access after the Sector Erase command has been started causes the flash memory to
output 0 if the automatic algorithm is being executed during the sector erase wait period,
regardless of the value at the address specified by the address signal of the sector that issued
the command. The flash memory outputs 1 if the sector erase wait period has been exceeded.

If the data polling function or toggle bit function indicates that the erase algorithm is being
executed, internally controlled erase has already started if this flag is 1. Continuous write of the
sector erase codes or commands other than the Sector Erase Suspend command will be
ignored until erase is terminated.

If this flag is 0, the flash memory will accept write of additional sector erase codes. To confirm
this, it is recommended that the state of this flag be checked before continuing to write sector
erase codes. |If this flag is 1 after the second state check, it is possible that additional sector
erase codes may not be accepted.

Sector erase

Read-access during execution of sector erase suspend causes the flash memory to output 1 if
the address specified by the address signal belongs to the sector being erased. The flash
memory outputs bit 3 (DATA: 3) of the read value of the address specified by the address

signal if the address specified by the address signal does not belong to the sector being erased.

24.7 Detailed Explanation of Writing to and Erasing Flash Memory

24.7 Detailed Explanation of Writing to and Erasing Flash
Memory

This section describes each operation procedure of flash memory Read/Reset, Write,
Chip Erase, Sector Erase, Sector Erase Suspend, and Sector Erase Restart when a
command that starts the automatic algorithm is issued.

m Detailed Explanation of Flash Memory Write/Erase

The flash memory executes the automatic algorithm by issuing a command sequence (see
Table 24.5-1 in Section 24.5, "Starting the Flash Memory Automatic Algorithm™) for a write cycle
to the bus to perform Read/Reset, Write, Chip Erase, Sector Erase, Sector Erase Suspend, or
Sector Erase Restart operations. Each bus write cycle must be performed continuously. In
addition, whether the automatic algorithm has terminated can be determined using the data
polling or other function. At normal termination, the flash memory is returned to the read/reset
state.

Each operation of the flash memory is described in the following order:
e Setting the read/reset state

« Writing data

e Erasing all data (erasing chips)

« Erasing optional data (erasing sectors)

e Suspending sector erase

+ Restarting sector erase

365

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.1 Setting The Read/Reset State

This section describes the procedure for issuing the Read/Reset command to set the
flash memory to the read/reset state.

m Setting the Flash Memory to the Read/Reset State

366

The flash memory can be set to the read/reset state by sending the Read/Reset command in
the command sequence table (see Table 24.5-1 in Section 24.5, "Starting the Flash Memory
Automatic Algorithm") continuously to the target sector in the flash memory.

The Read/Reset command has two types of command sequences that execute the first and
third bus operations. However, there are no essential differences between these command
sequences.

The read/reset state is the initial state of the flash memory. When the power is turned on and
when a command terminates normally, the flash memory is set to the read/reset state. In the
read/reset state, other commands wait for input.

In the read/reset state, data is read by regular read-access. As with the mask ROM, program
access from the CPU is enabled. The Read/Reset command is not required to read data by a
regular read. The Read/Reset command is mainly used to initialize the automatic algorithm in
such cases as when a command does not terminate normally.

24.7 Detailed Explanation of Writing to and Erasing Flash Memory

24.7.2 Writing Data

This section describes the procedure for issuing the Write command to write data to
the flash memory.

m Writing Data to the Flash Memory

The data write automatic algorithm of the flash memory can be started by sending the Write
command in the command sequence table (see Table 24.5-1 in Section 24.5, "Starting the
Flash Memory Automatic Algorithm") continuously to the target sector in the flash memory.
When data write to the target address is completed in the fourth cycle, the automatic algorithm
and automatic write are started.

O Specifying addresses

Only even addresses can be specified as the write addresses specified in a write data cycle.
Odd addresses cannot be written correctly. That is, writing to even addresses must be done in
units of word data.

Writing can be done in any order of addresses or even if the sector boundary is exceeded.
However, the Write command writes only data of one word for each execution.

O Notes on writing data

Writing cannot return data O to data 1. When data 1 is written to data 0, the data polling
algorithm (DQ7) or toggle operation (DQ6) does not terminate and the flash memory elements
are determined to be faulty. If the time prescribed for writing is thus exceeded, the timing limit
exceeded flag (DQ6) is determined to be an error. Otherwise, the data is viewed as if dummy
data 1 had been written. However, when data is read in the read/reset state, the data remains
0. Data 0 can be set to data 1 only by erase operations.

All commands are ignored during execution of the automatic write algorithm. If a hardware
reset is started during writing, the data of the written addresses will be unpredictable.

m Writing to the Flash Memory

Figure 24.7-1 is an example of the procedure for writing to the flash memory. The hardware
sequence flags (see Section 24.6, "Confirming the Automatic Algorithm Execution State") can
be used to determine the state of the automatic algorithm in the flash memory. Here, the data
polling flag (DQ7) is used to confirm that writing has terminated.

The data read to check the flag is read from the address written to last.

The data polling flag (DQ7) changes at the same time that the timing limit exceeded flag (DQ5)
changes. For example, even if the timing limit exceeded flag (DQ5) is 1, the data polling flag bit
(DQ7) must be rechecked.

Also for the toggle bit flag (DQ6), the toggle operation stops at the same time that the timing
limit exceeded flag bit (DQ5) changes to 1. The toggle bit flag (DQ6) must therefore be
rechecked.

367

CHAPTER 24 2M/3M-BIT FLASH MEMORY

Figure 24.7-1 Example of the Flash Memory Write Procedure

FMCS: WE (bit 5)
Enable flash memory write

la
<

Write command sequence

(1) FXAAAA <-- XXAA

(2) FX5554 <-- XX55

(3) FXAAAA <-- XXAO

(4) Write address <-- Write data

Ll

Read internal address

Next address

Timing limit (DQ5)

Read internal address

Data

Data polling (DQ7)

v

@ Final address

FMCS: WE (bit 5)
Disable flash memory write

Complete writing

sequence flags.

368

24.7 Detailed Explanation of Writing to and Erasing Flash Memory

24.7.3 Erasing All Data (Erasing Chips)

This section describes the procedure for issuing the Chip Erase command to erase all
data in the flash memory.

m Erasing all Data in the Flash Memory (Erasing Chips)

All data can be erased from the flash memory by sending the Chip Erase command in the
command sequence table (see Table 24.5-1 in Section 24.5, "Starting the Flash Memory
Automatic Algorithm™) continuously to the target sector in the flash memory.

The Chip Erase command is executed in six bus operations. When writing of the sixth cycle is
completed, the chip erase operation is started. For chip erase, the user need not write to the
flash memory before erasing. During execution of the automatic erase algorithm, the flash
memory writes O for verification before all of the cells are erased automatically.

369

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.4 Erasing Optional Data (Erasing Sectors)

This section describes the procedure for issuing the Sector Erase command to erase
optional data (erase sector) in the flash memory. Individual sectors can be erased.
Multiple sectors can also be specified at one time.

m Erasing Optional Data (Erasing Sectors) in the Flash Memory

Optional sectors in the flash memory can be erased by sending the Sector Erase command in
the command sequence table (see Table 24.5-1 in Section 24.5, "Starting the Flash Memory
Automatic Algorithm™) continuously to the target sector in the flash memory.

Specifying sectors

The Sector Erase command is executed in six bus operations. Sector erase wait of 50us is
started by writing the sector erase code (30h) to an accessible even-numbered address in the
target sector in the sixth cycle. To erase multiple sectors, write the erase code (30h) to the
addresses in the target sectors after the above processing operation.

Notes on specifying multiple sectors

Erase is started when the sector erase wait period of 50us terminates after the final sector erase
code has been written. That is, to erase multiple sectors at one time, an erase code (sixth cycle
of the command sequence) must be written within 50us of writing of the address of a sector and
the address of the next sector must be written within 50us of writing of the previous erase code.
Otherwise, the address and erase code may not be accepted. The sector erase timer
(hardware sequence flag DQ3) can be used to check whether writing of the subsequent sector
erase code is valid. At this time, specify so that the address used for reading the sector erase
timer indicates the sector to be erased.

m Erasing Sectors in the Flash Memory

370

The hardware sequence flags (see Section 1.5, "Referencing the Automatic Algorithm Execution
State”) can be used to determine the state of the automatic algorithm in the flash memory.
Figure 24.7-2 is an example of the procedure for erasing sectors in the flash memory. Here, the
toggle bit flag (DQ6) is used to confirm that erasing has terminated.

The data that is read to check the flag is read from the sector to be erased.

The toggle bit flag (DQ6) stops the toggle operation at the same time that the timing limit
exceeded flag (DQ5) is changed to 1. For example, even if the timing limit exceeded flag (DQ5)
is 1, the toggle bit flag (DQ6) must be rechecked.

The data polling flag (DQ7) also changes at the same time that the timing limit exceeded flag bit
(DQ5) changes. As a result, the data polling flag (DQ7) must be rechecked.

24.7 Detailed Explanation of Writing to and Erasing Flash Memory

Figure 24.7-2 Example of the Flash Memory Sector Erase Procedure

Start erasing

FMCS: WE (bit 5)
Enable flash memory erase

|

»|

Erase command sequence
(1) FXAAAA <-- XXAA

(2) Fx5554 <-- XX55

Sector erase timer (DQ3)

Read internal address |<—

(3) FXAAAA <-- XX80
(4) FXAAAA <-- XXAA
(5) Fx5554 <-- XX55

E— |
(6) Enter code to erase sector

Another erase sector

»lag—

-

| Read internal address 1 |
1

| Read internal address 2 |

Toggle hit (DQ6)
data 1(DQ6) = data 2(DQ6,

Timing limit (DQ5)

| Read internal address 1 |

| Read internal address 2 |

Toggle bit (DQ6)

data 1(DQ6) = data 2(DQ6

Next sector

v

Erase error

FMCS: WE (bit 5)
Disable flash memory erase

Complete erasing

Confirm with the hardware
sequence flags.

371

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.7.5 Suspending Sector Erase

This section describes the procedure for issuing the Sector Erase Suspend command
to suspend erasing of flash memory sectors. Data can be read from sectors that are
not being erased.

m Suspending Erasing of Flash Memory Sectors

372

Erasing of flash memory sectors can be suspended by sending the Sector Erase Suspend
command in the command sequence table (see Table 1 in Section 1.4, "Starting the Flash
Memory Automatic Algorithm") continuously to the target sector in the flash memory.

The Sector Erase Suspend command suspends the sector erase operation being executed and
enables data to be read from sectors that are not being erased. In this state, only reading is
enabled; data cannot be written. This command is valid only during sector erase operations that
include the erase wait time. The command will be ignored during chip erase or write operations.

This command is implemented by writing the erase suspend code (BOh). At this time, specify
an optional address in the flash memory for the address. An Erase Suspend command issued
again during erasing of sectors will be ignored.

Entering the Sector Erase Suspend command during the sector erase wait period will
immediately terminate sector erase wait, cancel the erase operation, and set the erase stop
state. Entering the Erase Suspend command during the erase operation after the sector erase
wait period has terminated will set the erase suspend state after a maximum period of 15us has
elapsed.

24.7 Detailed Explanation of Writing to and Erasing Flash Memory

24.7.6 Restarting Sector Erase

This section describes the procedure for issuing the Sector Erase Restart command to
restart suspended erasing of flash memory sectors.

m Restarting Erasing of Flash Memory Sectors

Suspended erasing of flash memory sectors can be restarted by sending the Sector Erase
Restart command in the command sequence table (see Table 24.5-1 in Section 24.5, "Starting
the Flash Memory Automatic Algorithm™) continuously to the target sector in the flash memory.

The Sector Erase Restart command is used to restart erasing of sectors from the sector erase
suspend state set using the Sector Erase Suspend command. The Sector Erase Restart
command is implemented by writing the erase restart code (30h). At this time, specify an
optional address in the flash memory area for the address.

If a Sector Erase Restart command is issued during sector erase, the command will be ignored.

373

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.8 Notes on using 2M-Bit Flash Memory

This section contains notes on using 2M-bit flash memory.

m Notes on using flash memory

374

O Input of a hardware reset (RST)

To input a hardware reset when the automatic algorithm has not been started and reading is in
progress, a minimum low-level width of 500 ns must be maintained. In this case, a maximum of
500 ns is required until data can be read from the flash memory after a hardware reset has been
activated.

Similarly, to input a hardware reset when the automatic algorithm has been activated and writing
or erasing is in progress, a minimum low-level width of 50 ns must be maintained. In this case,
20 (s are required until data can be read after the operation for initializing the flash memory has
terminated.

A hardware reset during writing the data being written to be undefined. A hardware reset during
erasing may make the sector being erased unusable.

Canceling of a software reset, watchdog timer reset, and hardware standby

When the flash memory is being written to or erased with CPU access and if reset conditions
occur while the automatic algorithm is active, the CPU may run out of control. This occurs
because these reset conditions cause the automatic algorithm to continue without initializing the
flash memory unit, possibly preventing the flash memory unit from entering the read state when
the CPU starts the sequence after the reset has been deasserted. These reset conditions must
be disabled during writing to or erasing of the flash memory.

Program access to flash memory

When the automatic algorithm is operating, read access to the flash memory is disabled. With
the memory access mode of the CPU set to internal ROM mode, writing or erasing must be
started after the program area is switched to another area such as RAM. In this case, when
sectors (SA6) containing interrupt vectors are erased, writing or erasing interrupt processing
cannot be executed. For the same reason, all interrupt sources other than the flash memory are
disabled while the automatic algorithm is operating.

Also, while the automatic algorithm is being executed, all interrupt sources except flash memory
are disabled.
Hold function

When the CPU accepts a hold request, the Write signal WE of the flash memory unit may be
skewed, causing erroneous writing or erasing due to an erroneous write. When the acceptance
of a hold request is enabled (HDE bit of EPCR set to 1), ensure that the WE bit of the control
status register (FMCS) is 0.

Extended intelligent 1/O service (EI 20S)

Because write and erase interrupts issued to the CPU from the flash memory interface circuit
cannot be accepted by the EI20S, they should not be used.

24.8 Notes on using 2M-Bit Flash Memory
O ApplyingV p

Applying V,p required for the sector protect operation should always be started and terminated
when the supply voltage is on.

375

CHAPTER 24 2M/3M-BIT FLASH MEMORY

24.9 Reset Vector Address in Flash Memory

The MB90F594A supports a hard-wired reset vector.
When the addresses FFFFDC to FFFFDF are accessed for reading data in internal

vector mode, the values that have been determined by the hard-wired logic in advance
are read. However, in flash memory mode, as mentioned in the previous chapter, all
addresses can be accessed.

Consequently, it is meaningless to write data to these addresses. Especially when
programming flash memory from the CPU (that is, not in flash memory mode), do not
read these addresses for software polling. Otherwise, the flash memory returns a
fixed reset vector instead of the hardware sequence flag value.

m Reset vector address in flash memory

The following table shows the reset vector and mode data values determined in advance.

Reset vector FFAOOOH

Mode data 00y

376

24.10 Example of Programming 2M/3M-Bit Flash Memory

24.10 Example of Programming 2M/3M-Bit Flash Memory

This section presents a programming example of 2M/3M-bit flash memory.

m Programming example of 2M/3M-bit flash memory
Flash Memory Sample Program

NAME FLASHWE
TITLE FLASHWE

;2M/3M-bit-FLASH test program

;1: Transmits the program (address: FFBCOOH, sector: SA6) from FLASH to RAM
; (address: 001500H).
;2: Executes the program on RAM.
;3: Writes the PDR1 value to FLASH (address: FIOO00H, sector: SAL).
;4: Reads the written value (address: FDOOOOH, sector: SA1) and outputs it to PDR2.
;5: Erases the written sector (SA1).
;6: Checks and outputs erase data.
;Conditions
; - Number of bytes transmitted to RAM: 100H (256B)
; - Write/erase termination judgment
; Judgment according to DQ5 (timing limit excess flag)
; Judgment according to DQ6 (toggle bit flag)
Judgment according to RDY (FMCS)
; - Error handling
; Hi output to POO to PO7
Reset command issuance

RESOUS I0SEG ABS=00 ;"RESOUS" I/O segment definition
ORG 0000H
PDRO RB 1
PDR1 RB 1
PDR2 RB 1
PDR3 RB 1
ORG 0010H
DDRO RB 1
DDR1 RB 1
DDR2 RB 1
DDR3 RB 1
ORG 00A1H
CKSCR RB 1
ORG 00AEH
FMCS RB 1
ORG 006FH
ROMM RB 1
RESOUS ENDS

SSTA SSEG

RW 0127H
STAT RW 1
SSTA ENDS

DATA DSEG ABS=0FFH ;FLASH command address
ORG 5554H

COMADR2RW 1
ORG 0AAAAH

COMADRLIRW 1

DATA ENDS

SUTTTTTT T

377

CHAPTER 24 2M/3M-BIT FLASH MEMORY

;Main program (FFA000 H
ST T T]
CODE CSEG
START:
; T T
; Initialization
T T
MOV CKSCR,#0BAH ;3-multiple setting
MOV RP#0
MOV A#STA T
MOV SSB,A
MOVW A#STA_T
MOVW SP.A
MOV ROMM,#00H ;Mirror OFF
MOV PDRO,#00H ;For error check
MOV DDRO,#0FFH
MOV PDR1,#00H ;Port for data input
MOV DDR1,#00H
MOV PDR2,#00H ;Port for data output
MOV DDR2,#0FFH
T T
; Transfer of "FLASH write erase program (FFBCOOH)" to RAM (1500H address)
; T T T T T
MOVW A #1500H ;Transfer destination RAM area
MOVW A #0BCOOH ;Transfer source address (program position)
MOVW RWO,#100H ;Number of bytes to be transferred

MOVS ADB,PCB ;Transfer of 100H from FFBCOOH to 001500H
CALLP 001500H ;Jump to the address containing the transferred

; program
; ML
Data output
; T T
OUT MOV A#OFDH
MOV ADB,A
MOVW RW2 #0000H
MOVW A, @RW2+00
MOV PDR2A
END JMP *
CODE ENDS
ST
;FLASH write erase program (SA6)
ST
RAMPRG CSEG ABS=0FFH
ORG O0BCOOH
T
Initialization
; T
MOVW RWO0,#0500H ;RWO0:RAM space for input data acquisition 00:0500~
MOVW RW2#0000H ;RW2:Flash memory write address FD:0000~
MOV A #0OH ;DTB modification
MOV DTB,A ;Bank specification for @RWO
MOV A #OFDH ;ADB modification 1
MOV ADB,A ;Bank specification for write mode specification
address
MOV PDR3,#00H ;Switch initialization
MOV DDRS3,#00H

WAIT1 BBC PDR3:0,WAIT1 ;PDR3: O(write start at high level)

ST T

;Write (SAL)

ST T T
MOV A,PDR1
MOVW @RWO0+00,A ;PDR1 data allocation to RAM
MOV FMCS #20H \Write mode setting
MOVW ADB:COMADRL1,#00AAH ;Flash write command 1
MOVW ADB:COMADR2,#0055H ;Flash write command 2
MOVW ADB:COMADRL1,#00A0H ;Flash write command 3

378

24.10 Example of Programming 2M/3M-Bit Flash Memory

MOVW A ,@RWO0+00 ;Input data (RWO0) write to flash memory (RW2)
MOVW @RW2+00,A

WRITE ;Wait time check

; T T LT

; ERROR when the time limit excess check flag is set and toggle operation is

; in progress

; T T T LT
MOVW A @RW2+00

AND A#20H ;DQ5 time limit check

BZ NTOW ;Time limit over

MOVW A @RW2+00 ;AH

MOVW A @RW2+00 ;AL

XORW A ;XOR of AH and AL (1 when the values differ)
AND A#40H ;Is the DQ6 toggle bit different?

BNZ ERROR ;To ERROR when the DQ6 toggle bit is different

; M

; Write termination check (FMCS-RDY)

; M
T

NTOW MOVW A /FMCS

AND A#10H ;Extraction of FMCS RDY bit (bit 4)
BZ WRITE ;End of write?
MOV FMCS,#00H ;Write mode release

; [T T

; Write data output
T T
MOVW RW2,#0000H ;Write data output
MOVW A @RW2+00
MOV PDR2,A

WAIT2 BBC PDR3:1,WAIT2 ;PDR3: 1(sector erase start at high level)

SUHHHHTT T
;Sector erase (SA1)
SUHHH T
MOV @RW2+00,#0000H ;Address initialization
MOV FMCS,#20H ;Erase mode setting
MOVW ADB:COMADR1,#00AAH ;Flash erase command 1
MOVW ADB:COMADR2,#0055H ;Flash erase command 2
MOVW ADB:COMADR1,#0080H ;Flash erase command 3
MOVW ADB:COMADR1,#00AAH ;Flash erase command 4
MOVW ADB:COMADR2,#0055H ;Flash erase command 5
MOV @RW2+00,#0030H ;Issuance of erase command 6 to the sector
to be erased
ELS ;Wait time check
; T
; ERROR when the time limit excess check flag is set and toggle operation is
; in progress
; T T
MOVW A ,@RW2+00

AND A#20H ;DQ5 time limit check
BZ NTOE ;Time limit over
MOVW A ,@RW2+00 ;AH High and Low are alternately output from
MOVW A, @RW2+00 ;AL DQG6 per read during write operation.
XORW A ;XOR of AH and AL (If the DQ6 value differs,
write operation is in progress (1)).
AND A #40H ;Is the DQ6 toggle bit High?
BNZ ERROR ;ERROR when the DQ6 toggle bit is High

; T

; Erase termination check (FMCS-RDY)
T

NTOE MOVW A FMCS

AND A#10H ;Extraction of FMCS RDY bit (bit 4)
BZ ELS ;End of sector erase?

MOV FMCS,#00H ;FLASH erase mode release
RETP ;Return to the main program

ST

379

CHAPTER 24 2M/3M-BIT FLASH MEMORY

;Error
ST
ERROR MOV FMCS,#00H ;FLASH mode release
MOV PDRO,#0FFH ;Error handling check
MOV ADB:COMADRL#0FOH ;Reset command (read is enabled)
RETP ;Return to the main program
RAMPRG ENDS
ST
VECT CSEG ABS=0FFH
ORG OFFDCH
DSL START
DB O00H
VECT ENDS

380

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/
MB90F594A SERIAL WRITE CONNECTION

This chapter provides examples of F ?MC-16LX MB90F591/MB90F594A serial write
connection.

25.1 Basic Configuration of F2MC-16LX MB90F591/MB90F594A Serial Write
Connection

25.2 Example of Serial Write Connection (User Power Supply Used)
25.3 Example of Serial Write Connection (Power Supplied from the Writer)

25.4 Example of Minimum Connection to the Flash Microcomputer Programmer
(User Power Supply Used)

25.5 Example of Minimum Connection to the Flash Microcomputer Programmer
(Power Supplied from the Writer)

381

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/MB90F594A SERIAL WRITE CONNECTION

25.1 Basic Configuration of F °MC-16LX MB90F591/MB90F594A
Serial Write Connection

The MB90F591/MB90F594A supports flash ROM serial onboard writing (Fujitsu
standard). This section describes the specifications.

m Basic Configuration of F °MC-16LX MB90F591/MB90F594A Serial Write Connection

The AF200 flash microcomputer programmer from Yokogawa Digital Computer Ltd. is used for
Fujitsu standard serial onboard writing.

Host interface cable (AZ201) Generak-purpose

/ common cable (AZ210)
AF200 flash /
N microcomputer CLK synchronous serial | MB9OF594A
» programmer |« ¥ user system
+
memory card
\Z _/

I
Stand-alone operation enabled

Note:

Ask the company representative from Yokogawa Digital Computer Ltd. for details about the
functions and operations of the AF200 flash microcomputer programmer, general-purpose
common cable for connection (AZ210), and connectors.

Table 25.1-1 Pins Used for Fujitsu Standard Serial Onboard Writing

Pin Function Additional information

MD2, MD1 Mode pins Controls write mode from the flash microcomputer

MDO programmer.

X0, X1 Oscillation pins In write mode, the CPU internal operation clock signal is
one multiple of the PLL clock signal frequency. Therefore,
because the oscillation clock frequency becomes the
internal operation clock signal, the resonator used for serial
rewriting is 1 MHz to 16 MHz.

P00, PO1 Write program activation pins -

RSTX Reset pin -

SIN3 Serial data input pin

SOT3 Serial data output pin Serial input-output is used.

SCK3 Serial clock signal input pin

382

25.1 Basic Configuration of F2MC-16LX MB90F591/MB90F594A Serial Write Connection

Table 25.1-1 Pins Used for Fujitsu Standard Serial Onboard Writing (Continued)

Pin Function Additional information

C C pin This external capacitor pin is used to stabilize the power
supply. Connect a ceramic capacitor of approximately
0.1pF to the outside.

VCC Supply voltage pin If the write voltage (5 VX10%) is supplied from the user
system, the flash microcomputer programmer need not be
connected. Connect so that the power supply of the user
side is not short-circuited.

VSS GND pin Common to the ground of the flash microcomputer
programmer.

HSTX Hardware standby pin Input high level during serial write mode.

Even if the P00, SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit
shown in the figure below is required. The /TICS signal of the flash microcomputer programmer
can be used to disconnect the user circuit during serial writing.

Sections 25.2 to 25.5 present examples the following four types of serial write connection. See
each Section as required.

e Serial write connection (user power supply used)

« Serial write connection (power supplied from the writer)

¢ Minimum connection to the flash microcomputer programmer (user power supply used)

¢ Minimum connection to the flash microcomputer programmer (power supplied from the

writer)

AF200
write control pin MBO0F594A /
MB90F591
10K Q write control pin

AF200 /TICS pin

User

Table 25.1-2 AF200 Flash Microcomputer Programmer System Configuration
(Manufactured by Yokogawa Digital Computer Ltd.)

Model Function
AF200/ACP Flash microcomputer programmer and 100 V power adapter
AF200/AC2P Flash microcomputer programmer and power adapter complying with

overseas specifications

AZ201 PC/AT RS232C cable
AZ210 Standard target probe (a) length: 1 m
FFO01 Fujitsu F2MC-16LX flash microcomputer control module

383

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/MB90F594A SERIAL WRITE CONNECTION

Table 25.1-2 AF200 Flash Microcomputer Programmer System Configuration
(Manufactured by Yokogawa Digital Computer Ltd.) (Continued)

Model Function
FF001/P2 2MB PC Card (Option)
FF001/P4 4MB PC Card (Option)

Inquiries: Yokogawa Digital Computer Ltd., Sales Department of Machinery Business Center
Telephone number: 042-333-6224

384

25.2 Example of Serial Write Connection (User Power Supply Used)

25.2 Example of Serial Write Connection (User Power Supply

Used)

Figure 25.2-1 is an example of a serial write connection for internal vector modes
(single-chip mode and internal ROM external bus mode) when the user power supply is

used.

The mode pins MD2, MD1, and MDO are set to 011.

m Example of Serial Write Connection (User Power Supply Used)

Figure 25.2-1 Example of Serial Write Connection for MB90F591/MB90F594A Internal Vector Modes
(User Power Supply Used)

User system
AF200 2oSloY3
flash microcomputer Connector MBOOF594A /
programmer DX10-28S or DX20-28S MBO0F591
TAUX3 (19) MD2
10K Q/% 10KQ
t MD1
% 10KQ
TMODE (12) ¢ MDO
- X0
[1MHz to 16MH
o x
77 1%
TAUX @3 > P00
ITICS (10)
User
10KQ
vsen —i HSTX
%1 0KQ
/ITRES (5) Ag RSTX
‘é % 0K
User P01
~——— C
0.TuF
TTXD g;g Z SIN3
TRXD
SOT3
6
TCK (6) SCK3
TVcc 2) Vce
Userlpower
7,8,
GND (14,15 SupPY Vss
21,22
1,28)
Pin 14 Pin 1
Pins 3, 4, 9, 11, 16, 17, 18, 20, DX10-28S
24, 25, and 26 are open. DX20-28S
DX10-28S: Right-angle type Pin 28 Pin 15

DX20-28S: Straight type

Connector (Hirose Electronics Ltd.)
pin arrangement

e Even if the SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit

385

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/MB90F594A SERIAL WRITE CONNECTION

shown in the figure below is required in the same way that it is for PO0. The /TICS signal of
the flash microcomputer programmer can be used to disconnect the user circuit during serial
writing.

» Connect the AF200 while the user power is off.

AF200
write control pin MB90F594A /
MB90F591
10K Q write control pin

AF200 /TICS pin

User

386

25.3 Example of Serial Write Connection (Power Supplied from the Writer)

25.3 Example of Serial Write Connection (Power Supplied from

the Writer)

Figure 25.3-1 is an example of a serial write connection for internal vector modes
(single-chip mode and internal ROM external bus mode) when power is supplied from

the writer.

The mode pins MD2, MD1, and MDO are set to 011.

m Example of Serial Write Connection (Power Supplied from the Writer)

Figure 25.3-1 Example of Serial Write Connection for MB90F591/MB90F594A Internal Vector Modes

(Power Supplied from the Writer)

AF200 User system
flash microcomputer Connector MB90F594A /
programmer DX10-28S or DX20-28S MB90F591
TAUX3 (19) MD2
%1 KO 10K Q
t MD1
%WKQ
TMODE (12) MDO
- X0
[1MHz to 16MH
40— x1
TAUX (23) s [>— P00
10K Q=
ITICS (10)
User |
10KQ
= >i HSTX
10KQ
/ITRES 5) RSTX
% 9
User PO1
1 C
/9; 0.1uF
TTXD (13) SIN3
TRXD 27)
TCK 6) SOT3
TVee) SCK3
Vee 3)
TVPP1 (16) Vce
* Userlpower
7,8,
GND Sits| ey Vss
21,22
1,28)
Pin 14 Pin 1
Pins 4,9, 11, 17, 18, 20, DX10-28S
24, 25, and 26 are open. DX20-28S
DX10-28S: Right-angle type }
DX20-28S: Straight type Pin 28 Pin 15

Connector (Hirose Electronics Ltd.)
pin arrangement

¢ Even if the SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit

387

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/MB90F594A SERIAL WRITE CONNECTION

shown in the figure below is required in the same way that it is for PO0. The /TICS signal of
the flash microcomputer programmer can be used to disconnect the user circuit during serial
writing.

» Connect the AF200 while the user power is off.

* When the write power is supplied from the AF200, be careful not to short-circuit the user
power supply.

AF200
write control pin MB90F594A /
MB90F591
10K Q write control pin

AF200 /TICS pin

User

388

25.4 Example of Minimum Connection to the Flash Microcomputer Programmer (User Power Supply

25.4 Example of Minimum Connection to the Flash
Microcomputer Programmer (User Power Supply Used)

Figure 25.4-1 is an example of the minimum connection to the flash microcomputer
programmer when the user power supply is used.

m Example of Minimum Connection to the Flash Microcomputer Programmer (User Power Supply Used)

For a flash memory write, the MD2, MD1, MDO, and P00 pins and flash microcomputer
programmer need not be connected if the pins are set as described below.

Figure 25.4-1 Example of Minimum Connection to the Flash Microcomputer Programmer (User Power

Supply Used)

DX10-28S: Right-angle type
DX20-28S: Straight type

AF200 . User system
flash microcomputer MB90F594A
programmer 1 for serial rewrite %10K Q _ MB90F591
MD2
1 for serial rewrite %10}(9 /%WKQ
I MD1
/%10KQ %10KQ
t MDO
0 for serial rewrite % 10K Q
- X0
C_] 1MHz to 16MHz
l o X1
/77 177
10K @ POO
0 for serial rewrite ;f 10K {2
User circuit PO1
1 for serial rewrite %
User
%1OKQ circuit HSTX
Connector I — C
DX10-28S or p - 0.1TuF
DX20-28S
— 210k
/ITRES (5 RSTX
TTXD (13) SIN3
TRXD (27) SOT3
TCK (6) SCK3
2
TVce 2 Ve
O u [
14,15 ser power supply
GND 2122 Vss
1,28)
Pin 14 Pin 1
) DX10-28S
Pins 3, 4, 9, 10, 11, 12, 16, 17, 18, 19,
20, 23, 24, 25, and 26 are open. DX20-28S
Pin 28 Pin 15

Connector (Hirose Electronics Ltd.)

pin arrangement

e Even if the SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit
shown in the figure below is required. The
programmer can be used to disconnect the user circuit during serial writing.

ITICS signal of the flash microcomputer

389

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/MB90F594A SERIAL WRITE CONNECTION

* Connect the AF200 while the user power is off.

AF200
write control pin MB90F594A /
MB90F591
10K Q write control pin

AF200 /TICS pin

User

390

25.5 Example of Minimum Connection to the Flash Microcomputer Programmer (Power Supplied from the

25.5 Example of Minimum Connection to the Flash

Microcomputer Programmer (Power Supplied from the

Writer)

Figure 25.5-1 is an example of the minimum connection to the flash microcomputer

programmer when power is supplied from the writer.

m Example of Minimum Connection to the Flash Microcomputer Programmer (Power Supplied from the

Writer)

For a flash memory write, the MD2, MD1, MDO, and P00 pins and flash microcomputer

programmer need not be connected if the pins are set as described below.

Figure 25.5-1 Example of Minimum Connection to the Flash Microcomputer Programmer (Power

AF200

Supplied from the Writer)

User system

flash microcomputer MB90F594A/
programmer 1 for serial rewrite §10KQ MB90F591
MD2
1 for serial rewrite §1 0KQ /%1 0KQ
Jko— MD1
31 0KQ %1 0K Q@
t MDO
0 for serial rewrite %mKQ
X0
L 1MHz to 16MHz
= e]
777 77
10KQ POO
0 for serial rewrite)f 10K §2
User circuit PO1
1 for serial rewrite ﬂ(
User
%10K Q circuit HSTX
Connector T C
DX10-28S or 75 0.14F
DX20265 2 10kQ
ITRES % RSTX
TTXD @7) SIN3
TRXD © SOT3
TeK o SCK3
16
TVce o %F Vee
(7.8,
GND 14,1 Vss
21,22,
1.28)]
. Pin 14 Pin 1
Pins 4, 9, 10, 11, 12, 17, 18, 19, DX10-28S
20, 23, 24, 25, and 26 are open. DX20-28S
DX10-28S: Right-angle type ;
DX20-28S: Straight type Pin 28 Pin 15

Connector (Hirose Electronics Ltd.)
pin arrangement

Even if the SIN3, SOT3, and SCK3 pins are used for the user system, the control circuit

391

CHAPTER 25 EXAMPLES OF F2MC-16LX MB90F591/MB90F594A SERIAL WRITE CONNECTION

shown in the figure below is required. The /TICS signal of the flash microcomputer
programmer can be used to disconnect the user circuit during serial writing.

» Connect the AF200 while the user power is off.

* When the write power is supplied from the AF200, be careful not to short-circuit the user
power supply.

AF200
write control pin MB90F594A /
MB90F591
10K Q write control pin

AF200 /TICS pin

User

392

APPENDIX

The appendixes provide 1/0O maps, instructions, and other information.

A 1/0 Maps

B Instructions

C Timing Diagram in Flash Memory Mode
D List of MB90590 Interrupt Vectors

393

APPENDIX A 1/0 Maps

APPENDIX A 1/O Maps

Table A-1 lists addresses to be assigned to the registers in the peripheral blocks.

m 1/O Maps

Table A-1 1/0 Map

Address Register Ab_tt)ifr\]/ia Access Peripheral Initial value
00 4 Port 0 data register PDRO R/W Port 0 XXXXXXXX
01 4 Port 1 data register PDR1 R/W Port 1 XXXXXXXX
02 4 Port 2 data register PDR2 R/W Port 2 XXXXXXXX
03 4 Port 3 data register PDR3 R/W Port 3 XXXXXXXX
04 Port 4 data register PDR4 R/W Port 4 XXXXXXXX
054 Port 5 data register PDR5 R/W Port 5 XXXXXXXX
06 Port 6 data register PDR6 R/W Port 6 XXXXXXXX
07 4 Port 7 data register PDRY7 R/W Port 7 ---XXXXX
08 {4 Port 8 data register PDRS8 R/W Port 8 XXXXXXXX
09 4 Port 9 data register PDR9 R/W Port 9 XXXXXXXX

0A to OFy Use prohibited
10 4 Port O direction register DDRO R/W Port 0 00000000
11 Port 1 direction register DDR1 R/W Port 1 00000000
12 4 Port 2 direction register DDR2 R/W Port 2 00000000
13 4 Port 3 direction register DDR3 R/W Port 3 00000000
14 Port 4 direction register DDR4 R/W Port 4 00000000
154 Port 5 direction register DDR5 R/W Port 5 00000000
16 1 Port 6 direction register DDR6 R/W Port 6 00000000
17 4 Port 7 direction register DDR7 R/W Port 7 00000000
18 1 Port 8 direction register DDR8 R/W Port 8 00000000
19 4 Port 9 direction register DDR9 R/W Port 9 --000000
1A 4 Use prohibited
1By Analog input enable ADER R/W Port 6, A/D 11111111

1Cto 1F 4 Use prohibited

394

Table A-1 1/0O Map (Continued)

APPENDIX A 1/O Maps

Address Register Ab_tt)iroer:na Access Peripheral Initial value
20 4 Serial mode control 0 umMCo R/W 00000100
21 y Status 0 USRO R/W 00010000

UARTO
22 4 Input/output data O LLJJ (lé)DRRO(/) R/W XXXXXXXX
23 4 Rate/data 0 URDO R/W 0000000X
24 4 Serial mode control 1 UMC1 R/W 00000100
254 Status 1 USR1 R/W 00010000
UART1
26 4 Input/output data 1 Llflcl):)DRR:’Li R/W XXXXXXXX
27 y Rate/data 1 URD1 R/W 0000000X
28 Serial mode control 2 UMC2 R/W 00000100
29 {4 Status 2 USR2 R/W 00010000
UART2
2A Input/output data 2 LLJJ (I;DDRRZé R/W XXXXXXXX
2By Rate/data 2 URD2 R/W 0000000X
2C Serial mode control SMCS R/W ----0000
2D Serial mode control SMCS R/W 00000010
Serial /0
2E {4 Serial data SDR R/W XXXXXXXX
2F 4 Edge selector SES RW | | e 0
30 {4 External interrupt enable ENIR R/W 00000000
31y External interrupt request EIRR R/W External XXXXXXXX
32 4 External interrupt level ELVR R/W interrupt 00000000
334 External interrupt level ELVR R/W 00000000
34 4 A/D control status 0 ADCSO0 R/W 00000000
354 A/D control status 1 ADCS1 R/W 00000000
A/D converter
36 4 A/D data 0 ADCRO R XXXXXXXX
37 4 A/D data 1 ADCR1 R/W 000010XX
38 PPQO operation mode control PPGCO RIW _ 0-000--1
register 16-bit
. programmable
39, | bPO! operation mode control PPGC1 | RW pulse 0-000001
9 generator 0/1
3A 4 PPGO/PPG1 clock select register PPCO1 R/W 00000000
3B 4 Use prohibited

395

APPENDIX A 1/0 Maps

Table A-1 1/O Map (Continued)

Address Register Ab_tt)ifr\]”a Access Peripheral Initial value
3C PP(;Z operation mode control PPGC2 RIW _ 0-000--1
register 16-bit
. programmable
3Dy, | FroS operation mode control PPGC3 | RMW pulse 0-000001
9 generator 2/3
3E PPG2/PPG3 clock select register PPG23 R/W 00000000
3F 4 Use prohibited
40 PPQ4 operation mode control PPGC4 RIW _ 0-000--1
register 16-bit
. programmable
41 rpepife‘r’pera“o” mode control PPGC5 | R/W pulse 0-000001
9 generator 4/5
42 4 PPG4/PPG5 clock select register PPG45 R/W 00000000
43 4 Use prohibited
a4, PPQG operation mode control PPGC6 RIW . 0-000--1
register 16-bit
. programmable
45 fepge‘r’pera“on mode control PPGC7 | RW pulse 0-000001
9 generator 6/7
46 PPG6/PPGY7 clock select register PPG67 R/W 00000000
47 4 Use prohibited
48 ,, PPGS operation mode control PPGCS RIW _ 0-000--1
register 16-bit
. programmable
49 , rpepife‘r’pera“o” mode control PPGCO | R/W pulse 0-000001
9 generator 8/9
4A PPGB8/PPGS9 clock select register PPG89 R/W 00000000
4B Use prohibited
ac PPGA operation mode control PPGCA RIW _ 0-000--1
register 16-bit
. programmable
4p,, | PGB operation mode control PPGCB | RMW pulse 0-000001
9 generator A/B
4E PPGA/PPGB clock select register PPGAB R/W 00000000
4F Use prohibited
50 4 Timer control status 0 TMCSRO R/W 16-bit reload 00000000
51 Timer control status 0 TMCSRO R/W timer 0 ----0000
52 4 Timer control status 1 TMCSRL | R/MW 16;:’;:(;‘:'1’” 00000000
53 4 Timer control status 1 TMCSR1 R/W ----0000

396

Table A-1 1/0O Map (Continued)

APPENDIX A 1/O Maps

Address Register Ab_tt)iroer:na Access Peripheral Initial value
54 Input capture control status 0/1 ICS01 R/W Inputoclipture 00000000
55 |, Input capture control status 2/3 ICS23 RIW '”p”tzclgpt”re 00000000
56 |, Input capture control status 4/5 ICS45 rRw | MPUt Lflgpt”re 00000000
57 1 Use prohibited
58 Output compare control status 0 OCSO0 R/W Output 0000--00
59 Output compare control status 1 0ocs1 R/W compare 0/1 ---00000
5A | Output compare control status 2 0OCSs2 R/W Output 0000--00
5B Output compare control status 3 0CS3 R/W compare 2/3 ---00000
5C Output compare control status 4 OCs4 R/W Output 0000--00
5D Output compare control status 5 0CS5 R/W compare 4/5 ---00000
5E {4 Sound control SGCR R/W Sound 00000000
5F Sound control SGCR RIW generator 0------0
60 H Watch-dog timer control WTCR R/W Watch-dog 000--000
61 y Watch-dog timer control WTCR R/W timer 00000000

Stepping
62 PWM control O PWCO R/W motor 00000--0
controller 0
63 H Use prohibited
Stepping
64 4 PWM control 1 PWC1 R/W motor 00000--0
controller 1
65 4 Use prohibited
Stepping
66 4 PWM control 2 PwWC2 R/W motor 00000--0
controller 2
67 H Use prohibited
Stepping
68 H PWM control 3 PWC3 R/W motor 00000--0
controller 3
69 H Use prohibited
6Ato 6C Use prohibited
: Prescaler
6D 4 Serial I/O prescaler CDCR R/W (Serial 1/0) 0XXX1111

397

APPENDIX A 1/0 Maps

Table A-1 1/O Map (Continued)

Address Register Ab_tt)ifr\]”a Access Peripheral Initial value
6E Timer control TCCS R/W I/0 timer 00000000
6F 4 ROM mirror ROMM w ROM mirror XXXXXXX1

70to 8F ; | Reserved for CAN interface 0/1. See the "CAN Controller Hardware Manual."

90to 9D Use prohibited
: ROM

9E { ROM correction control status PACSR R/W . 00000000
correction

9F 4 Delayed interrupt/release DIRR R/W D elayed | 0
interrupt

A0 Low-power mode LPMCR R/W Low-power 00011000

Al | Clock selection CKSCR Riw | control circuit 11111100

A2 1o A7h Use prohibited
A8 Watch-dog control WDTC | RMW Watti‘r’:e'?og XXXXX111
A9 Time base timer control register TBTC R/W Tm:iiql;?se 1--00100

AAto AD 4 Use prohibited
Flash control status (only for
AE MB90F594. Use prohibited for FMCS R/W Flash memory 000X0--0
other controllers.)
AF 4 Use prohibited

398

APPENDIX A 1/O Maps

Table A-1 1/0O Map (Continued)

Address Register Ab_tt)iroer:/ia Access Peripheral Initial value
BO . Interrupt control register 00 ICROO R/W 00000111
Bl Interrupt control register 01 ICRO1 R/W 00000111
B2 4 Interrupt control register 02 ICR0O2 R/W 00000111
B3 4 Interrupt control register 03 ICRO3 R/W 00000111
B4 Interrupt control register 04 ICRO4 R/W 00000111
B5 4 Interrupt control register 05 ICRO5 R/W 00000111
B6 Interrupt control register 06 ICRO6 R/W 00000111
B7 1 Interrupt control register 07 ICRO7 R/W Interrupt 00000111
B8 |, Interrupt control register 08 ICRO8 RIW controller 00000111
B9 Interrupt control register 09 ICR0O9 R/W 00000111
BA 1 Interrupt control register 10 ICR10 R/W 00000111
BB 4 Interrupt control register 11 ICR11 R/W 00000111
BC 4 Interrupt control register 12 ICR12 R/W 00000111
BD { Interrupt control register 13 ICR13 R/W 00000111
BE 4 Interrupt control register 14 ICR14 R/W 00000111
BF { Interrupt control register 15 ICR15 R/W 00000111

COto FF Use prohibited
Table A-2 1/0 Map (19XX Address)

Address Register Abl?iroer:/ia- Access Peripheral Initial value
1900 4 Reload L PRLLO R/W XXXXXXXX
1901 Reload H PRLHO R/W 16-bit XXXXXXXX

programmable
1902 Reload L PRLL1 R/W pulse generator 0/1 | XXXXXXXX
1903 1 Reload H PRLH1 R/W XXXXXXXX
1904 4 Reload L PRLL2 R/W XXXXXXXX
1905 4 Reload H PRLH2 R/W 16-bit XXXXXXXX
programmable
1906 Reload L PRLL3 RIW pulse generator 2/3 | XXXXXXXX
1907 1 Reload H PRLH3 R/W XXXXXXXX

399

APPENDIX A 1/0 Maps

Table A-2 1/0O Map (19XX Address) (Continued)

Address Register Abtt)iroer:na— Access Peripheral Initial value
1908 Reload L PRLL4 R/W XXX XXXXX
1909 Reload H PRLH4 RIW 16-bit XXXXXXXX

programmable
190A H Reload L PRLL5 R/W pu|se generator 4/5 XXXXXXXX
190B 4 Reload H PRLH5 R/W XXX XXXXX
190C 4 Reload L PRLL6 R/W XXXXXXXX
190D Reload H PRLH6 RIW 16-bit XXXXXXXX
programmable
190E H Reload L PRLL7 R/W pu|se generator 6/7 XXXXXXXX
190F 4 Reload H PRLH7 R/W XXXXXXXX
1910 Reload L PRLLS R/W XXXXXXXX
1911 Reload H PRLHS8 RIW 16-hit XXXXXXXX
programmable
1912 H Reload L PRLLY R/W pulse generator 8/9 XXXXXXXX
1913 Reload H PRLH9 R/W XXXXXXXX
1914 Reload L PRLLA R/W XXXXXXXX
16-bit
1915, | Reload H PRLHA RIW programmable | XXXXXXXX
1916, | Reload L PRLLB RIW pulse gegerator Al XXX
1917 Reload H PRLHB R/W XXXXXXXX
1918 to -
191F |, Use prohibited
1920 Input capture O IPCPO R XXXXXXXX
1921 Input capture 0 IPCPO R XXXXXXXX
Input capture 0/1
1922 Input capture 1 IPCP1 R XXXXXXXX
1923 | Input capture 1 IPCP1 R XXXXXXXX
1924 Input capture 2 IPCP2 R XXXXXXXX
1925 Input capture 2 IPCP2 R XXXXXXXX
Input capture 2/3
1926 { Input capture 3 IPCP3 R XXXXXXXX
1927 Input capture 3 IPCP3 R XXXXXXXX
1928 | Input capture 4 IPCP4 R XXXXXXXX
1929 Input capture 4 IPCP4 R Input capture 4/5 XXXXXXXX
192A Input capture 5 IPCP5 R XXXXXXXX
192B | Input capture 5 IPCP5 R XXXXXXXX
192D to -
102F |, Use prohibited

400

Table A-2 1/0O Map (19XX Address) (Continued)

APPENDIX A 1/O Maps

Address Register Abtiiroer\]na- Access Peripheral Initial value
1930 Output compare 0 OCCPO R/W XXXXXXXX
1931 4 Output compare 0 OCCPO R/W Output compare 0/ XXXXXXXX
1932 4 Output compare 1 OCCP1 R/W 1 XXXXXXXX
1933 {4 Output compare 1 OCCP1 R/W XXXXXXXX
1934 Output compare 2 OCCP2 R/W XXXXXXXX
1935 4 Output compare 2 OCCP2 R/W Output compare 2/ XXXXXXXX
1936 | Output compare 3 occP3 RIW 3 XXXXXXXX
1937 Output compare 3 OCCP3 R/W XXXXXXXX
1938 4 Output compare 4 OCCP4 R/W XXXXXXXX
1939 Output compare 4 OCCP4 R/W Output compare 4/ XXXXXXXX
193A Output compare 5 OCCP5 R/W 5 XXXXXXXX
193B 4 Output compare 5 OCCP5 R/W XXXXXXXX
193D to -
103F |, Use prohibited
1940 Timer O/reload 0 T-I(/IMRIE(F)Z/O R/W XXXXXXXX

16-bit reload timer
. TMRO/ 0
1941 Timer O/reload 0 TMRLRO R/W XXXXXXXX
1942 Timer 1/reload 1 T-II_/Ilvll?T_lR/l R/IW XXXXXXXX
16-bit reload timer
1
. TMR1/
1943 Timer 1/reload 1 TMRLR1 R/W XXXXXXXX
1944 Timer data TCDT R/W 00000000
I/O timer
1945 Timer data TCDT R/W 00000000
1946 Frequency data SGFR R/W XXXXXXXX
1947 Amplitude data SGAR R/W XXXXXXXX
Sound generator
1948 Decrement grade SGDR R/W XXXXXXXX
1949 4 Tone count SGTR R/W XXXXXXXX

401

APPENDIX A 1/0 Maps

Table A-2 1/0O Map (19XX Address) (Continued)

Address Register Abtt)iroer:/ia— Access Peripheral Initial value
194A Subsecond data WTBR R/W XXXXXXXX
194B 4 Subsecond data WTBR R/W XXXXXXXX
194C 4 Subsecond data WTBR R/W - XXXXX

Watchdog timer
194D 4 Second data WTSR R/W --000000
194E Minute data WTMR R/W --000000
194F Hour data WTHR R/W ---00000
1950 PWM1 compare O PWC10 R/W XXXXXXXX
1951y | PWM2 compare 0 PWC20 RIW Stepping motor | XXXXXXXX
1952, | PWML1 select 0 PWS10 RIW controller 0 --000000
1953 PWM2 select O PWS20 R/W -0000000
1954 PWM1 compare 1 PWC11 R/IW XXXXXXXX
1955 | PWM2 compare 1 PWC21 RIW Stepping motor | XXXXXXXX
1956, | PWM1 select 1 PWS11 RIW controller 1 --000000
1957 | PWM2 select 1 PWS21 R/IW -0000000
1958 PWM1 compare 2 PWC12 R/IW XXXXXXXX
1959 PWM2 compare 2 PWC22 R/W Stepping motor XXXXXXXX
195A,, | PWM1 select 2 PWS12 RIW controller 2 --000000
195B PWM2 select 2 PWS22 R/IW -0000000
195C 4 PWM1 compare 3 PWC13 R/W XXXXXXXX
195D | PWM2 compare 3 PWC23 RIW Stepping motor | XXXXXXXX
195E,, | PWM1 select 3 PWS13 RIW controller 3 --000000
195F 4 PWM2 select 3 PWS23 R/W -0000000
igi?:t: Used prohibited
iﬁg?:t: Reserved for CAN interface 0. See the "CAN Controller Hardware Manual."
12?:?: Reserved for CAN interface 1. See the "CAN Controller Hardware Manual.”

iglg?:t: Reserved for CAN interface 0. See the "CAN Controller Hardware Manual."
igﬂ%t: Reserved for CAN interface 1. See the "CAN Controller Hardware Manual."
1;2?: Use prohibited

402

Table A-2 1/0O Map (19XX Address) (Continued)

APPENDIX A 1/O Maps

Address Register Abtiiroer\]na- Access Peripheral Initial value
1EFO ROM correction address 0 PADRO R/W XXXXXXXX
1EF1 4 ROM correction address 1 PADRO R/W XXXXXXXX
1EF2 ROM correction address 2 PADRO R/W XXXXXXXX

ROM correction
1EF3 ROM correction address 3 PADR1 R/W XXXXXXXX
1EF4 ROM correction address 4 PADR1 R/W XXXXXXXX
1EF5 ROM correction address 5 PADR1 R/W XXXXXXXX
1EF6 to -
1FFF |, Use prohibited

« [nitial value "?" indicates an unused bit, and "X" indicates an undefined value.

* The addresses between 00004 and O0FFy, which are not listed, have been reserved for the

main functions of the MCU. The result of read access to these reserved addresses is "X."
Write access to these addresses is not allowed.

O Explanation of write and read

R/W: Both read and write enabled

R: Only read enabled
W: Only write enabled

O Explanation of initial values

0: The initial value of this bit is "0".

1: The initial value of this bit is "1".

X: The initial value of this bit is undefined.

-1 This bit is not used, and the initial value is undefined.

403

APPENDIX B INSTRUCTIONS

APPENDIX B

INSTRUCTIONS

Appendix B describes the instructions used by the F

2MC-16LX.

404

B.1
B.2
B.3
B.4
B.5
B.6
B.7

B.8
B.9

Instruction Types
Addressing

Direct Addressing

Indirect Addressing

Number of Execution Cycles
Effective Address Field

How to Read the Instruction List

FZMC-16LX Instruction List

Instruction Map

APPENDIX B INSTRUCTIONS

B.1 Instruction Types

The F2MC-16LX supports 351 types of instructions. Addressing is enabled by using an
effective address field of each instruction or using the instruction code itself.

m Instruction Types

The F2MC-16LX supports the following 351 types of instructions:

L]

L]

L]

41 transfer instructions (byte)

38 transfer instructions (word or long word)

42 addition/subtraction instructions (byte, word, or long word)
12 increment/decrement instructions (byte, word, or long word)
11 comparison instructions (byte, word, or long word)

11 unsigned multiplication/division instructions (word or long word)
11 signed multiplication/division instructions (word or long word)
39 logic instructions (byte or word)

6 logic instructions (long word)

6 sign inversion instructions (byte or word)

1 normalization instruction (long word)

18 shift instructions (byte, word, or long word)

50 branch instructions

6 accumulator operation instructions (byte or word)

28 other control instructions (byte, word, or long word)

21 bit operation instructions

10 string instructions

405

APPENDIX B INSTRUCTIONS

B.2 Addressing

With the F °MC-16LX, the address format is determined by the instruction effective
address field or the instruction code itself (implied). When the address format is

determined by the instruction code itself, specify an address in accordance with the
instruction code used. Some instructions permit the user to select several types of

addressing.

m Addressing

406

The F2MC-16LX supports the following 23 types of addressing:

Immediate (#imm)

Register direct

Direct branch address (addr16)

Physical direct branch address (addr24)

I/0O direct (io)

Abbreviated direct address (dir)

Direct address (addr16)

I/0O direct bit address (io:bp)

Abbreviated direct bit address (dir:bp)

Direct bit address (addr16:bp)

Vector address (#vct)

Register indirect (@RWj j=0to 3)

Register indirect with post increment (@RWj+ j=0to 3)
Register indirect with displacement (@RWi + disp8 i=0to 7, @RWj+ displ6 j=0to 3)
Long register indirect with displacement (@RLi + disp8 i =0 to 3)
Program counter indirect with displacement (@PC + disp16)
Register indirect with base index (@RWO0 + RW7, @RW1 + RW7)
Program counter relative branch address (rel)

Register list (rlst)

Accumulator indirect (@A)

Accumulator indirect branch address (@A)

Indirectly-specified branch address (@ear)

Indirectly-specified branch address (@eam)

m Effective Address Field

Table B.1 lists the address formats specified by the effective address field.

Table B.2-1 Effective Address Field

APPENDIX B INSTRUCTIONS

Code Representation Address format Default
bank

00 RO RWO RLO
01 R1 RW1 (RLO)
02 R2 RW2 RL1 Register direct: Individual parts
03 R3 RW3 (RL1)

correspond to the byte, word, and None
04 R4 RW4 RL2 long word types in order from the left
05 |R5 RW5 | (RL2) 9 yp :
06 R6 RW6 RL3
07 R7 RW7 (RL3)
08 @RWO DTB
09 @RW1 . Lo DTB
0A @RW2 Register indirect ADB
0B | @RWS3 SPB
ocC @RWO+ DTB
0D @RW1+ . - . . DTB
OE @RW2+ Register indirect with post increment ADB
OF @RW3+ SPB
10 @RWO+disp8 DTB
11 @RW1+disp8 Register indirect with 8-bit DTB
12 @RW2+disp8 displacement ADB
13 @RW3+disp8 SPB
14 @RW4+disp8 DTB
15 @RWS5+disp8 Register indirect with 8-bit DTB
16 @RW6+disp8 displacement ADB
17 @RWT7+disp8 SPB
18 @RWO0+disp16 DTB
19 @RW1+disp16 Register indirect with 16-bit DTB
1A @RW2+disp16 displacement ADB
1B @RW3+disp16 SPB
1C @RWO+RW7 Register indirect with index DTB
1D @RW1+RW7 Register indirect with index DTB
1E @PC+displ6 PC indirect with 16-bit displacement PCB
1F addrl6 Direct address DTB

407

APPENDIX B INSTRUCTIONS

B.3 Direct Addressing

An operand value, register, or address is specified explicitly in direct addressing
mode.

m Direct Addressing

O Immediate addressing (#imm)

Specify an operand value explicitly (#imm4/ #imm8/ #imm16/ #imm32).

Figure B.3-1 Example of immediate addressing (#imm)

MOVW A, #01212H (This instruction stores the operand value in A.)

Before execution A |2233:4455]|

After execution A |[4455:1212]| (Some instructions transfer AL to AH.)

O Register direct addressing

Specify a register explicitly as an operand. Table B.3-1 lists the registers that can be specified.
Figure B.3-2 shows an example of register direct addressing.

Table B.3-1 Direct Addressing Registers

General-purpose Byte RO, R1, R2, R3, R4, R5, R6, R7
register

Word RWO, RW1, RW2, RW3, RW4, R5W,

RW6, RW7

Long word RLO, RL1, RL2, RL3
Special-purpose Accumulator A, AL
register .

Pointer SP*

Bank PCB, DTB, USB, SSB, ADB

Page DPR

Control PS, CCR, RP, ILM

*1 One of the user stack pointer (USP) and system stack pointer (SSP) is selected and used
depending on the value of the S flag bit in the condition code register (CCR). For branch
instructions, the program counter (PC) is not specified in an instruction operand but is specified

408

implicitly.

APPENDIX B INSTRUCTIONS

Figure B.3-2 Example of Register Direct Addressing

register RO.)

MOV RO, A (This instruction transfers the eight low-order bits of A to the general-purpose

Before execution

A [0716i2534]

Memory address space

After execution

A |0716:i2564|

R0| 27

Memory address space

R0| 34

0 Direct branch addressing (addr16)

Specify an offset explicitly for the branch destination address. The size of the offset is 16 bits,
which indicates the branch destination in the logical address space. Direct branch addressing is
used for an unconditional branch, subroutine call, or software interrupt instruction. Bits 23 to 16
of the address are specified by the program bank register (PCB).

Figure B.3-3 Example of Direct Branch Addressing (addr16)

in a bank.)
Before execution PC|3C20
After execution PC|3B20

JMP 3B20H (This instruction causes an unconditional branch by direct branch addressing

PCB m Memory address space

4F3C22H 3B

4F3C21H 20

4F3C20H 62 JMP 3B20H
PCB ' i

4F3B20H | Next instruction

O Physical direct branch addressing (addr24)

Specify an offset explicitly for the branch destination address. The size of the offset is 24 bits.
Physical direct branch addressing is used for unconditional branch, subroutine call, or software

interrupt instruction.

Figure B.3-4 Example of Direct Branch Addressing (addr24)

JMPP 333B20H (This instruction causes an unconditional branch by direct branch 24-bit
addressing.)
Before execution PC|(3C20] (4 F|
- PCB m Memory address space
4F3C23H 33
4F3C22H 3B
4F3C21H 20
4F3C20H 63 JMPP 333B20H
After execution PC[3B20] PCB
333B20H | Next instruction

409

APPENDIX B INSTRUCTIONS

O 1/O direct addressing (io)

Specify an 8-bit offset explicitly for the memory address in an operand. The I/O address space
in the physical address space from 000000H to O000FFH is accessed regardless of the data
bank register (DTB) and direct page register (DPR). A bank select prefix for bank addressing is

invalid if specified before an instruction using 1/O direct addressing.

Figure B.3-5 Example of I/O Direct Addressing (io)

Before execution A [0716:2534|

0000C1H

FF
0000COH EE

After execution A [2534 iFFEE]|

MOVW A, i:0COH (This instruction reads data by 1/O direct addressing and stores it in A.)

Memory address space

O Abbreviated direct addressing (dir)

Specify the eight low-order bits of a memory address explicitly in an operand. Address bits 8 to
15 are specified by the direct page register (DPR). Address bits 16 to 23 are specified by the

data bank register (DTB).

Figure B.3-6 Example of Abbreviated Direct Addressing (dir)

MOVW S;20H, A (This instruction writes the contents of the eight low-order bits of A in abbreviated
direct addressing mode.)

Before execution A 4455:1212 Memory address space
DTB 776620H | 22
After execution A 4455:1212 Memory address space

DTB E? 7 776620H | 12

0 Direct addressing (addr16)

Specify the 16 low-order bits of a memory address explicitly in an operand. Address bits 16 to
23 are specified by the data bank register (DTB). A prefix instruction for access space

addressing is invalid for this mode of addressing.

Figure B.3-7 Example of Direct Addressing (addrl16)

BRA 3B20H (This instruction causes an unconditional relative branch.)

Before execution PC [3C20] PcB Memory address space

4F3C22H| FF
4F3C21H| FE

After execution ~ PC PCB[4F]

AF3B20H |Nextinstruction

4F3C20H 60 BRA 3B20H

410

APPENDIX B INSTRUCTIONS

O I/O direct bit addressing (io:bp)

Specify bits in physical addresses 000000H to 0000FFH explicitly. Bit positions are indicated by
":bp", where the larger number indicates the most significant bit (MSB) and the lower number
indicates the least significant bit (LSB).

Figure B.3-8 Example of I/O Direct Bit Addressing (io:bp)

SETB 1:0C1H: (This instruction sets bits by I/O direct bit addressing.)
Memory address space

Before execution 0000C1H 00

After execution 0000C1H 01

O Abbreviated direct bit addressing (dir:bp)

Specify the eight low-order bits of a memory address explicitly in an operand. Address bits 8 to
15 are specified by the direct page register (DPR). Address bits 16 to 23 are specified by the
data bank register (DTB). Bit positions are indicated by ":bp", where the larger number
indicates the most significant bit (MSB) and the lower number indicates the least significant bit
(LSB).

Figure B.3-9 Example of Abbreviated Direct Bit Addressing (dir:bp)

SETB S:10H:0 (This instruction sets bits by abbreviated direct bit addressing.)

Memory address space

Before execution DTB DPR 556610H | 00
Memory address space

After execution ptg DPR 556610H 01

0 Direct bit addressing (addr16:bp)

Specify arbitrary bits in 64 kilobytes explicitly. Address bits 16 to 23 are specified by the data
bank register (DTB). Bit positions are indicated by ":bp", where the larger number indicates the
most significant bit (MSB) and the lower number indicates the least significant bit (LSB).

Figure B.3-10 Example of Direct Bit addressing (addr16:bp)

SETB 2222H:0 (This instruction sets bits by direct bit addressing.)

Memory address space

Before execution DTB 552222H | 00

Memory address space

After execution DTB 552222H | 01

O Vector Addressing (#vct)

Specify vector data in an operand to indicate the branch destination address. There are two

411

APPENDIX B INSTRUCTIONS

sizes for vector numbers: 4 bits and 8 bits. Vector addressing is used for a subroutine call or
software interrupt instruction.

Figure B.3-11 Example of Vector Addressing (#vct)

CALLV #15 (This instruction causes a branch to the address indicated by the interrupt vector
specified in an operand.)

Before execution PC | 0000 Memory address space

PCB FFFFEIH| DO

FFFFEOH| 00
After execution PC |D0OOO !

PCB FFCOOOH| EF |CALLV #15

Table B.3-2 CALLV Vector List

412

Instruction Vector address L Vector address H
CALLV #0 XFFFEH XXFFFFH
CALLV #1 XFFFCH XXFFFDH
CALLYV #2 XFFFAH XXFFFBH
CALLYV #3 XFFF8H XXFFFOH
CALLV #4 XFFF6H XXFFF7H
CALLYV #5 XFFF4H XXFFF5H
CALLYV #6 XFFF2H XXFFF3H
CALLYV #7 XFFFOH XXFFF1H
CALLYV #8 XFFEEH XXFFEFH
CALLV #9 XFFECH XXFFEDH
CALLV #10 XFFEAH XXFFEBH
CALLV #11 XFFE8H XXFFESH
CALLYV #12 XFFEGH XXFFE7H
CALLYV #13 XFFE4H XXFFES5H
CALLYV #14 XFFE2H XXFFE3H
CALLV #15 XFFEOH XXFFE1H

Note: A PCB register value is set in XX.

Note:

When the program bank register (PCB) is FF, the vector area overlaps the vector area of

INT #vct8 (#0 to #7). Use vector addressing carefully (see Table B.3).

APPENDIX B INSTRUCTIONS

B.4 Indirect Addressing

In indirect addressing mode, an address is specified indirectly by the address data of
an operand.

m Indirect Addressing

O Register indirect addressing (@RWj j=0to 3)

Memory is accessed using the contents of general-purpose register RWj as an address.
Address bits 16 to 23 are indicated by the data bank register (DTB) when RWO0 or RW1 is used,
system stack bank register (SSB) or user stack bank register (USB) when RW3 is used, or
additional data bank register (ADB) when RW?2 is used.

Figure B.4-1 Example of Register Indirect Addressing (@RW;j j =0 to 3)

MOVW A, @RW1 (This instruction reads data by register indirect addressing and stores it in A.)

Before execution A |0716:2534 Memory address space

RW1[D30F|DTB 78D310H | FF
78D30TFH EE

After execution A |2534 FFEE
RW1[D30F|DTB[78]

O Register indirect addressing with post increment (@RWj+ j=0to 3)

Memory is accessed using the contents of general-purpose register RWj as an address. After
operand operation, RWj is incremented by the operand size (1 for a byte, 2 for a word, or 4 for a
long word). Address bits 16 to 23 are indicated by the data bank register (DTB) when RWO or
RW1 is used, system stack bank register (SSB) or user stack bank register (USB) when RW3 is
used, or additional data bank register (ADB) when RW?2 is used.

If the post increment results in the address of the register that specifies the increment, the
incremented value is referenced after that. In this case, if the next instruction is a write
instruction, priority is given to writing by an instruction and, therefore, the register that would be
incremented becomes write data.

Figure B.4-2 Example of Register Indirect Addressing with Post Increment (@RWj + j=0

413

APPENDIX B INSTRUCTIONS

to 3)

MOVW A, @RW1+ (This instruction reads data by register indirect addressing with post
increment and stores it in A.)

Before execution A |0716:2534 Memory address space
RW1[D30F]|DTB 78D310H | FF

78D30TFH EE

After execution A
RW1 D78

O Register indirect addressing with offset (@RWi + disp8 i=0to 7, @RW] + disp16 j=0to
3)

Memory is accessed using the address obtained by adding an offset to the contents of general-
purpose register RWj. Two types of offset, byte and word offsets, are used. They are added as
signed numeric values. Address bits 16 to 23 are indicated by the data bank register (DTB)
when RWO0, RW1, RW4, or RWS5 is used, system stack bank register (SSB) or user stack bank
register (USB) when RW3 or RW7 is used, or additional data bank register (ADB) when RW2 or
RWE6 is used.

Figure B.4-3 Example of Register Indirect Addressing with Offset (@RWi + disp8 i =0 to
7, @RWj + displ6 j=0to 3)

MOVW A, @RW1+10H (This instruction reads data by register indirect addressing with an
offset and stores it in A.)

Before execution A 0716 :2534 Memory address space

RW1|D30F | DTB|78 78D320H FF
78D31FH EE

(+10H)
After execution A |[2534 FFEE
RW1[D30F] DTB

O Long register indirect addressing with offset (@RLi + disp8 i =0 to 3)

Memory is accessed using the address that is the 24 low-order bits obtained by adding an offset
to the contents of general-purpose register RLi. The offset is 8-bits long and is added as a
signed numeric value.

Figure B.4-4 Example of Long Register Indirect Addressing with Offset (@RLi + disp8 i =
0to 3)

MOVW A, @RL2+25H (This instruction reads data by long register indirect addressing with an
offset and stores it in A.)

Before execution A |0716 2534 Memory address space
RL2 |[F382:4B02 824B28H | FF
824B27H | EE
(+25H)

After execution A |2534:FFEE
RL2 |[F382:4B02

414

APPENDIX B INSTRUCTIONS

O Program counter indirect addressing with offset (@PC + disp16)

Memory is accessed using the address indicated by (instruction address + 4 + displ6). The
offset is one word long. Address bits 16 to 23 are specified by the program bank register (PCB).
Note that the operand address of each of the following instructions is not deemed to be (next
instruction address + disp16):

« DBNZ eam, rel DWBNZ eam, rel
¢ CBNE eam, #imm8, rel CWBNE eam, #imm16, rel
¢ MOV eam, #imm8 MOVW eam, #imm16

Figure B.4-5 Example of Program Counter Indirect Addressing with Offset (@PC +
disp16)

MOVW A, @PC+20H (This instruction reads data by program counter indirect addressing with a
offset and stores it in A.)

Before execution A |0716:2534 Memory address space
PCB PC[4556 C5457BH| FF

C5457TAH| EE

After execution A |2534:FFEE 20 C5455AH

*20H csa550H | 00
pce [C5|Pc[4a55A] *4 coasssH| 20 | |MOWW

A, @PC+20H
C54557H 9E
C54556H 73

O Register indirect addressing with base index (@RWO0 + RW7, @RW1 + RW7)

Memory is accessed using the address determined by adding RWO or RW1 to the contents of
general-purpose register RW7. Address bits 16 to 23 are indicated by the data bank register
(DTB).

Figure B.4-6 Example of Register Indirect Addressing with Base Index (@RWO0 + RW?7,
@RW1 + RW7)

MOVW A, @RW1+RW?7 (This instruction reads data by register indirect addressing with a
base index and stores it in A.)

Before execution A |0716:2534 Memory address space

RW1|D30FRHDTB|78 78D411H FF
+ 78D410H EE
RW7|0101 f‘

After execution A |2534FFEE
RW1[D30F]| DTB[78]
RW7 (0101

O Program counter relative branch addressing (rel)

The address of the branch destination is a value determined by adding an 8-bit offset to the
program counter (PC) value. If the result of addition exceeds 16 bits, bank register
incrementing or decrementing is not performed and the excess part is ignored, and therefore the
address is contained within a 64-kilobyte bank. This addressing is used for both conditional and
unconditional branch instructions. Address bits 16 to 23 are indicated by the program bank

415

APPENDIX B INSTRUCTIONS

416

register (PCB).

Figure B.4-7 Example of Program Counter Relative Branch Addressing (rel)

After execution

PC pce 4]

BRA 3B20H (This instruction causes an unconditional relative branch.)

Before execution PC PCB[4F]

Memory address space

4F3C22H| FF
4F3C21H| FE
4F3C20H| 60

4F3B20H

BRA 3B20H

O Register list (rlst)

Specify a register to be pushed onto or popped from a stack.

Figure B.4-8 Configuration of the Register List

MSB

LSB

|RW7 ‘RWG ‘RWS ‘ RW4‘RW3 ‘RWZ ‘RWl ‘RWO |

A register is selected when the corresponding bit is 1 and deselected when the bit is 0.

Figure B.4-9 Example of Register List (rlist)

RWO
RW1
RW2
RW3
RW4
RW5
RW6
RW7

SP—

SP [34FA

XX;XX

X X X X

X X 1X X

X XX X

X XX X

X XX X

X Xix x

XX;XX

04

03

02

01

Memory address space

34FEH
34FDH
34FCH
34FBH
34FAH

Before execution

SP [34FE]

RWO
RW1
RW2
RW3
RwW4
RW5
RW6
RW7

02!

01

X X!

X X

X X

X X

X X!

X X

04:

03

X X!

X X

X X!

X X

X X!

X X

Memory address space

sP—

04

03

02

01

34FEH
34FDH
34FCH
34FBH
34FAH

After execution

POPW RWO0, RW4 (This instruction transfers memory data indicated by the SP to multiple
word registers indicated by the register list.)

APPENDIX B INSTRUCTIONS

O Accumulator indirect addressing (@A)

Memory is accessed using the address indicated by the contents of the low-order bytes (16 bits)

of the accumulator (AL). Address bits 16 to 23 are specified by a mnemonic in the data bank
register (DTB).

Figure B.4-10 Example of Accumulator Indirect Addressing (@A)

MOVW A, @A (This instruction reads data by accumulator indirect addressing and stores it in A.)

Before execution A [0716:2534 Memory address space

DTB |BB BB2535H FF
BB2534H| EE

After execution A |0716 FFEE
DTB

O Accumulator indirect branch addressing (@A)

The address of the branch destination is the content (16 bits) of the low-order bytes (AL) of the
accumulator. It indicates the branch destination in the bank address space. Address bits 16 to
23 are specified by the program bank register (PCB). For the Jump Context (JCTX) instruction,
however, address bits 16 to 23 are specified by the data bank register (DTB). This addressing
is used for unconditional branch instructions.

Figure B.4-11 Example of Accumulator Indirect Branch Addressing (@A)

JMP @A (This instruction causes an unconditional branch by accumulator indirect branch
addressing.)

Before execution pC [3C20| PCB Memory address space

A |6677:3B20 4F3C20H| 61 JMP @A

4F3B20H | Next instrugtion

After execution PC [3B20] PCB

A |6677:3B20

417

APPENDIX B INSTRUCTIONS

O Indirect specification branch addressing (@ear)

The address of the branch destination is the word data at the address indicated by ear.

Figure B.4-12 Example of Indirect Specification Branch Addressing (@ear)

JMP @@RWO (This instruction causes an unconditional branch by register indirect addressing.)

08

Before execution PC [3C20]| PCB Memory address space
PWo[7F48] DTB 4F3C21H
4F3C20H

73 JMP - @@RWO

4F3B20H lion

217F49H

After execution PC [3B20] PCB

3B

217F48H

20

PWO DTB

O Indirect specification branch addressing (@eam)

The address of the branch destination is the word data at the address indicated by eam.

Figure B.4-13 Example of Indirect Specification Branch Addressing (@eam)

JMP @RWO (This instruction causes an unconditional branch by register indirect addressing.)

Before execution PC |{3C20| PCB Memory address space

JMP @RWO

tion

PWO |3B20 4F3C21H| 00
4F3C20H| 73
After execution pc [3B20] PCB 4F3B20H | Next instrud
PWO [3B20

418

B.5 Execution Cycle Count

APPENDIX B INSTRUCTIONS

The number of cycles required for instructi on execution (executi on cy cle count) is
obtained by adding the number of cycles required for each instruction, "correction

value" determined by the condition, and the number of

cycles for instruction fetch.

m Executio n Cycle Count

The number of cycles required for instruction execution (execution cycle count) is obtained by
adding the number of cycles required for each instruction, "correction value" determined by the
condition, and the number of cycles for instruction fetch. In the mode of fetching an instruction
from memory such as internal ROM connected to a 16-bit bus, the program fetches the
instruction being executed in word increments. Therefore, intervening in data access increases
the execution cycle count.

Similarly, in the mode of fetching an instruction from memory connected to an 8-bit external bus,
the program fetches every byte of an instruction being executed. Therefore, intervening in data
access increases the execution cycle count. In CPU intermittent operation mode, access to a
general-purpose register, internal ROM, internal RAM, internal 1/O, or external data bus causes
the clock to the CPU to halt for the cycle count specified by the CGO and CG1 bits of the low
power consumption mode control register. Therefore, for the cycle count required for instruction
execution in CPU intermittent operation mode, add the "access count x cycle count for the halt"
as a correction value to the normal execution count.

m Calculati ng the E xecutio n Cycle Count

Table B.5-1 lists execution cycle counts and Tables B.5-2 and B.5-3 summarize correction value
data.

Table B.5-1 Execution Cy cle Counts in Each Addressing Mode

(@*

Cod 0 d Register access count in
ode peran Execution ¢ ycle count in each addressing mode
each addressing mode

00 Ri

| Rwi See the instruction list. See the instruction list.
07 RLi
08

| @RWj 2 1
0B
oC

| @RWj+ 4 2
OF

10

| @RWi+disp8 2 1
17

419

APPENDIX B INSTRUCTIONS

Table B.5-1 Execution Cycle Counts in Each Addressing Mode (Continued)

(@)*
Register access count in
Code Operand Execution cycle count in each addressing mode
each addressing mode
18
| @RWi+disp16 2 1
1B
1C @RWO+RW7 4 2
1D @RW1+RW7 4 2
1E @PC+displ6 2 0
1F addr16 1 0

*: (a) is used for ~ (cycle count) and B (correction value) in B-8, "F?MC-16LX Instruction List."

Table B.5-2 Cycle Count Correction Values for Counting Execution Cycles

(b) byte*1 (c) word*1 (d) long*1
Operand Cycle Access Cycle | Access | Cycle | Access
count count count count count count

Internal register +0 1 +0 1 +0 2
Internal memory +0 1 +0 1 +0 5
Even address
Internal memory
Odd address +0 ! *2 2 4 4
External data bus
16-bit even address +1 ! *l ! *2 2
External data bus
16-bit odd address +1 ! 4 2 8 4
External data bus (*2)
28 bits +1 1 +4 2 +8 4

*1: (b), (c), and (d) are used for ~ (cycle count) and B (correction value) in B.8, "F2MC-16LX
Instruction List."

*2: When an external data bus is used, the cycle counts during which an instruction is made to
wait by ready input or automatic ready must also be added.

Table B.5-3 Cycle Count Correction Values for Counting Instruction Fetch Cycles

Instruction Byte boundary Word
boundary
Internal memory — +2
External data bus 16 bits — +3
External data bus 8 bits +3 —

420

APPENDIX B INSTRUCTIONS

Notes:

1. When an external data bus is used, the cycle counts during which an instruction is made
to wait by ready input or automatic ready must also be added.

2. Actually, instruction execution is not delayed by every instruction fetch. Therefore, use
the correction values to calculate the worst case.

421

APPENDIX B INSTRUCTIONS

B.6 Effective Address Field

Table B.6-1 shows the effective address field.

m Effective Address Field

Table B.6-1 Effective Address Field

Byte count of
Code Representation Address format extended
address part
(1)
00 RO RWO RLO
01 R1 RW1 | (RLO)
02 R2 RwW2 RL1 Register direct: Individual parts
03 R3 RW3 (RL1) correspond to the byte, word, and .
04 R4 RW4 | RL2 long word types in order from the
05 R5 RW5 | (RL2) left.
06 R6 RW6 RL3
07 R7 RW7 | (RL3)
08 @RWO
09 @RW1 . -
0A @RW2 Register indirect 0
0B @RW3
oC @RWO+
oD @RW1+ . - . .
OE @RW2+ Register indirect with post increment 0
OF @RW3+
10 @RWO+disp8
11 @RW1+disp8
12 @RW2+disp8
13 @RW3+disp8 Register indirect with 8-bit 1
14 @RW4+disp8 displacement
15 @RW5+disp8
16 @RW6+disp8
17 @RW7+disp8
18 @RWO0+disp16
19 @RW1+displ6 Register indirect with 16-bit 5
1A @RW2+displ6 displacement
1B @RW3+disp16
1C @RWO+RW7 Register indirect with index 0
1D @RW1+RW7 Register indirect with index 0
1E @PC+displ6 PC indirect with 16-bit displacement 2
1F addrl6 Direct address 2

*1 Each byte count of the extended address part applies to + in the # (byte count) column in the

422

APPENDIX B INSTRUCTIONS

"F2MC-16LX Instruction List" in Appendix B.8.

423

APPENDIX B INSTRUCTIONS

B.7 How to Read the Instruction List

Table B.7-1describes the items used in the F 2MC-16LX Instruction List, and Table B.7-2
describes the symbols used in the same list.

m Description of instruction presentation items and symbols

Table B.7-1 Description of Items in the Instruction List

Iltem Description

Uppercase, symbol: Represented as is in the assembler.
Mnemonic Lowercase: Rewritten in the assembler.
Number following lowercase: Indicates bit length in the instruction.

Indicates the number of bytes.

Indicates the number of cycles.
See Table B.2a for the alphabetical letters in items.

Indicates the number of times a register access is performed during
instruction execution.

The number is used to calculate the correction value for CPU intermittent
operation.

RG

Indicates the correction value used to calculate the actual number of
cycles during instruction execution.

The actual number of cycles during instruction execution can be
determined by adding the value in the ~ column to this value.

Operation Indicates the instruction operation.

Indicates the special operation for bits 15 to 08 of the accumulator.
Z: Transfers 0.

X: Transfers after sign extension.

- No transfer

LH

Indicates the special operation for the 16 high-order bits of the
accumulator.

*. Transfers from AL to AH.

- No transfer

Z: Transfers 00 to AH.

X: Transfers O0H or FFH to AH after AL sign extension.

AH

424

APPENDIX B INSTRUCTIONS

Table B.7-1 Description of Items in the Instruction List (Continued)

Item

Description

O <|N|Z2|4d] ®n

Each indicates the state of each flag: | (interrupt enable), S (stack), T
(sticky bit), N (negative), Z (zero), V (overflow), C (carry).

*. Changes upon instruction execution.

- No change

Z: Set upon instruction execution.

X: Reset upon instruction execution.

RMW

Indicates whether the instruction is a Read Modify Write instruction
(reading data from memory by the | instruction and writing the result to
memory).

*. Read Modify Write instruction

- Not Read Modify Write instruction

Note: Cannot be used for an address that has different meanings
between read and write operations.

Table B.7-2 Explanation on Symbols in the Instruction List

Symbol Explanation
A The bit length used varies depending on the 32-bit accumulator
instruction.
low-order bits of byte AL
16 bits of word AL
long AL: 32 bits of AH
AH 16 high-order bits of A
AL 16 low-order bits of A
SP Stack pointer (USP or SSP)
PC Program counter
PCB Program bank register
DTB Data bank register
ADB Additional data bank register
SSB System stack bank register
UsSB User stack bank register
SPB Current stack bank register (SSB or USB)
DPR Direct page register
brgl DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2 DTB, ADB, SSB, USB, DPR, SPB
Ri RO, R1, R2, R3, R4, R5, R6, R7

425

APPENDIX B INSTRUCTIONS

Table B.7-2 Explanation on Symbols in the Instruction List (Continued)

Symbol Explanation
RWi RWO, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RW;j RWO, RW1, RW2, RW3
RLi RLO, RL1, RL2, RL3
dir Abbreviated direct addressing
addrl6 Direct addressing
addr24 Physical direct addressing
ad24 0-15 Bits 0 to 15 of addr24
ad24 16-23 Bits 16 to 23 of addr24
io I/O area (OO0000H to 0000FFH)
#imm4 4-bit immediate data
#mm8 8-bit immediate data
#imm16 16-bit immediate data
#imm32 ext 32-bit immediate data
(imm3) 16-bit data obtained by sign extension of 8-bit immediate data
disp8 8-bit displacement
disp16 16-bit displacement
bp Bit offset
vct4 Vector number (0 to 15)
vct8 Vector number (0 to 255)
()b Bit address
rel PC relative branch effective addressing (code 00 to 07)
car Effective addressing (code 08 to 1F)
eam

rist

Register list

426

B.8 F2MC-16LX Instruction List

APPENDIX B INSTRUCTIONS

Tables B.8-1 to B.9-19 list the instructions used by the F~ 2MC-16LX.
Table B.8-1 41 Transfer Instructions (byte)

Mnemonic # ~ RG B Operation L Al l T Nl Z| V| C|R

H H M

w
MOV A,dir 2 3 0 (b) byte (A) <-- (dir) z * * L. I I I
MOV A,addr16 3 4 0 (b) byte (A) <-- (addr16) z * * P2 U N
MOV ARi 1 2 1 0 byte (A) <-- (Ri) z |+ * L N R N
MOV A ear 2 2 1 0 byte (A) <-- (ear) z * * * |- - - -
MOV A,eam 2+ 3+(a) 0 (b) byte (A) <-- (eam) z * * L S IR R
MoV Ajio 2 3 0 (b) byte (A) < (io) z |+ * L N A N
MOV A#imm8 2 2 0 0 byte (A) <-- imm8 z | * * S0 I IR R
MOV A@A 2 3 0 (b) byte (A) <-- ((A)) z - * 0 I I
MOV A,@RLi+disp8 3 10 2 (b) byte (A) <-- ((RLi)+disp8) z * * o N I S
MOVN A #Hmma 1 1 0 0 byte (A) <-- imm4 z * R L R [I
MOVX Adir 2 3 0 (b) byte (A) <-- (dir) X |+ S I N R
MOVX A,addr16 3+ 4 0 (b) byte (A) <-- (addr16) X * 2 I I I
MOVX ARi 2 2 1 0 byte (A) <-- (Ri) X | S0 I R I
MOVX Aear 2 2 1 0 byte (A) <-- (ear) X * I L - -
MOVX A,eam 2+ 3+(a) 0 (b) byte (A) <-- (eam) X * E 2 I - -
MOVX Ajio 2 3 0 (b) byte (A) <-- (i0) X | * L N I R
MOVX A#imm8 2 2 0 0 byte (A) <-- imm8 X * B L - -
MOVX A@A 2 3 0 (b) byte (A) <-- ((A)) X |- L 2 R R
MOVX A@RWi+disp8 | 2 5 1 (b) byte (A) <-- ((RWi)+disp8) X | S0 T R I
MOVX A,@RLi+disp8 3 10 2 (b) byte (A) <-- ((RLi)+disp8 X | 30 T R I
MOV dir,A 2 3 0 (b) byte (dir) <-- (A) - 2 R IR R
MOV addrl6,A 3 4 0 (b) byte (addr16) <-- (A) - P
MOV Ri,A 1 2 1 0 byte (Ri) <-- (A) - L R R R
MOV ear,A 2 2 1 0 byte (ear) <-- (A) - L A - -
MOV eam,A 2+ 3+(a) 0 (b) byte (eam) <-- (A) - P
MOV io,A 2 3 0 (b) byte (io) <-- (A) - 2 I I I
MOV RLi+disp8,A 3 10 2 (b) byte ((RLi)+disp8) <-- (A) - LI A - -
MOV Ri,ear 2 3 2 0 byte (Ri) <-- (ear) - P
MOV Ri,eam 2+ 4+(a) 1 (b) byte (Ri) <-- (eam) - P
MOV ear,Ri 2 4 2 0 byte (ear) <-- (Ri) - L I I IR
MOV eam,Ri 2+ 5+(a) 1 (b) byte (eam) <-- (Ri) _ P
MOV Ri,#imm8 2 2 1 0 byte (Ri) <-- imm8 - L3 I - -
MOV io,#imm8 3 5 0 (b) byte (io) <-- imm8 - - - - - -
MOV dir,#imm8 3 5 0 (b) byte (dir) <-- imm8 - P S T
MOV ear,#imm8 3 2 1 0 byte (ear) <-- imm8 - E2 I I I
MOV eam, #imm8 3+ 4+(a) 0 (b) byte (eam) <-- imm8 - - - - - _
MOV @AL,AH 2 0 (b) byte ((A)) <-- (AH) - L I IR I
XCH Aear 2 4 2 0 byte (A) <--> (ear) z - - - - - -
XCH A,eam 2+ 5+(a) 0 2x(b) byte (A) <--> (eam) Z - - - - - -
XCH Ri,ear 2 7 4 0 byte (Ri) <--> (ear) - - -l - -] -] -
XCH Ri,eam 2+ 9+(a) 2 2x(b) byte (Ri) <--> (eam) - - - - - -

See Tables B.5-1 and B.5 -2 for information on (a) to (d) in the table.

427

APPENDIX B INSTRUCTIONS

Table B.8-2 38 Transfer Instructions (byte)

Mnemonic # ~ RG B Operation A N| Z R

H M

W
MOVW A.dir 2 3 0 (c) word (A) <-- (dir) * oo -
MOVW A,addr16 3 4 0 (c) word (A) <-- (addr16) * *oox -
MOvVW ASP 1 1 0 0 word (A) <-- (SP) * i -
MOVW ARWi 1 2 1 0 word (A) <-- (RWi) * I -
MOVW Aear 2 2 1 0 word (A) <-- (ear) * oo -
MOVW A,eam 2+ 3+(a) 0 (c) word (A) <-- (eam) * oo -
MOVW A,io 2 3 0 (c) word (A) <-- (i0) * *oox -
MOVW A @A 2 3 0 (c) word (A) <-- ((A)) - N -
MOVW AH#imm16 3 2 0 0 word (A) <-- imm16 * oo -
MOVW A,@RWi+disp8 2 5 1 (c) word (A) <-- (RWi)+disp8) * *oox -
MOVW A,@RLi+disp8 3 10 2 (c) word (A) <-- ((RLi)+disp8) * *oox -
MOVW dir,A 2 3 0 (c) word (dir) <-- (A) - *oox -
MOVW addrl6,A 3 4 0 (c) word (addr16) <-- (A) - oo -
MOvVW SP,A 1 1 0 0 word (SP) <-- (A) - i -
MOVW RWi,A 1 2 1 0 word (RWi) <-- (A) - O -
MOVW ear,A 2 2 1 0 word (ear) <-- (A) - oo -
MOVW eam,A 2+ 3+(a) 0 (c) word (eam) <-- (A) - oo -
MOVW io,A 2 3 0 (c) word (io) <-- (A) - *oox -
MOVW @RWi+disp8,A 2 5 1 (c) word ((RWi)+disp8) <-- (A) - oo -
MOvVW @RLi+disp8,A 3 10 2 (c) word ((RLi)+disp8) <-- (A) - i -
MOVW RWi,ear RWi,eam 2 3 2 0 word (RWi) <-- (ear) - oo -
MOVW ear,Rwi 2+ 4+(a) 1 (c) word (RWi) <-- (eam) - oo -
MOVW eam,Rwi 2 2 0 word (ear) <-- (RWi) - oo -
MOVW RWi,#imm16 2+ 5+(a) 1 (c) word (eam) <-- (RWi) - oo -
MOVW i0,#imm16 3 2 1 0 word (RWi) <-- imm16 - oo -
MOVW ear,#imm16 4 5 0 (c) word (io) <-- imm16 - - - -
MOVW eam,#imm16 4 2 1 0 word (ear) <-- imm16 - *oox -
MOVW @AL,AH/MOVW 4+ 4+(a) 0 (c) word (eam) <-- imm16 - - - -
MOVW @AT 2 3 0 (c) word ((A)) <-- (AH) - i -
XCHW A, ear 2 4 2 0 word (A) <--> (ear) - - - -
XCHW A,eam 2+ 5+(a) 0 2x(c) word (A) <-- >(eam) - - - -
XCHW RWi, ear 2 7 4 0 word (RWi) <--> (ear) - - - -
XCHW RWi, eam 2+ 9+(a) 2 2x(c) word (RWi) <--> (eam) - - - -
MOVL A, ear 2 4 2 0 long (A) <-- (ear) - oo -
MOVL A,eam 2+ 5+(a) 0 (d)y 0 long (A) <-- (eam) - oo -
MOVL A#imm32 5 3 0 long (A) <-- imm32 - oo -
MOVL ear,A 2 4 2 (d) long (earl) <-- (A) long - *oox -
MOVL eam,A 2+ 5+(a) 0 (eaml) <-- (A) - r -

428

See Tables B.5-1 and B.5 -2 for information on (a) to (d) in the table.

Table B.8-3 42 Addition/subtraction Instructions (byte, word, long word)

APPENDIX B INSTRUCTIONS

Mnemonic # ~ RG B Operation L Nl Z| V| C|R

H M

W
ADD A #mm8 2 2 0 0 byte (A) <-- (A) + imm8 z L N L B
ADD A, dir 2 5 0 (b) byte (A) <-- (A) + (dir) z L I L B
ADD A, ear 2 3 1 0 byte (A) <-- (A) + (ear) z S I I I
ADD A,eam 2+ 4+(a) 0 (b) byte (A) <-- (A) + (eam) z S I I I
ADD ear,A 2 3 2 0 byte (ear) <-- (ear) + (A) - S T I I
ADD eam,A 2+ 5+(a) 0 2x(b) byte (eam) <-- (eam) + (A) z S I I I et
ADDC A 1 2 0 0 byte (A) <-- (AH) + (AL) + (C) z O I N B
ADDC Aear 2 3 1 0 byte (A) <-- (A) + (ear)+ (C) z S I I I
ADDC A,eam 2+ 4+(a) 0 (b) byte (A) <-- (A) + (eam)+ (C) z S I I I
ADDDC A 1 3 0 0 byte (A) <-- (AH) + (AL) + (C) z L I L B

(decimal)
SuB A#imm8 2 2 0 0 byte (A) <-- (A) - imm8 z S I I I
SuB A, dir 2 5 0 (b) byte (A) <-- (A) - (dir) z o I I I
SuUB Aear 2 3 1 0 byte (A) <-- (A) - (ear) z S I I I
SuB A,eam 2+ 4+(a) 0 (b) byte (A) <-- (A) - (eam) z S I I I
SuB ear,A 2 3 2 0 byte (ear) <-- (ear) - (A) - S T I I
SuB eam,A 2+ 5+(a) 0 2x(b) byte (eam) <-- (eam) - (A) - Sl I I I
SUBC A 1 2 0 0 byte (A) <-- (AH) - (AL) - (C) z S I IR I
SUBC Aear 2 3 1 0 byte (A) <-- (A) - (ear) - (C) z S I I I
SUBC A,eam 2+ 4+(a) 0 (b) byte (A) <-- (A) - (eam) - (C) z S I I I
SUBDC A 1 3 0 0 byte (A) <-- (AH) - (AL) - (C) z L I B B
(decimal)
ADDW A 1 2 0 0 word (A) <-- (AH) + (AL) - L I N N
ADDW A, ear 2 3 1 0 word (A) <-- (A) + (ear) - I I I I
ADDW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) + (eam) - E3 I I I
ADDW A#mm16 3 2 0 0 word (A) <-- (A) + imm16 - L I N N
ADDW ear,A 2 3 2 0 word (ear) <-- (ear) + (A) - S R I I
ADDW eam,A 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) + (A) - E3 N B O
ADDCW A, ear 2 3 1 0 word (A) <-- (A) + (ear) + (C) - Sl N I I
ADDCW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) + (eam) + (C) - x| x| x| x| -
SUBW A 1 2 0 0 word (A) <-- (AH) - (AL) - L3 N I O
SUBW A, ear 2 3 1 0 word (A) <-- (A) - (ear) - Sl N I I
SUBW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) - (eam) - x| x| x| x| -
SUBW A#imm16 3 2 0 0 word (A) <-- (A) - imm16 - Lo I I I
SUBW ear,A 2 3 2 0 word (ear) <-- (ear) - (A) - ol I I I
SUBW eam,A 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) - (A) - L I I I
SUBCW A, ear 2 3 1 0 word (A) <-- (A) - (ear) - (C) - Sl I I I
SUBCW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) - (eam) - (C) - E2 I I I
ADDL A, ear 2 6 2 0 long (A) <-- (A) + (ear) - Lo I I I
ADDL A,eam 2+ 7+(@) 0 (d) long (A) <-- (A) + (eam) . || x| x|
ADDL A#imm32 5 4 0 0 long (A) <-- (A) + imm32 - S A I I
SUBL A, ear 2 6 2 0 long (A) <-- (A) - (ear) - Lo I I I
SUBL A,eam 2+ 7+(@) 0 (d) long (A) <-- (A) - (eam) . || x| x|
SUBL A#imm32 5 4 0 0 long (A) <-- (A) - imm32 - x| x| x| x| L
See Tables B.5-1 and for information on (a) to (d) in the table.
Table B.8-4 12 Increment/decrement Instructions (byte, word, long word)

Mnemonic # ~ RG B Operation L N| Z| V| C|R

H M

w
INC ear 2 3 2 0 byte (ear) <-- (ear) + 1 - L I I I
INC eam 2+ 5+(a) 0 2x(b) byte (eam) <-- (eam) + 1 - 2 I R *
DEC ear 2 3 2 0 byte (ear) <-- (ear) - 1 byte - L I I I
DEC eam 2+ 5+(a) 0 2x(b) (eam) <-- (eam) - 1 - E I I I
INCW ear 2 3 2 0 word (ear) <-- (ear) + 1 - S A I R
INCW eam 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) + 1 - LI I I I
DECW ear 2 3 2 0 word (ear) <-- (ear) - 1 - Lo I I IR
DECW eam 2+ 5+(a) 0 2x(c) word (eam) <-- (eam) - 1 - S I I I

429

APPENDIX B INSTRUCTIONS

Table B.8-4 12 Increment/decrement Instructions (byte, word, long word) (Continued)

Mnemonic # ~ RG B Operation L N| Z| V| C| R
H M
w
INCL ear 2 7 4 0 long (ear) <-- (ear) + 1 - o I I I
INCL eam 2+ 9+(a) 0 2x(d) long (eam) <-- (eam) + 1 - o I I I
DECL ear 2 7 4 0 long (ear) <-- (ear) - 1 - o I I I
DECL eam 2+ 9+(a) 0 2x(d) long (eam) <-- (eam) - 1 - o I I I
See Tables B.5-1 and B.5 -2for information on (a) to (d) in the table.
Table B.8-5 11 Compare Instructions (byte, word, long word)
Mnemonic # ~ RG B Operation L N| Z| V| C| R
H M
w
CMP A 1 12 0 0 byte (AH) - (AL) - i I I I
CMP Aear 2 3+(a) 1 0 byte (A) - (ear) - o I I I
CMP A,eam 2+ 2 0 (b) byte (A) - (eam) - o I I I
CMP A#mm8 2 0 0 byte (A) - imm8 - o I I R
CMPW A 1 12 0 0 word (AH) - (AL) - o N A L
CMPW A,ear 2 3+(a) 1 0 word (A) - (ear) - o I I A
CMPW A,eam 2+ 2 0 (c) word (A) - (eam) - S I I A
CMPW A#mm16 3 0 0 word (A) -imm16 - o I I I
CMPL A,ear 2 6 2 0 long (A) - (ear) - S I I A
CMPL A,eam 2+ 7+(a@) 0 (d) long (A) - (eam) - o I I A
CMPL A#imm32 5 3 0 0 long (A) -imm32 - o B L R
See Tables B.5-1and B.5 -2for information on (a) to (d) in the table.
Table B.8-6 11 unsigned multiplication/division instructions (word, long word)
Mnemonic # ~ RG B Operation A Z| V| C|R
H M
w
DIVU A 1 *1 0 0 word (AH) / byte (AL) - S]-
quotient --> byte (AL) remainder --> byte (AH)
DIVU A,ear 2 *2 1 0 word (A) / byte (ear) - E A I
quotient --> byte (A) remainder --> byte (ear)
DIVU A,eam 2+ *3 0 *6 word (A) / byte (eam) - E I R
quotient --> byte (A) remainder --> byte (eam)
DIVUW Aear 2 *4 1 0 long (A) / word (ear) - E I A
quotient --> word(A) remainder --> word(ear)
DIVUW A,eam 2+ *5 0 *7 long (A) / word (eam) - E A I
quotient --> word(A) remainder --> word(eam)
MULU A 1 *8 0 0 byte (AH) * byte (AL) --> word (A) - E N B
MULU Aear 2 *9 1 0 byte (A) * byte (ear) --> word (A) - E I T
MULU A,eam 2+ *10 0 (b) byte (A) * byte (eam) --> word (A) - E N B
MULUW A 1 *11 0 0 word (AH) * word (AL) --> Long (A) - E N B
MULUW Aear 2 *12 1 0 word (A) * word (ear) --> Long (A) - E I T
MULUW A,eam 2+ *13 0 (c) word (A) * word (eam) --> Long (A)

*1 3: Division by 0 7: Overflow 15: Normal
*2 4: Division by 0 8: Overflow 16: Normal

*3 6+(a): Division by 0 9+(a): Overflow 19+(a): Normal
*4 4 Division by 0 7: Overflow 22: Normal

*5 6+(a): Division by 0 8+(a): Overflow 26+(a): Normal

*6 (b): Division by 0 or overflow 2x(b): Normal

*7 (c): Division by 0 or overflow 2x(c): Normal

430

APPENDIX B INSTRUCTIONS

*8 3: Byte (AH) is 0. 7: Byte (AH) is not O.
*9 4: Byte (ear) is 0. 8: Byte (ear) is not 0.
*10 5+(a): Byte (eam) is 0. 9+(a): Byte (eam) is not 0.
*11 3: Word (AH) is 0. 11: Word (AH) is not 0
*12 4: Word (ear) is 0. 12: Word (ear) is not 0.
*13 5+(a): Word (eam) is 0. 13+(a): Word (eam) is not 0.
Note:
See Tables B.5-1 and B.5-2 for information on (a) to (d) in the table.

Table B.8-7 39 Logic 1 Instructions (byte, word)

Mnemonic # ~ RG B Operation L A|ll | S| T|N|Z| V R

H| H M

W
AND A#imm8 2 2 0 0 byte (A) <-- (A) and imm8 -1 *| R -
AND Aear 2 3 1 0 byte (A) <-- (A) and (ear) -1 Y| R -
AND A.eam 2+ 4+@ | 0 (b) byte (A) <-- (A) and (eam) SR -
AND ear,A 2 3 2 0 byte (ear) <-- (ear)and (A) -1 Y| R -
AND eam,A 2+ 5+(a) 0 2x%(b) byte (eam) <-- (eam)and (A) -l * | R *
OR A#imm8 2 2 0 0 byte (A) <-- (A) or imm8 -1 *| R -
OR Aear 2 3 1 0 byte (A) <-- (A) or (ear) -1 Y| R -
OR Aeam 2+ | a+@ |0 ®) byte (A) <-- (A) or (eam) -l f IR -
OR ear,A 2 3 2 0 byte (ear) <-- (ear)or (A) -l * | R -
OR eam,A 2+ 5+(a) 0 2x(b) byte (eam) <-- (eam)or (A) N *
XOR A#imm8 2 2 0 0 byte (A) <-- (A) xor imm8 -1 *| R -
XOR Aear 2 3 1 0 byte (A) <-- (A) xor (ear) -1 **| R -
XOR A.eam 2+ 4+@ |0 (b) byte (A) <-- (A) xor (eam) ST YR -
XOR ear,A 2 3 2 0 byte (ear) <-- (ear)xor (A) -l | R -
XOR eam,A 2+ 5+(a) 0 2x%(b) byte (eam) <-- (eam)xor (A) -l * | R *
NOT A 1 0 0 byte (A) <-- not (A) -1 Y| R -
NOT ear 2 3 2 0 byte (ear) <-- not (ear) -l Y| R -
NOT eam 2+ 5+(a) 0 2x(b) byte (eam) <-- not (eam) -l * | R *
ANDW A 1 2 0 0 word (A) <-- (AH) and (A) - o R -
ANDW AHIMM16 3 2 0 0 word (A) <-- (A) and imm16 -l IR -
ANDW A ear 2 3 1 0 word (A) <-- (A) and (ear) -l IR -
ANDW A,eam 2+ 4+(a) 0 (c) word (A) <-- (A) and (eam) N -
ANDW ear,A 2 3 2 0 word (ear) <-- (ear)and (A) -l IR -
ANDW eam,A 2+ 5+(a) 0 2x%(c) word (eam) <-- (eam)and (A) -l IR *
ORW A 1 2 0 0 word (A) <-- (AH) or (A) -l IR -
ORW A#imm16 3 2 0 0 word (A) <-- (A) orimm16 -l *1*| R -
ORW A ear 2 3 1 0 word (A) <-- (A) or (ear) -l *| R -
ORW A.eam 2+ 4+@ | 0 (c) word (A) <-- (A) or (eam) SR -
ORW ear,A 2 3 2 0 word (ear) <-- (ear)or (A) - *1*| R -
ORW eam,A 2+ 5+(a) 0 2x(c) word (eam) <-- (eam)or (A) R *

R
XORW A 1 2 0 0 word (A) <-- (AH) xor (A) - R -
XORW A#imm16 3 2 0 0 word (A) <-- (A) xor imm16 -1 *| R -
XORW A ear 2 3 1 0 word (A) <-- (A) xor (ear) -l IR -
XORW A.eam 2+ 4+@ | 0 (c) word (A) <-- (A) xor (eam) SR .
XORW ear,A 2 3 2 0 word (ear) <-- (ear)xor (A) -l Y| R *
XORW eam,A 2+ 5+(a) 0 2x(c) word (eam) <-- (eam)xor (A) S I A I -
NOTW A 1 2 0 0 word (A) <-- not (A) A -
NOTW ear 2 3 2 0 word (ear) <-- not (ear) -l | R *
NOTW eam 2+ 5+(a) 0 2x(c) word (eam) <-- not (eam)

431

APPENDIX B INSTRUCTIONS

See Tables B.5-1 and B.5-2 for information on (a) to (d) in the table.

Table B.8-8 Six Logic 2 Instructions (long word)

Mnemonic # ~ RG B Operation N C|R
M
W
ANDL A, ear 2 6 2 0 long (A) <-- (A) and (ear) R -
ANDL A,eam 2+ 7+(a) 0 (d) long (A) <-- (A) and (eam) R -
ORL A,ear 2 6 2 0 long (A) <-- (A) or (ear) R -
ORL A,eam 2+ 7+(a) 0 (d) long (A) <-- (A) or (eam) R -
XORL A,ear 2 6 2 0 long (A) <-- (A) xor (ear) R -
XORL A,eam 2+ 7+(a) 0 (d) long (A) <-- (A) xor (eam) R -
See Tables B.5-1 and B.5-2 for information on (a) to (d) in the table.
Table B.8-9 Six Sign Inversion Instructions (byte, word)
Mnemonic # ~ RG B Operation 4 C| R
M
W
NEG A 1 2 0 0 byte (A) <-- 0 - (A) -
NEG ear 2 3 2 0 byte (ear) <-- 0 - (ear) -
NEG eam 2+ 5+(a) 0 0x(b) byte (eam) <-- 0 - (eam) *
NEGW A 1 2 0 0 word (A) <-- 0 - (A) -
NEGW ear 2 3 2 0 word (ear) <-- 0 - (ear) * -
NEGW eam 2+ 5+(a) 0 2x(c) word (eam) <-- 0 - (eam) * oo
See Tables B.5-1 and B.5-2 for information on (a) to (d) in the table.
Table B.8-10 One Normalization Instruction (long word)
Mnemonic # ~ RG B Operation z C|R
M
w
NRML A,RO 2 *1 1 0 long (A) <-- Shifts to the position where * -
'1' is set for the first time.
byte (RD) <-- Shift count at that time
See Tables B.5-1 and B.5-2 for information on (a) to (d) in the table.
Table B.8-11 18 Shift Instructions (byte, word, long word)
Mnemonic # ~ R B Operation N z C| R
G M
w
RORC A 2 2 0 0 byte (A) <-- With right rotation carry * * * -
ROLC A 2 2 0 0 byte (A) <-- With left rotation carry * * * |-
RORC ear 2 3 2 0 byte (ear) <-- With right rotation carry * * * -
RORC eam 2+ 5+(a) 0 2x(b) byte (eam) <-- With right rotation carry * * x| ox
ROLC ear 2 3 2 0 byte (ear) <-- With left rotation carry * * * |-
ROLC eam 2+ 5+(a) 0 2x(b) byte (eam) <-- With left rotation carry * * x| ox
ASR A,RO 2 *1 1 0 byte (A) <-- Arithmetic right shift (A, 1 bit) * * * -
LSR A,RO 2 *1 1 0 byte (A) <-- Logical right barrel shift (A, RO) * * * |-
LSL A,RO 2 *1 1 0 byte (A) <-- Logical left barrel shift (A, RO) * * * | -

432

APPENDIX B INSTRUCTIONS

Table B.8-11 18 Shift Instructions (byte, word, long word) (Continued)

Mnemonic # ~ R B Operation L|A[I |[S|T| N Z|V|C|R
G H| H M
w
ASRW A 1 2 0 0 word (A) <-- Arithmetic right shift (A, 1 bit) B N I [I I
LSRW AISHRW A 1 2 0 0 word (A) <-- Logical right shift (A, 1 bit) -l -l -1-]*|R o I I
LSLW A/SHLW A 1 2 0 0 word (A) <-- Logical left shift (A, 1 bit) EI I N I N ol T A
ASRW ARO 2 *1 1 0 word (A) <-- Arithmetic right barrel shift (A, RO) L B N BT R B L N L
LSRW A,RO 2 *1 1 0 word (A) <-- Logical right barrel shift (A, R0) B N I [I R
LSLW A,RO 2 *1 1 0 word (A) <-- Logical left barrel shift (A, R0O) -l - - -] -] [I I
ASRL A,RO 2 *2 1 0 long (A) <-- Arithmetic right barrel shift (A, RO) E I I N L [I I
LSRL A,RO 2 *2 1 0 long (A) <-- Logical right barrel shift (A, RO) BRI R L o T L
LSLL A,RO 2 *2 1 0 long (A) <-- Logical left barrel shift (A, RO) -l - - -] -] o T L
*1 6 when RO is 0; otherwise, 5 + (R0)
*2 6 when RO is 0; otherwise, 5 + (R0)
See Tables B.5-1 and B.5-2 for information on (a) to (d) in the table.
Table B.8-12 31 Branch 1 Instructions
Mnemonic # ~ RG B Operation L All | S| T|N|Z|V|C|R
H| H M
w
BZ/BEQ rel 2 *1 0 0 Branchon (Z) =1 R N I e R N N S I
BNZ/BNE rel 2 *1 0 0 Branch on (Z) =0 R T e e S
BC/BLOB rel 2 *1 0 0 Branch on (C) =1 - - - - - - - - - -
NC/BHS rel 2 *1 0 0 Branch on (C) =0 - - - - - - - - - -
BN rel 2 *1 0 0 Branch on (N) =1 O R I N D Y R T
BP rel 2 *1 0 0 Branch on (N) =0 - - - - - - - - - -
BV rel 2 *1 0 0 Branch on (V) =1 - - - - - - - - - -
BNV rel 2 *1 0 0 Branch on (V) =0 I I T [T I A (R IR
BT rel 2 *1 0 0 Branch on (T) =1 - - - - - - - - - -
BNT rel 2 *1 0 0 Branch on (T) =0 - - - - - - - - - -
BLT rel 2 *1 0 0 Branch on (V) xor (N) = 1 ER R IR IR R I IR R I
BGE rel 2 *1 0 0 Branch on (V) xor (N) =0 - - - - - - - - - -
BLE rel 2 *1 0 0 ((V)xor(N))or(2) =1 - - - - - - - - - -
BGT rel 2 *1 0 0 ((V) xor (N))or (Z) =0 I I T [T I B (R I
BLS rel 2 *1 0 0 Branch on (C)or (Z) =1 - - - - - - - - - -
BHI rel 2 *1 0 0 Branch on (C) or (Z) =0 - - - - - - - - - -
BRA rel 2 *1 0 0 Unconditional branch P N I T T I I S S B
IJMP @A 1 2 0 0 word (PC) <-- (A) S T I I e
JMP addrl6 3 3 0 0 word (PC) <-- addr16 - - - - - - - - - -
JMP @ear 2 3 1 0 word (PC) <-- (ear) S T I I i e
JMP @eam 2+ 4+(a) 0 (©) word (PC) <-- (eam) N I I A P T
JMPP @ear *3 2 5 2 0 word (PC) <-- (ear), (PCB) <-- (ear+2) EE T I N T O I N B
JMPP @eam *3 2+ 6+(a) 0 (d) word (PC) <-- (eam), (PCB) <--(eam+2) | - | - | - | - | - |- -|-| - | -
JMPP addr24 4 4 0 0 word(PC) <-- ad24 0-15,(PCB) <-- ad24 - - - - - - - - - -
16-23
CALL @ear *4 2 6 1 (c) word (PC) <-- (ear) - - - - - - - - - -
CALL @eam *4 2+ 7+(a) 0 2x(c) word (PC) <-- (eam) R I e e R N N S B
CALL addrl6 *5 3 6 0 (c) word (PC) <-- addr16 O R T I D B R
CALLV #vctd *5 1 7 0 2x(c) Vector call instruction - - - - - - - - - -
CALLP @cear *6 2 10 2 2%(c) word(PC) <-- (ear)0-15,(PCB) <-- o e e e
(ear)16-23
CALLP @eam *6 2+ 11+@) | O *2 word(PC) <-- (eam)0-15,(PCB) <-- R R I I B
(eam)16-23
CALLP addr24 *7 4 10 0 2x(c) word(PC) <-- addr0-15, (PCB) <-- I T R O i e
addr16-23

*1 4 when a branch is made; otherwise, 3
*2 3x(c) + (b)
*3 Read (word) of branch destination address

*4 W: Save to stack (word) R: Read (word) of branch destination address

433

APPENDIX B INSTRUCTIONS

*5 Save to stack (word)

*6 W: Save to stack (long word) R: Read (long word) of branch destination address

*7 Save to stack (long word)
Note:

See Tables B.5-1and B.5-2 for information on (a) to (d) in the table.

Table B.8-13 19 Branch 2 Instructions

Mnemonic # ~ R B Operation | S Nl Z|V|C|R
G M
w
CBNE A#imma8,rel 3 *1 0|0 Branch on byte (A) not equal to imm8 - - S I I (R
CWBNE A#imm16,rel 4 *1 0|0 Branch on word (A) not equal to imm16 - - S I I R
CBNE ear, #zimm8,rel 4 *2 1|0 Branch on byte (ear) not equal to imm8 - - S I I A
CBNE eam,#mm8,rel *9 4+ *3 0| (b) Branch on byte (eam) not equal to imm8 - - S I I R
CWBNE ear,#imm16,rel 5 *4 1|0 Branch on word (ear) not equal to imm16 - - S I I (R
CWBNE eam,#imm16,rel*9 5+ *3 0| (¢ Branch on word (eam) not equal to - - S I I o I
imm16
DBNZ ear,rel 3 *5 2|10 Branch on byte (ear) = (ear) - 1, (ear)not - - x| o* - -
equalto O *
DBNZ eam,rel 3+ *6 2 | 2x(b) Branch on byte (eam) = (eam) - 1, (eam) - - o I I I
not equal to 0
DWBNZ ear,rel 3 *5 2|10 Branch on word (ear) = (ear) - 1, (ear) not - - S I I I
equalto O
DWBNZ eam,rel 3+ *6 2 | 2x(c) Branch on word (eam) = (eam) - 1, (eam) - - o I I R
not equal to 0
INT #vct8 2 20 0| 8x(c) Software interrupt R S EO N N N
INT addrl6 3 16 0 | 6x(c) Software interrupt R S EO N N N
INTP addr24 4 17 0 | 6x%(c) Software interrupt R S EO T I I
INT9 1 20 0| 8x(c) Software interrupt R S EO N N N
RETI 1 15 0 | 6x(c) Return from interrupt * * S I I (R
ILINK 2 6 0| (¢ Saves the old frame pointer in the stack - - EO N N e
upon entering the function, then sets the
new frame pointer and reserves the local
pointer area.
IUNLINK 1 5 0| (¢ Recovers the old frame pointer from the - - EO N N e
stack upon exiting the function.
RET *7 1 4 0| (¢ Return from subroutine - - EO I N N
RETP *8 1 6 0| (@ Return from subroutine - - EO T I N

434

*1 5 when a branch is made; otherwise, 4

*2 13 when a branch is made; otherwise, 12

*3 7+(a) when a branch is made; otherwise, 6+(a)

*4 8 when a branch is made; otherwise, 7

*5 7 when a branch is made; otherwise, 6

*6 8+(a) when a branch is made; otherwise, 7+(a)

*7 Return from stack (word)

*8 Return from stack (long word)

*9 Do not use RWj+ addressing mode with the CBNE or CWBNE instruction.

Note:

See Tables B.4 and B.5 for information on (a) to (d) in the table.

See Tables B.5-1and B.5-2 for information on (a) to (d) in the table.

Table B.8-14 31 28 Other Control Instructions (byte, word, long word)

APPENDIX B INSTRUCTIONS

Mnemonic

#

RG

B

Operation

Sz

PUSHW
PUSHW
PUSHW
PUSHW

NP PP

*
w-b-h-h

oo

(©)
(©)
©

word (SP) <-- (SP) - 2, ((SP)) <-- (A)
word (SP) <-- (SP) - 2, ((SP)) <-- (AH)
word (SP) <-- (SP) - 2, ((SP)) <-- (PS)
(SP) <-- (SP) - 2n, ((SP)) <-- (rIst)

POPW
POPW
POPW
POPW

N R PR

NP ww

o oo

(©
(©)
©

word (A) <-- ((SP)) , (SP) <-- (SP) + 2
word (AH) <-- ((SP)) , (SP) <-- (SP) + 2
word (PS) <-- ((SP)) , (SP) <-- (SP) + 2
(rlst) <-- ((SP)) , (SP) <-- (SP)

JCTX

@A

6x(C)

Context switch instruction

AND
OR

CCR,#imm8
CCR,#imm8

NN

oo

byte (CCR) <-- (CCR) and imm8
byte(CCR) <-- (CCR) or imm8

MOV
MOV

RP,#imm8
ILM,#imm8

NN

oo

oo

byte (RP) <-- imm8
byte (ILM)A© imm8

MOVEA
MOVEA
MOVEA
MOVEA

RWi,ear
RWi,eam
Aear
A,eam

2+

2+

2+(a)

1+(a)

OCORrPk

oo oo

word (RWi) <-- ear
word (RWi) <-- eam
word (A) <-- ear
word (A) <-- eam

ADDSP
ADDSP

#imm8
#imm16

wnN

oo

oo

word (SP) <-- ext(imm8)
word (SP) <-- imm16

A,brgl
brg2,A

NN

*1

oo

oo

byte (A) <-- (brgl)
byte (brg2) <-- (A)

PRRPRRRRR

RPRPRRRRRE

[cNeoNoloNoNoNa]

[cNololoNoNoNe]

No operation

Prefix code for AD space access
Prefix code for DT space access
Prefix code for PC space access
Prefix code for SP space access
Prefix code for flag no-change

Prefix code for common register bank

Table B.8-15 21 Bit Operand Instructions

*1 PCB, ADB, SSB, USB: 1, DTB, DPR: 2
*2 7 + 3x(POP count) + 2x(POP last register number), 7 when RLST = 0 (no transfer register)

*3 29 + 3x(PUSH count) - 3x(PUSH last register number), 8 when RLST = 0 (no transfer
register)

*4 (POP count)x(c) or (PUSH count)x(c)

*5 (POP count) or (PUSH count)

Note:

See Tables B.5-1 and B.5-2 for information on (a) to (d) in the table.

Mnemonic # ~ RG B Operation L R

H M

w
MOVB A.dir:bp 3 5 0 (b) byte (A) <-- (dir:bp)b z -
MOVB A,addr16:bp 4 5 0 (b) byte (A) <-- (addr16:bp)b z -
MOVB A,io:bp 3 4 0 (b) byte (A) <-- (io:bp)b 4 -
MOVB dir:bp,A 3 7 0 2x(b) bit (dir:bp)b <-- (A) - *
MOVB addrl6:bp,A 4 7 0 2x(b) bit (addrl6:bp)b <-- (A) - *
MOVB io:bp,A 3 6 0 2x(b) bit (io:bp)b <-- (A) - *

435

APPENDIX B INSTRUCTIONS

Table B.8-15 21 Bit Operand Instructions (Continued)

Mnemonic # ~ RG B Operation T z R
M
W
SETB dir:bp 3 7 0 2x(b) bit (dir:bp)b <-- 1 - - *
SETB addrl6:bp 4 7 0 2x(b) bit (addrl6:bp)b <-- 1 - - *
SETB io:bp 3 7 0 2x(b) bit (io:bp)b <--1 - - *
CLRB dir:bp 3 7 0 2x(b) bit (dir:bp)b <-- 0 - - *
CLRB addr16:bp 4 7 0 2x(b) bit (addr16:bp)b <-- 0 - - *
CLRB io:bp 3 7 0 2x(b) bit (io:bp)b <--0 - - *
BBC dir:bp,rel 4 *1 0 (b) Branch on (dir:bp) b =0 - * -
BBC addr16:bp,rel 5 *1 0 (b) Branch on (addr16:bp) b =0 - * -
BBC io:bp,rel 4 *2 0 (b) Branch on (io:bp) b=0 - * -
BBS dir:bp,rel 4 *1 0 (b) Branch on (dir:bp) b =1 - * -
BBS addrl6:bp,rel 5 *1 0 (b) Branch on (addr16:bp) b =1 - * -
BBS io:bp,rel 4 *1 0 (b) Branch on (io:bp) b =1 - * -
SBBS addrl6:bp,rel 5 *3 0 2x(b) Branch on (addr16:bp) b =1, bit =1 - * *
WBTS io:bp 3 *4 0 *5 Waits until (io:bp) b =1 - - -
WBTC io:bp 3 *4 0 *5 Waits until (io:bp) b =0 - - -
*1 8 when a branch is made; otherwise, 7
*2 7 when a branch is made; otherwise, 6
*3 10 when the condition is met; otherwise 9
*4 Undefined count
*5 Until the condition is met(dir:bp)b
Table B.8-16 Six Accumulator Operation Instructions (byte, word)
Mnemonic # ~ RG B Operation L T| N z R
H M
W
SWAP 1 3 0 0 byte (A)0-7 <--> (A)8-15 - - - - -
SWAPW/XCHW A, T 1 2 0 0 word (AH) <--> (AL) - - - - -
EXT 1 1 0 0 Byte sign extension X - * -
EXTW 1 2 0 0 Word sign extension - - * -
ZEXT 1 1 0 0 Byte zero extension z - | R * -
ZEXTW 1 1 0 0 Word zero extensionbyte - - | R * -
See Tables B.5-1and B.5-2 for information on (a) to (d) in the table.
Table B.8-17 Ten String Instructions
Mnemonic # ~ RG B Operation T z R
M
W
MOVS / MOVSI 2 *2 *3 byte transfer @AH+ <-- @AL+, counter = RWO - - -
MOVSD 2 *2 *3 byte transfer @AH- <-- @AL-, counter = RWO0 - - -
SCEQ / SCEQI 2 *1 *4 byte search @AH+ <-- AL, counter RW0 - * -
SCEQD 2 *1 *4 byte search @AH- <-- AL, counter RWO - * -
FILS / FILSI 2 6m+6 *3 byte fill @AH+ <-- AL, counter RWO - * -

436

APPENDIX B INSTRUCTIONS

Table B.8-17 Ten String Instructions (Continued)

Mnemonic # ~ RG B Operation L Al | S| T|N|Z|V|]C|R
H| H M
w
MOVSW / MOVSW 2 *2 *6 word transfer @AH+ <-- @AL+, counter = RW0
word transfer @AH- <-- @AL-, counter = RWO0
MOVSWD 2 *2 *6
word search @AH+ A| AL, counter = RWO
word search @AH- A| AL, counter = RWO
SCWEQ / SCWEQI 2 *1 *7 EE N I I T L I B
word fill @AH+ <-- AL, counter = RWO0
SCWEQD 2 | * *7 EON N N I T I I O
FILSW / FILSWI 2 6m+6 *6 E B N I R I

*1 5when RWO is 0, 4 + 7 x (RWO0) when the counter expires, or 7n + 5 when a match occurs
*2 5 when RWO is 0; otherwise, 4 + 8 x (RWO0)

*3 (b) x (RWO) + (b) x (RW0) When the source and destination access different areas,
calculate the (b) item individually.

*4 (b) xn
*5 2 x (R x WO)

*6 (c) x (RWO0) + (¢) x (RW0) When the source and destination access different areas,
calculate the (c) item individually.

*7 (c)xn
*8 2 x 0(RWO0)
m: RWO value (counter value), n: Loop count
Note:
See Tables B.5-1and B.5-2 for information on (a) to (d) in the table.

437

APPENDIX B INSTRUCTIONS

B.9 Instruction Map

Each F2MC-16LX instruction code consists of 1 or 2 bytes. Therefore, the instruction

map consists of multiple pages. Tables B.9-2 to B.9-21 summarize the F 2MC-16LX
instruction map.

m Structure of Instruction Map
Figure B.9-1 Structure of Instruction Map

Basic page map
:Byte 1

Bit operation || Character string _ _) _ Byte 2
instructions || operation instructions || 2-byte instructions| | ea instructions x 9

An instruction such as the NOP instruction that ends in one byte is completed within the basic
page. An instruction such as the MOVS instruction that requires two bytes recognizes the
existence of byte 2 when it references byte 1, and can check the following one byte by
referencing the map for byte 2. Figure B.9-2 shows the correspondence between an actual

438

APPENDIX B INSTRUCTIONS

instruction code and instruction map.
Figure B.9-2 Correspondence between Actual Instruction Code and Instruction Map

Some instructions do
not contain byte 2.

Length varies depending
[\ \ on the instruction.

Instruction code Byte 1 Byte 2 Operand Operand |

[Basic page map]

XY

T~

+Z T

',l"'[Extended page map] (*1)

uv

+W

*1 The extended page map is a generic name of maps for bit operation instructions, character string operation instructions, 2-byte
instructions, and ea instructions. Actually, there are multiple extended page maps for each type of instructions.

An example of an instruction code is shown in Table B.9-1.

Table B.9-1 Example of an Instruction Code

Instruction Byte 1 Byte 2
(from basic page map) (from extended page
map)
NOP 00 +0=00 -
AND A, #8 30 +4=34 -
MOV A, ADB 60 +F=6F 00 +0=00
@RW2+d8, rel 70 +0=70 FO +2=F2

439

APPENDIX B INSTRUCTIONS

Table B.9-2 Basic Page Map

o1 A N A A A A A ea'IMY co_uumﬂﬁ.cm_ sy sy v v 9l# v g+
2] T A D O O O D T e T e e MHOX MdOd MHSNd MLON | MNININ dsaav MHST
EY] eo'l uononJisul uon ‘
I] e e Sd Sd IL#'Y v v I+
AL D T O T O R O I e e e e HOX IeyeRyD MdOd MHSNd MHOX MHOX MdVYMS MYSY
181 IMY €8 HY HY 9L#'Y v a+
wal MAOW MdOd MHSNd MHO MHO MLX3Z
184 ISR uononasui| Y v IL#'Y v v
uonelado ug o+
ERl] AOW |~ ; MdOd MHSNd MANY MANY MLX3 MIST
e ea'IMY V'olippe | 2eH'Y 9L#'Y v zeH'Y a4+
3Iog MAOW 1134 MAOW IAOW MdIND MdIND 1dIND M93IN
181 veippe 9LIPPE'Y | 9L#'Y [orgL# [91°# S# NI 8#'dd V4
119 NOW dINI MAOW MAOW | ‘V3INEMO | ‘¥ 3NED NOW AOW
181 B9 MY 9}ppe v'ol v'aip 9L#'Y v zeH'Y 64
1Ng VIAON ANI MAOW MAOW mans mans 1ans MNIINN
o1 V'8PHM 8P+HMH® 6 uon 810A# ory Jp'y 9L#'Y v ceH'Y guiwi# g+
19 4O MAOW| ‘V MAOW MAOW MAOW MAOW | -onnisui es ANI MAOW MAOW maav maav Jaav MNIT
191 9LIpPPE'Y |V'dS v v 8#
A A A A A 8 uon L+
ANE -onsul ed 134 XAOW MAOW 1ON NN dsaav ads
1o J uon gl#'ol ds'v 8#'Y v 9+
ng -onasul es d13d MAOW MAOW HOX nAId dVMS aav
o1 g uop | &P ory Jp'y 8#'Y 8#'H00 ot
dg9 -onisul es d11v0 XNOW XAOW S[e] 40 1X3z da1a
=] G uon |9+PPE 8#‘ol 8#Ip 8#'Y 8#'400 .
NE -onnsul es TIv0 NOW NOW ANy aNvy 1x3 g0d
e T T veippe V'olippe | 8#'Y 8#'Y v Vo v
¥ uon €+
SHY/ ONg -onJsul ea ddAr AOW XAOW diNO diNO X1or D3AN
D D D D e e Ippe 1ppe’ ‘
I ¢ uon 9Hipp 9HppE'Y | 8#'Y v v v v 24
01g/ 049 -onnsul ed dAP NOW NOW oans oaav oaans oaaav
1ol zuon | V@ v'ol viap 8#'Y Jp'y -
aNg/ZNg -onnsul es dAr NOW NOW ans ans 00N 61NI
le1 v] vy | sPHMH® | HYV | s#'d Tuon | ory Py 8#'Y Py 0
03g/z4 ATIVO NAOW | ¥V XAOW XAOWN NOW NOW AOW | -onuisul e vdg NOW NOW aav aav HNO dON
04 03 oa 00 og ov 06 08 0L 09 0S ov o€ 0z oL 00

440

APPENDIX B INSTRUCTIONS

= 6CH)

Table B.9-3 Bit Operation Instruction Map (first byte

da:gpippe
sadas

9lpe sgg

le1‘dq:p
sgad

91lpe Dgg

les‘dqp
08ad

da:g1ipp €
a13s

dquip
g13s

dg:9Lipp
e 410

dquip
a4d10

v'da:gLippe
9AON

dg:911pp
e’y GAON

dauip'y
aAON

4+

I+

a+

o+

a9+

v+

6+

8+

L+

9+

v+

€+

¢+

0+

04

oa

od

06

0L

0S

oe

ok

441

APPENDIX B INSTRUCTIONS

H)

=6E

Table B.9-4 Character String Operation Instruction Map (first byte

d4dS'ads
< A A A ” A J+
Rl e i S gav'ads |
m 3+
RIS A R W gla'ads |
. a+
L dod'ads |
. o+
L gas'aay |
” a+
1 gav'aay
m v+
T gla'aav
m 6+
— god'aav |
m 8+
R I AR . dds'ala |
; L+
[T R TR aavald
m 9+
[T R TR alg'ald |
m S+
T god'ala |
: v+
ads ads ads ads gds ads 1 8ds'80d | ot
aav | | aav | | gav | | gav | |seav | | aav | | | | 1 T <« 8av'aod | ot
aia | || gla | |ewa | | gala | | ala | | aia | | 1 1 T < g10'a0d | N
‘god | | god | | gd | | god | |8od | | ad | | | 1 1 T « e 0d'80d | ot
IMSTIH IST4 | DIMOS | 1DIMOS | aDIOS | 1030S AMSAOW | IMSAOW | QSAOWN | ISAOW
o4 03 od 00 og ov 06 08 0L 09 0S or oe 02 ok 00

442

APPENDIX B INSTRUCTIONS

= 6FH)

Table B.9-5 2-byte Instruction Map (first byte

oY od'Y o8y a4
“““““““““““““““ BS WS MeST
8P+ETHO V'eP+e| OH'Y od'Y o8y a4
Y. MAON [TH@ MAOW sy IEEL MuSy
oH'Y HY Ve |vo'V a+
“““““““““““““““ TNEN| MAOW| MAOW
8P+Z1H® V'8p+z| 0d'Y o8y o8y o+
V. MAON [0 MAOI L M mIs
8+
8p+11H® v'gpH vt
V... MAOW[THD MAON
6+
8P+01H® '8+ 84
'Y MAOW [1H® MAOW
v v L+
““““““““““““““““““““““ oHOH| 0704
8n+E14® v'ept|gpteTHe | Yo'y |80d'V o4
v NOW| €14 AOW)| 'V XAOW| _ XAOW NOW
HY Ve |ve'y ot
““““““““““““““““““““““ NOW NOW
802140 V'p+|8PHZ1® | Y'HAd |HdQ'Y it
V. NOW| 214D AOW) 'Y XAOW oW oW
vasn |asnv .
NOW NOW
8n+1140 v'ep+|8p+i1de | v'ass |ess'y a4
'V AOW|11H® AOW| ‘Y XAOW NOW NOW
veay |eav'y
L+
NOW NOW
8n+01d® v'ep+|8p+0Tde | VLD |eldV ot
'V AOW|07H® AOW| ‘Y XAOW NOW NOW
04 03 0a 00 og ov 06 08 oz 09 0g or 0e 0z ot 00

443

APPENDIX B INSTRUCTIONS

=70)

Table B.9-6 ea Instruction 1 (first byte

[org Wuwﬂ_g_:oa +HEMED'Y HEMHO'Y | OLPPE | YEMH®'Y +EMHO'Y | IOk HEMHO'Y | 9HPPE | +EMHD'Y a4
‘9Lippe THOX ‘9Lippe v 7aav: Jaay
Cjrgs i pauqoid | 9iptode ZMdeY | IMHOY | 9IPHOdD: HIMHOY | OIPHOdD| MOy | | Rro | ponquoid| 9ipt0de +amMHRY | | aptodo | +ameoY | 4
‘91p+0d @' esn THOX v IONY: ‘9IpH0de v 70av; Jaavy
panaoid Cmee | Terow © ponqiod | ZmEtIME® HMEDY | merimee | msoy [
esn THOX LME*LMEO | v 1aav “aay
““““““““ U‘m‘“‘_n‘_wwm | HOMHOY | MutOMED: eren imeomse omsev | o
n JHOX| 'V THO! LMEHOMY® :
U e | oemde tMeoy | m?%@ lor'gL# a4
‘EMHO HOX| 'V HO: IIPHEMHO
erer UPHIMED | ZMHOY | 9IPHIMED ;_y.%i,m “““““““ v
) ‘Y THOX: Y IONY: 9IPHIMHD | ‘TMH® v o7ens: 1ens| ‘v 7aav:
RIgE | olDLMHD LMHD'Y om0 IMdOY ot
‘IMH® v THOX THOX 9IPFIMED | v aav;
Cergr L eigr | 9iproMHO mi%m@,« “““ IOl RO | oIDOMHO | OMHOY | @‘s&;m_m@‘w “““““““ ot
9IPHOMED; OMH® : THOX 9IPHOMHD | ‘OMHO v W
_.9 8# _w_,m; .%EsmP s
PHLMHO | PHLMHD | v 7aav:
Cjergy e %ésm@M lrgk# ::ww&;mww ot
‘8PHIMHE® ” ‘BPHIMUO v 7aav:
Clergr “““““““““ groMEe. WY | somee: WY | prol “““““““““ gromEe THY ot
'SPHSMHO v IONY ‘SPHSMHO v aav;
Ceres ::%@?@ “““““““ .
‘D . v ‘BPHMEO | v 7aav:
Clergs W::_g@ ““““ prols “““““““““ %&5@“ “““““““ et
‘SPrEMHO | ‘ed '8PYEMHD | ‘Y Jaav:
Clergr W::_&.% ““““ jrom ::%«N‘?@‘W “““““““ ot
‘BPHIMED ¢ ‘e ‘SPHIMHD Y 7aav;
Clergy W::_m‘_‘,ww “““ %:\sm@m jorok# ::%ﬁ?@ L+
‘BPHMED T 1Y v IONY ‘BHMED ‘v 7aav;
Clerg W::_g@ “““““ %&;‘m@‘w “““““““ jorgL# , ::%‘a;m‘@w “““““““ ot
‘SHOMHD | ‘0d Y IONY: ‘BPHOMH® | v 7aav:
TYTENgS TR aNed | [I R S e B TUANEMY T ENEWS [T o
04 03 oa 00 og ov 06 08 oL 09 0S5 or o 0z oL 00

444

APPENDIX B INSTRUCTIONS

H)

=71

Table B.9-7 ea Instruction 2 (first byte

9lippe

ILPHEMHD !
‘Y VIAON:

9IP+IMED |
¥ VAAOW!

9LPHIMHD |
v VINOW!

9LP+OMHD |
¥ VAAOW!

'V VINOW:

8P+HMHO !

+EMHO'Y

+eMHO'Y

V3AON

8#9LIpp!

8#'80+OM !

8#+EMHO

V'9Lippe;

e
H4® AON;

V'8PHOM!

HO TAOW;

V+EMHO

V'+ZMHO

V+IMH®

TAON

9lippe

¥ INOW:

+EMHO'Y

+eMHO'Y
TAON
TIMHD'Y

9lippe

9lippe

9HpPED

LME+OMHD |
® dTIvo!

IIPHEMHD |
® dTv0!

9LP+IMH® |
® dTwvo!

IP+IMHD |
® d1vo!

9LPHOMHD |
® dTvo!

8P+ MHD D :

8PHOMHO O

dTIvO!

+EMHO @
+2MHO ©

d1v0
+IMdo @

9HPPED

9Ip+0dD @ :

ddir

LME+IMED

8P+OMHD ®
ddinr:

tEMHO @

4+

a+

a+

o+

a4+

v+

6+

8 +

L+

9+

S+

v+

€+

¢+

0+

04

og

06

ov

0g

oL

445

72)

oLpPe | 4EMHO'Y | 9LPPE | +EMHO'Y VoLPPE! VHEMH® | oupPe | +eMH@Y | oLppe 9Lippe guPPE | YEMHO | PP | +EMYO
VoMK HOX| Y XN oM ow now| v opomi som| o; ok ow ow| ouod owow | o oww
“““ APHOdD | MHOY | OIPHOdD | fIMHOY | VOIPD. v4eMHD | 9IptddD | +amHBY 9Lp+0d® |
Y HOX| HOX | Y XnOM | XNON| do AW NOW| Y AON AOW ”
CIMHYIMHD . FLMHOY | IMHFIMHD | YIMHOY | VIMEHM VHMHO | IMGHMHD | +IMHOY | ZMH*LMHO
'V HOX| HOX | 'V XAOW | XAOW| H® AOW! AOW| Y AOW | now | o3
CIMHYOMHD | HOMHD'Y | LMHHOMHO | OMHOY | VINHHOM VHOMH® | LWHOMHO | fOMHBY | LMOMHO

IMHO'Y IPHIMHD | IMEB'Y VOIPHIM: VIMHD IPHIMHD | IMHB'Y 9IPFIMHD ! 9IPHIMHD

HO AOW! AOW | ¥ AOW | AOW ONI !
“““ VOIPM VOMH® | OIPYOMH® | OMHBY | SipOMHE
Ho AOW: AOW | Y AOW NOW
“““ VI V4 | seuMbD | Y | eeMde
4o >o_zw AOW | 'V AOW AOW
“““ VEPHOM: YOH | 8PraMdD | o4V | gPraMHe
WO AOW! AOW| Y oW AOW
gamio v | vepiom vew | Mo | oy | BPHMED |
'Y XAOW | XAOW| H® AOW: AOW | ¥ AOW | AOW ,
Cemee | wy | veprmi vl | WMo | Y | WHMHO
Y XAOW | XAOW| H® NOW; NOW | 'Y AOW | AOW
Cepremde | ey | veprem: ved | wremde | eV | Mo
¥ XAON XAOM| HO AOW NOW| YV AOW AOW
prembe | ey | veprem: ved | gMH | eV | PHMED | BPHIMHD |
Y XAOW | XAOW| H® AOW! AOW | Y AOW | AOW | NI |
Ceptimde | WY | veerm vy | gHmge | Wy | HMED |l | seHmde W
'Y XAOW | XAOW| H® AOW: AOW | 'V AOW | NOW ,
Tgovomdo | oy [veprom vou | wiomde | odv | 8PHOMHD 8PHONHD | BPHOMYD | 0 M | 04
¥ XAOW XAOW| H® >o_>_w AON | Y AOW AOW ONI | NI OHOH | OHOH o704 | 9704
04 03 0a 00 og ov 06 08 oL 09 0s or e 0z ot 00

APPENDIX B INSTRUCTIONS
Table B.9-8 ea Instruction 3 (first byte

446

APPENDIX B INSTRUCTIONS

=73 n)

Table B.9-9 ea Instruction 4 (first byte

9Lippe [eMye'Y LU | OL+EMY VOUPDE | V+EMHD 9Lippe | +EMO'Y 9Lippe +EMHO 9Lippe) oURPED | +EMHOO 9UEPED | +EMHOD a4
U YomHX: MHOX | PE_MAOW: © MAON| L dwe dwr
9PH0dD | IMHD'Y 9L9Ip+ voIpH0 9IPH0d0D | +aM4D 0 a4
VoMK MHOX | OdOMAON | ® MAOW| d® MAOW: . L dur
Em:;m@w +HMEO'Y ex:smj 9L+ 5%:? Y+HMED LINGF I ¢ Engm@w +IMHO ® a+
VOMHOX: MHOX | VMSOMAON: @ MAOW| H® MAOW: | MAON| ¥ MAOH L B dr
:»E&?@:W +OMHO'Y GHFIMEF | OHHOMH | YIMHYOM ! VHOMHE LMH+OME® IMHHOMHD | +0MHD ® o+
'V MHOX ! MHOX | OMHOMAON | ® MAOW| H® MAOW: MAOW| 'V MAOW ® dwr: dnr
Colpremee | eweey | OFOIPH] OIEMHD | VOIPEM| VEMs | oIp-EMHD | Copomeo | eweoo | o
'Y MHOX | MHOX | EMHOMAON | MAOW | H® MAOW | MAON| 'Y MAOW ® dir; dir
oMo | ameoy | oFID oHTMHD| VoM Vweo | 9IPFZMED Cowmes | awees [
¥ MHOX | MHOX | ZMH®MAOW Y MAOW 2} dir | dnr
‘:w_?‘;p@:w:_%@a “““““ 9 ;.%ﬁi%%@ YOI | Y 1NHO i%‘%@m ‘:%:?@:Wi_‘?@‘@:3 ot
¥ MHOX : MHOX | LMHOMAON MAOW| H® MAOW: MAOW ® dWr: dir
:w?;p@:%%m@a “““““ 9 ;@sﬁ 9LFOMYD EEE i%gm@%%‘m@@:3 ot
Y MHOX : MHOX | OMHOMAOW MAOW| H® MAOW: ® dwr: dnr
Cumde MY | ol oy | VEPHMG YIME MO | LMY PHMEOD | MHD | GPUNHOO | MHD i
Y MHOX | MHOX | MH® MAOW | MAOW | H® MAONW : v dir dir
::?@?@:W::@;? ““““““ 9 ;‘,?‘m 9L#'amy <.%+@E %E@ :m%;m@‘@:wim?@‘ “““ or
¥ MHOX MHOX | M4® MAOW | MAOW | H® MAOW | W v dir | dir
%sgm@w SMH'Y w;,wemw 9L#SMH <,%+m>>w o4
Y MHOX ! MHOX | MH® MAOW MAOW| H® MAOW:
:iw?\;m_w@:w‘:%? ““““““ 9 ;@?ﬁ 9L# MY <>%+§>LW "
¥ MHOX MHOX | MH® MAOW MAOW | H® MAOW :
::w?‘m?_@:mz:%? ““““““ 9 %‘w?ﬁ:@‘%;m ““““““ 33? “““““““ ot
Y MHOX | MHOX | MH® MAOW | MAOW | H® MAOW
::%,,‘N?@‘W::N;? ““““““ 9 ;‘,%ﬂm‘w 9L¥ZME ﬂ%&i WM | oM PHUMIOD | MO MDD | MO ot
Y MHOX | MHOX | MH® MAOW HO MAOW MONI dir dir
ey | G o : | Twgen e n
Y MHOX | MHOX | MH® MAOW MONI dir dir
::%&;m_@:wiogma ““““““ 9 %Eﬂ “““““““ ey | m?gé@w MY %szm@@w oMHD %ésm@@w MHo ot
'Y MHOX | MHOX | MH® MAOW | MAOW | 4B MAOW | m MONI | MONI LK %) divr | dir
o4 03 oa 00 og ov 06 08 oL 09 0s oy oe 0z oL 00

447

APPENDIX B INSTRUCTIONS

=74)

Table B.9-10 ea Instruction 5 (first byte

ToLippe; I4EMH® | 9Lippe | +EMHO'Y | ouppe [EMHO'Y | 9MPPE | 4EMHO'Y | OLPPE | 4EMHO'Y | 9LPPE | fEMHO'Y | 9LPPE | 4EMHO'Y | OLPPE | 4EMHO'Y a4+
““““ ZN§Q; ZNeQ| V. dOX: HOX| v dO: HO| Y ONv: ONV| Y dWOo: dWo| 'V 0ddv: ~ oddv| v @ns: sy vV odv: dav

191p+0d 142MH® 9IPHOdD | +ZMHO'Y m_?,on_@w +ZMHO'Y o_?om@w +ZMHO'Y o:xom@w +ZMH®'Y @::on_@W +ZMH®'Y ogém@w +ZMHO'Y o::om@w +ZMHO'Y I+
® 2Neg Nga| v WOX: HOX| V. HO! HO| ¥ ONV. ONv| V¥ dWOi dWO) ¥V 000v: 00Qv| vV @nsi ans| voodavi aav
CUIMEHIM MO | IMEHIMED | +IMHO'Y | ZMELMHD | LMHO'Y | IMHAIMHO | LMHO'Y | MHFLMHD | +LMHO'Y | IMHTIMH® | IMHO'Y | LMHHLMHO | +LMHO'Y | IMHLMH® | +LMHO'Y a+
H® ZNad! ZNga| YV HOX ! HOX| VWO HO| Y ONY! aNY| Y dIND dno | ‘v oaav ! ogav | ‘v ans: ans| v aav: aavy
©SIMGTOM . OMHD | LWHAOMHD | fOMHO'Y | LMHOMHO | GOMHD' | LMH'OMHD | OMHD'Y | [MHOMHO | OMHOY | WHOMHD | OMHOY | LWH'OMHD | fOMHOY | MOMHO | OMHOY | o
H® ZNad: ZNga| ‘v HOX ! HOX| VWO HO| v ONY! aNY| 'V dIND: dno | ‘v odav: oaav| v ans: ans| ‘v aav: aav
I JEMHD | OIVEMHO | EMHOY | OIDIEMHD | CMHOYY | OIFMHD | GMHDY | OIDEMHO| EMHOY | OIDIEMHO | SMHOY | 9IDEMHD | SMHDY | 9veMdD | cmHOY |
HO ZNEQ: ZNga| Vv HOX HOX| ¥V HO: HO| ¥V ONV: aNv| Y dWD! dwo | ‘v odav oaqav| Y ans: ans| v dav: aav
© JOIDRIM. JZMHD | OIDTMHD ZMHBY | 9IPTMHD | GMMOYY | OIMHD | MHDY | 9IDRIMHO| MHBY | 9IDRIMHO . MHOY | 9IPMHB | WMDY | owMdo amdoy |
H® ZN8C: Y 5O 40| 'V ONV: aNY| Y dWD: dwo | ‘v odav oqav | v ens: ans| v dav: aavy
‘3,,‘9‘,‘5;‘%3;%@‘ “““ 9 F‘?;m@‘wi%_@a “““ %&?@%Sm@‘,« “““ 9‘??@@;‘_;‘I‘?;";@‘??‘@‘MEE&.« “““ %r?m@:]?@a “““ w?_?_@w:;m‘@a: ot
H® ZNad: Y HO: HO| v ONY: aNY| 'V dIND: dno | ‘v odav: ogav| ‘v ans: ans| ‘v aav: aav
U Uoiphomi SOMM® | SIPFOMHB | oMM | QIPIOMHOD | OMHO'Y | OIPYOMHD . OMHOY | SIPYOMHD | OMHOY | OIPWOMH® | OMHO'Y | OLPHOMHO . OMHOY | OIPFOMHO i OMHB'Y o
4O ZNEQ: Y HO: 40| YV ONV: anvy| v dwo: dwo | v odav oaav| v 4ans: ans| ‘v aav: aav
CUSpuMdl s | spMEe Y | MDY | SHUMEO | MY | @HMH®: MY | @hMde | Y | MO | Y | MO | MY it
® ZNga: Y HO: HO| ¥V QNY: any| Y dWD: dNO| v oadav: oaav| vV ans: ans| ‘v aav: aav
;:h‘?w;mw;&m ““““““ ?@;m@‘w;%« “““““ %«%&‘Wi%@ ‘:w‘n&?_@w%@:;:i%gm@:ﬂ%a ““““““ 8P+oME® “““““““““ %&E@Wi@? “““ o
® 2ZNad: Y HO! HO| VY ONY aNY| 'V dIND dWo| v odav; ogav| ‘v ans: v ooaav: aav
YIS s ;:w?;m@‘w “““““““““ %&5@3%@ | epramue Wiwm.«‘:;:i%ﬁ;m@‘ﬂw? ““““““ 8P+SME® ey i%ym?_@‘w e ot
® 2ZNga: Y HO: 40| Y QNY: aNY| 'V dIND: dno | ‘v odav: oaav| v ans: ans| ‘v aav: aav
;:_‘@3?_%_? ““““ PMED PV ;:n?;m@:wym_« “““““ %«v‘?@‘wivm_« ‘:m??@‘wi},«;::;:g?;m@ﬂ«m_,‘,w ““““““ BPHMHO ‘Wim_a “““““ %@?&%?.« “““ "
® ZNgd: ZNgd| Y HOX: HOX| Vv HO: HO| Vv ONV: aNvy| Y dWD: dWo| ‘v oaav: oaav| v Ens: ans| v aav: aavy
;:L.%&;m_ﬂ&m “““““““““““ Y ?‘Sm@‘wiﬂm,« “““““ %«n‘?m‘winm@ ‘:w‘?m‘?_‘@‘v‘wz‘n?‘:;:i%a;m@‘wim‘m_,‘,* ““““““ BPHEMHD ‘Wim‘? “““““ %«m‘?@%:&« “““ ot
® ZN€d: Y HO: HO| 'V NV aNY| Y dWD: dno | 'Y 0aav oaavy| v ans: ans| v dav: aav
;:h.‘m‘_%w‘;qum‘m ““““““ w‘?‘%m@;ﬂ%« “““““ %«N‘?@WEN@« ‘:wﬁ‘?_@:wzm?‘:;:;Q.EN?_‘@‘MEN‘T‘? ““““““ 8P+IMHO ‘WEN? “““““ %MN?_@W?N? “““ ot
® 2ZNga! Y HO! 40| Y QN aNY| 'V dINOD! dwo | ‘v odav: oaav| v ans: ans| ‘v aav: aav
;:_‘.?_‘;m_‘wz‘_é ““““““ %w_;m@:wia.« “““““ %«F‘?@‘Wﬁ_m_«::: ‘:%%;?@:W;:E,«‘:i::M.‘?;\E@‘Wi_‘? ““““““ ?Sm@:wi_‘? “““““ %#?_@W;E« “““ L
® 2ZNga: Y HO: 40| Y QNY: aNY| 'V dIND: dno | ‘v oaav: ogav | v ans: ans| ‘v aav: aay
::_‘»%&;m‘wz_dm ““““““ %&;m@‘m:%»« “““““ %&5@38‘,« ‘:w‘u&?_@‘wiom,«‘3:::%)po;m@mi%,‘,w ““““““ 8P+HOMHO ‘W:%a “““““ %&5@@3%@ “““ ot
® ZN€a: Y HO: HO| 'V QN anvy| Y dWD: dWO | Y oaav: oaav| v ans: ans| v aav: aavy

o4 03 oa 00 og ov 06 08 0L 09 0s oy oe 02 ol 00

448

APPENDIX B INSTRUCTIONS

=75 n)

Table B.9-11 ea Instruction 6 (first byte

9LpPE | +EMH® V'9LpPE | VEMHD VLPPE: VHEMH® V'9LPPE V+gMH® | 9LipPE +EMH® | 9Lippe +EMHO'Y V'LpPE | VEMHD V'9LPPE | V'+EMH® a4
1ON | 10N HOX ! HOX HO! HO anv | any : aav | aay

opodo | qmde | VOO | vimdo | VOO veamdo | VOIDR V4IMHO | OIPdD. IMHD | OWDHOdD | IMHDY | VOO VMo | Voo veamdo | 5,
0N ION| d& HOX: | HOX| d® HO: HO| d& aNv: anv .do adav: aav

?m‘_wé&‘wzn_‘;m@i :«.?mw_;‘w V+HMHD <§sm+;>w VHMHD <§>m+;>w VHMHD VIMHIM Y HMED <§>m+:sw V+HMHD a+
10N 1ION| H® HOX HOX| H® HO: HO| HO® QN any 4O ans: ans| We aav: aay

IMEYOMED | FOMH® | VIMHYOM | VHOMH® | VIMGIOM! VHOMH® | VIMHOM! ViOMd® VMM voMdD o4
10N ION| H® HOX HOX| H® HO: HO| H® ANV anv Ho aav: aay

olptemHe | eMHD | volptEM | veMHD | VOIPIEM: VEMHD | VOIPIEM | VEMHD VoM vemdo a4
LON | ION| H® HOX | HOX| H® O HO| HO® ANV anv 4O aQav: aay

VOIDRM VIMED | VORI VaMdo VoM vamde v
aay

VIMHO 64
: aay

9Ipromee ‘Wio;m‘@ ““““ vomde o4
10N ION| H® HOX: HOX| H® HO! HO| H® aNv! HO aav! aay

" eprIME® E “““““““ ,‘\.‘?E‘M:«E ““““““ «%ﬁ;M:‘,W.Nm::::i‘«@BEM ::«.?E‘Wi?m ““““ -
10N ION| H® HOX: HOX| H® HO| HO| H® ONY 4o Qv aay

" gpromue mm “““““““ 33;4:«% ““““““ «.%&;M:‘?m::::if%&i ::ﬁ%&;‘w‘ Vod o4
SZW ION | H® movﬁ HOX| Ho mow HO| HO oz<w Ho oof aav

in?‘m;mm@:%:m‘m “““““““ «.‘m‘?w‘;‘mzﬁm ““““““ «%&;W:‘«.‘m‘mi‘3":‘33‘@?::::::: ::«@?W;‘Wi?m ““““ o4
10N ION| H® HOX ! HOX| H® HO: HO| H® ANV Ho aav: aay

" eprimue E “““““““ ,‘\,‘w?‘\;‘m:?m ““““““ «%@;WE?m::::i‘«,‘%‘QE ::«@?«3@ v "t
1ON | 1ON| H® HOX | HOX| H® HO! HO| H® QNV: He aav| aay

" gpremuo E “““““““ %%&5:«:8 ““““““ «@v«m‘;W.:«.‘m‘m_::::i«%&E “““““““ VEPHEM T vaprem ved ot
10N 1ON| HD HOX HOX| H® HO! HO| HO aNV 4o ans: ans | ¥e aav; aay

E%MN;P@:W::N@ “““““““ ,‘\.‘%ﬁi‘m:«»‘mm ““““““ «%&;M:‘,w.‘m‘m::::i‘«@u&i “““ V'80+IM ”:«nmm:i: ::«@%N‘;‘W:@N‘m ““““ ot
10N ION| H® HOX HOX| H® HO: HO| H® ANV HO® ans: ans| We aav: aay

i%#;m@ﬁam “““““““ ,‘\,‘%b;‘m:«é ““““““ «.%r‘;W‘:?m::::i4%:5 ““““““““““ V'8P+HIM W«.E::E ::«@u:;%?m ““““ 4
10N ION| H® HOX HOX| H® HO: HO| HO® QN 4O ans: 4O Qav: aay

" gp+omdD om “““““““ ﬁ%&i:«% ““““““ «%&;Wi«.‘om::::i‘«%&E “““““““““ PHOMED ” ::«.%a;‘w‘ Tvod ot
1ON | 1ON| H® HOX | HOX| H® HO! HO| H® QNV! v 0ans | ogns| He ans' ans| we aav| aay

04 03 oa 00 og ov 06 08 oL 09 05 oy [0z ot 00

449

APPENDIX B INSTRUCTIONS

=76)

Table B.9-12 ea Instruction 7 (first byte

Iglippe; I4EMH® | 9kppe +EMHO'Y | 9LipPR +EMHO'Y | 9Lippe +EMHO'Y | 9Lppe +EMHO'Y | 9tippe +EMYO'Y | 9LPPE | +EMH@'Y | 9Lippe +EMHD'Y a4
L ZNawa| v omeox: MGOX| 'V MHO. MHO| Y MONV. MONY| 'V MdNO. MdWO| 'VMOUQY. MOOQY| v Mens: mens | v mMaav. maay
I+ZMH® 9LPt0d® | +ZMHO'Y 9IP+0d® | +IMHO'Y 9Ip+0dD | +ZMHO'Y +ZMHO'Y 91p+0d® | +ZMH®'Y 9IPt0d® | +IMHO'Y +IMHO'Y _
ZNGMA | Y MHOX : MHOX| 'V MHO MHO Many MdNO | 'V MOOQY : MOaavy | ‘v mans mans maay
IHLMHD | ZMHHIMEO | HIMHB'Y | LMEHIMYED | LNMHHIMHD | +LMHO'Y IMEHIMED | +LMHB'Y | LMEHIMED ! LMHHLMHOD | +IMHO'Y a+
ZNGMA | 'V MHOX MHOX| V¥ MHO MHO | 'V MON MaNy MdIND | Y MOQQy : Y Maa maay
I4OMH® | ZMUHOMHED | YOMH®'Y | IMHYOMH® | *OMH®'Y | LMUHOMHO | +OMH®'Y LMEHOME® | +OMdD'Y o+
, v MANY | MANY v Maay | maay
IIPHEMHD | EMHD'Y IIPHEMHD | EMHD'Y a4
v+
| OPHIMHO | LMHO'Y | OLPHLMHD o
Y MHO | v MaNY |
9LP+OMH® | 9IP+OMHD | OMHO'Y .
L+
9+
" gptaME® |
°. S+
Y MANY
| epvMHO . TMHY | 8P+TMHD | 8PHMHD | .
Y MHO: , MdWD | 'Y MOaQY |
8DFEMHD | EMH'Y 8PHEMHO EMH'Y BPHEMHO | SPHEMHO 4
Y MHOX | MHOX| YV MHO: ‘v MOaav | Y MEns
2+
CSPHIMHO | IMEY | 8PHIMHO | IMEY | SPHIMHO . IMHY | ePHiME® | HMEY | 8PHIMED | IMEY 4
| gPtOMH® . OMHY | 8P+OMH® . OMHY | 8P*OMHD . OMHY | 8P*OMHD | OMHY | 8PHOMHD | OMHY ot
® ZNgMA: ZNSMA| YV MHOX ! MHOX| 'V MHO ' MHO |V MaNV: MONY | ¥ MdWD | MdWO | vV MOQQY i MOQQY | Y MENs | MENS | 'V maav: maavy
04 03 oa 00 og ov 06 08 oL 09 05 o oe 0z ot 00

450

APPENDIX B INSTRUCTIONS

9kippe | +EMHO V'OLPPE | Y4EMHO V'OLIPPE | V+EMHD V'OLpPE: Y+EMH® | 9Hppe | +EMHO 9Lippe | HEMHO'Y V'OHPPE | V4EMHD V'9LpPE . Y+EMHO

451

V'OLP+D !
d® MHOX !

9IP+0d®
'V MOENS | MOSNS | d® mans :

V' LMEFEM |
HO MHOX |

HIMHD | LME+IMYO |
'V MOENS |

IP+EMHD

V'OLPHIM |

V'OLPEM |
H® MHOX |

V' IMH® 9IP+IMHD | ,
MHO MOIN | ‘v MoaNs |

H® MHOX |

V'OLP+OM |
HO MHOX

VOMH® 9LPHOMH® | 9IPHOMED |
‘v MOENS

H)

V'8l

PHM

L+

9+

S+

77

V'8
HO® MANVY

V'BPHIM |
H® MHOX

V'BPHEM |
HO MHOX

8P+IMHD |

VEPHIM
HO MANY

VEPHIM |
HO MHOX

V'8PHOM
H® MHOX |

V'8P+OM
4O MANY MaNY MOIN | MOIN| 'V MOSNS: MOENS | €@ Mans':

4O Maav | maay

04 03 0a 00 og ov 06 08 0L 09 0s 014 (1 02 ol 00

Table B.9-13 ea Instruction 8 (first byte

9Hippe | +EMHO'Y | 9Mippe | HEMHD'Y 9lippe +EMHO'Y | 9LippE . HEMHO'Y

‘Y MNAId MOAID | ‘Y NAIQ nAid ‘ MO | Vo NN nnw
9lp+0d@ . +eMHO'Y 9Ip+0d® . +eMHD'Y 9IP+0d® : +cMHD'Y 9Ip+0d® : +cMHO'Y

| | MNINN Y NINN | nINN

HMHO'Y | IMHIMED | +MHO'Y

MNINA Yo NN

HOMHOY | LMHFOMH® | +OMHD'Y

MNINN nInN

9IPHEMHD | EMHD'Y IPHEMHE® EMHOD'Y m>>m©< 9IPEMYD m>>m©<

MAINN

MNAIQ Y NAd nAId NN

<MHO'Y CMHO'Y

¢MHO'Y 9Ip+eMd D ZMHO'Y 9IP+ZMH @

UPHIMED |
v MO |

8 +

L+

9+

H)

S+

78

v+

€+

¢+

0+

APPENDIX B INSTRUCTIONS
Table B.9-14 ea Instruction 9 (first byte

452

APPENDIX B INSTRUCTIONS

=79)

Table B.9-15 MOVEA RWi, ea Instruction (first byte

911ppe’ +EMH®'ZM | 9Lippe’ +EMH® M | 91ippe" +EMH®'SM | 9Lppe +EMH® VM | 9LIppE’ +EMH®'EM | 91Ippe" [+EMHOZM | 9Lippe’ +EMHO' LM | 9LppE’ wmgoom|
IMIYIAON: H VIAOW Y VIAON ¥ VIAOW Y VIAOW Y VIAOW| ZMHYIAOW | Y V3IAOW Y VIAOW ¥ VIAOW
P04’ | +IMHO'M ZMHD'IM TMHO'SM rTMue T MO | 9P | IMHD M STMHO M amoom|
IMIYIAON! H VIAOW 4 Y3IAOW 4 VIAOW 4 VIAOW Y VIAOW| ZMHY3AOW & Y V3IAOW 4 VIAOW 4 YINOW
o o o o' o o | Lo’ sz ey FETE
IMIVIAON: H YIAOW Y VIAON ¥ VIAOW Y VIAOW Y VIAOW| ZMHYIAOW : Y V3IAOW Y VIAOW ¥ VIAOW
nsonso’ onom oo oo oo oo o’ ondoran s “omoon|
IMIYIAON: H VIAOW Y Y3AOW 4 VIAOW 4 VIAOW Y VIAOW| ZMHY3IAOW | Y Y3IAOW 4 VIAOW 4 YINOW
IPIENMHD | EMHO LM oipseme’ aiptEmED aIpsEmHD” a4
MY YIAOW YIAOW YA YIAOW ZMH YIAOW LMY YIAOW

oo onsom s’ | sianse’ sz "
LMY YIAOW VIAOW MY YIAOW ZMH YIAOW LMY YIAON

Pt : IMgO MY | aip+imbe’ , apge’ APHIMED’ o
M VIAOW | YIAOW VA VIAOW | ZMH YIAOW | LMY YIAOW !

9IPHMHD’ | OMH®'ZMH | oiptomue’ | oM@ 'tMH 9IPHOMHD' 9IP+OMH D' on
LM YIAOW VIAOW MY VIAOW VIAOW | EMH YIAOW ZMH YIAOW LMY YIAON

HUMED' | IMHIMG | BUMEO | MHOM | SPHMHO' | MMSMY | BHMHD' | MHTMY gHMED SHMHD' | MM it
MY YIAOW YIAOW YA VIAOW VIAOW | EMH YIAOW ZMH YIAOW LMY YIAOW

PHMHD’ : OMHIMH | SPHOMHD' : ' gproMuD’ : | sp+omuo’ : METMY M0’ oMo’ 9MEIME | 8PrMED’ : o4
LM YIAOW VIAOW | 9MH YIAOW ' VIAOW | SMH YIAON MY YIAOW : VIAOW | EMH YIAOW ZMH VIAOW IMHVIAOW © YIAOW | OMH VIAOW : VANON
BPHSMUD : SMHZMY | 8PHGMHD : SMEOME | 8PHSMHD' : | ep+smue’ : SmMETME goMdD’ oMD" SMEIME | sprMHD" , SMEOME or
MY VIAOW | VIAOW | 9MH YIAOW | VIAOW | GMH YIAON YA YIAOW | VIAOW | EMH YIAOW ZMH VIAOW | IMHVIAOW : VIAOW | OMH VIAOW | VIAON
MO ” TMHLMYE | 8PHMED ” PMUOME | SPHMHD ” | ap+rmuD" : TMETMNY wmge’ 8PHMHD" : PMEIME | SPHMHD" ” PMEOME vt
LM YIAOW | VIAOW | 9MH VIAOW | VIAOW | SMH YIAON | M YIAON | VIAOW | EMH YIAOW ZMH VIAOW | IMEVIAOW | YIAOW | OMH V3AOW | VANON
BoHEMHD" , SMUZME | sp+emde’ , EMEOME | BPHEMED" , | go+emuo’ , EMETME BPHEMYD" sPHEMED’ CMU'IMYE | epHEMED’ , oMEOME ot
MY YIAOW VIAOW | 9MH YIAOW VIAOW | SMH YIAOW YA VIAOW VIAOW | EMH YIAOW ZMH YIAOW LMY YIAOW VIAOW | OMH YIAOW VIAOW
BpreMuD" : MUY | spremEe’ : IO | BPreMED" : | gpremue’ : MM MO’ BPIEMED NI | 8pHEMED’ : MM ot
LM VIAOW YIAOW | 9MH YIAOW : YIAOW | GMH VIAON YMH YIAOW VIAOW | €MY YIAOW ZMH YIAOW IMHVIAOW © YIAOW | OMH VIAOW | VANON
BOHMHD" , IMEZME | 8p+imde’ : IMBOME | 8p+iMED" | go+imeo’ : IMETME CAUCCI P’ IMEIME | 8PHLMED' ” oMY L
MY VIAOW | VIAOW | 9MH VIAOW | VIAOW | SMH YIAOW YA VIAOW | VIAOW | EMH YIAOW ZMH VIAOW | IMHVIAOW | V3AOW | OMH VIAOW : VIAOW
BPHOMHED" : OMHZMY | sP+omue" ” OMH'OMH | 8P+*OMH® ” OMH'SMH | 8P+HOMEO’ : OMH'YME | 8P+OMH® ” OMHEMH | 8P+OMHD ” OMHZMH | 8P+OMHD’ ” OMH IME | 8P+OMHD’ ” OMHOME o
LMH YIAON | VIAOW | MY YIAOW | VIAON | SMH VIAONW! VINON | #MH VIAOW | VINOW | EMH VIAONW | VINOW | 2MH YIAOW | VIAOW | HMHVIAON | V3AOW | OMH VIAOW | YIAOW

04 03 oa 09 og ov 06 08 oL 09 05 ov e 0z ok 00

453

APPENDIX B INSTRUCTIONS

=7A W)

Table B.9-16 MOV Ri, ea Instruction (first byte

9lippe
‘9

9IP+0d0

LMY+IMHD !

‘sS4 AOW

LMNE+OME® |

‘SH AOW

IIPHEMED |
‘SH AOW:
9LP+ZMHEO |
‘4 AOW!
GLPHMHO |
‘SH AOW!
9LPHOME® |
‘54 AOW:
HMED |
‘SH AOW:
8P+OMHD |
‘SHAOW !
8PHSMHO |

9kippe

‘e Ol

91P+0d®
‘e AOW
LMY+IMHD :

‘e AOW

LME+OME® |

't AOW

IP+FEMHD :

9LPHEMHD
el AW
9IPHMHD |
e AW

8POMHD |
‘2 AOW :

4+

3+

a+

o+

a9+

v+

6+

8+

L+

9+

S+

v+

€+

¢+

0+

0S

454

APPENDIX B INSTRUCTIONS

7B)

Table B.9-17 MOVW RWi, ea Instruction (first byte

455

OHPPE'L | YEMH®'LM | OHPPE'9 | +EMHO®'OM| OMPPE'S | +EMHB'SM| OLPPEY | EMH®'YM | OHPPE'E | YEMU®'EM | OLPPEZ | +EMH®'ZM | OMPPE'L | EMH®'IM | 9LPPED | +EMH®'OM
MH MAON: H MAON| MH MAOW: H MAOW| MH MAOW MAOW M MAOW MH MAOW: H MAON | Md MAONW : MH MAOW: H MAOW

9IP+Od®’ | +ZMHO®'LM |9+P+0dD’ +ZMH® ‘9M |9+P+Od D" 91p+0d 0" 91P+0d 0" +ZMH O OM
LMd >>>O_2W d MAOW | 9MH MAOW | H MAOW| SMH MAOW EMd MAOW OMH MAOW: H MAOW

LMHHIMH® +EMH® ‘OM
‘OMH MAOW:

LMHHOMHD |
‘OMH MAOW:

9IP+DdD’ | +ZMHO'IM | 9HP+OdD’
ZMH MAOW: H MAOW | EMY MAOW |

LMY+IMHO
‘ZMd MAOW !

LMHHOMH® |
‘ZMH MAON

tsm+:5m©w TLMHO LM N>>m+§>m®w +IMHO OM | LMEFIMHO
‘LMHMAOW: H MAOW | ‘9MH MAOW ! ‘SME MAOW

+LMH® ZM tsm_i>>m©w
‘HMH MAOW

LMH+OMHO |
‘LMY MAOW

LMHHLMED |
‘EME MAOW

LMHHOME® : +OMHO'LM | LMH+OMHO |
HOYMAOW: H MAOW | HOY MAOW |

IIP+EMHD | EMHO'ZMY | OLP+EMHD 9IPHEMHD 9IPHEMHD 9IPHEMHD IIPHEMYD |

UMHMAON: MAOW | ‘9MH MAOW ‘EME MAOW | ‘20 MAON ‘LMK MAON | ‘OMH MAOH
| IPIIMED | ZMHD'OMH| OIPFIMHD | ZMHO'SMH | IPHIMHD | MHD'TMY | oIpIMHD | UIPHIMED | IMHD'IMY | 9IPIIMHD | SMHO MY | 9IPHIMHD | SMHO'OMY

“IMH MAOW ‘MY MAOW | 2 MAOW | “LIH MAOW |

UPHIMED | IpHiMED | 9IPHMED | OIPHMED | IMH'IMY | IIPHIMED |

‘OMH MAOW ‘EMH MAOW | ZMH MAOW | “LME MAOW | ‘OMY MAOW:
OIPFOMHD | OMHO'ZMH | 9IP+OMH® | OMHO'OMH | 9IPHOMHD | OMHO'SMH | 9IPHOMHD | OMHO T | 9IPHOMED 9IPHOMYD | OMHO MY | 9IPHOMH® | OMHO'LMY | 9IPHOMH® | OMHO'OMY

‘LMY MAOW | MAOW | ‘9MH MAON | ‘EME MAOW | ‘ZME MAOW | ‘LM MAOW | ‘0MY MAOW
8PHMHD' | IMHIMH | BPHMHD' | LMHIMH |8PHMH®' | MH'IMH | SPHMHO' | MHOMY

LM MAOW: MAON 2MH MAON | LM MAOW MY MAOW!
8PHOMHD' | OMHZMH 8P+OMHD’ | OMHZMH |SPFOMHO®' | OMH'IMH | 8POMH®' | OMHOMH

IMH MAOWN: MAOW ZMH MAOW | LMY MAOW | MY MAOW!

gEMED’ |
ZMH MAOW |

8PHSMED’ |
LMY MAOW |

eMED’ | WHME D' |
LMY MAOW | MAOW | 9MH MAOW !

8P+yMH O
MY MAOI

WHIMED’ |
MAOW | 2Md MAOW !

BHMED |
LMY MAOW |

WIMED |
OMY MAOW:

8P+EMHO' 8P+EMHD'

LMH MAOW |

8P+EMHD’
OMH MAOW:

| EMH'IMH | 8P+EMHO’
MAOW | 9MH MAOW |

8P+eMH @
M MAOW :

8PHZMHD"
LMH MAOW

8p+eMHD"
0MH MAOW:

| ZTMH'LMY |8P+ZMED"
MAOW | 9MH MAOW :

IMHZME |8 MHD"
MAOW | SMd MAOW |

gHIMHD" +MHD" gHIMHD |
ZMH MAOW LMY MAOW | OMY MAOW:

OMH'ZMH | 8P+OMHO® OMH'OMY |8POMHO’ OMdEMH |8p-OMH®’ | OMHTMY [sprOMH®’ | OMHLMY | 8PFOMH®’ | OMHOMY
LMY MAOW | MAOW | 9ME MAOW | MAOW | SME MAOW ! MAOW | ¥MH MAOW | MAOW | EME MAOW | MAOW | ZME MAOW ! MAOW | LMH MAON | MAOW | OMH MAOW MAOW

04 03 0a 00 0og ov 06 08 0L 09 0s or og 0c [o]3 00

ZH9LPP . HYEMH® | 9d9LIPP . 9H+EMHD
e AOW ! AOW e A0

SHYEMH® | pdOLIPP: vHYEMH® | €d9LIPP. €H+EMH® | cd kPP . cd+eMd® THOLIPP | [H+EMH® | 0H9LPP . OH+EMH®
AOW e AOW! AOW : AOW e AOW: :

9H'9IP*D |
d NOW:

oHIME* | LML

MH® AOW

OH'ZME*
MH® AOW |

2 LMEH0 |
MH® AOW

2H'OIPHE |
MH® AOW !

0H‘9LP+E |
MH® AOW :

2P+ | 0d'9p |

MH® AON | Md® AOW | AOW
9d'9lP+0 | PH'OLPHO | 2d'9lp+0 ! 04'9LP+0 | 0H'OMH®
MH® AOW | MH® AOW | MH® AOW | MH® AOW | AOW

7C W)

L+

9+

S+

v+

€+

¢+

L+

Table B.9-18 MOV ea, Ri Instruction (first byte

APPENDIX B INSTRUCTIONS

04'8P+0M
HO AOW! AOW

04 03 oa 00 og ov 06 08 0L 09 0S oy 0g 0c ol 00

456

APPENDIX B INSTRUCTIONS

=7D n)

Table B.9-19 MOVW ea, Rwi Instruction (first byte

LMH'9} LMH+EMY | 9MH'9} IMH+EMY | SMH'9L SME“EMY | PMH‘9} PMH4EMY | EMH'9} SMH+EMH | oMY} CMH+EMY | ML IME+EMY | OMH'9} OMH'+EMY 4+
o o e o MON| 99 WON| © WAON| 5P MON: O MON
LMH'9IP IMH9LP : SME'9IP : PME'9IP : EMH'9IP : SMU+ZMY | ZME'9IP : IMH+ZMY | HME'9IP : M +ZMY 34+
1048 ON (W04OMON. ® ON ‘040 WON. ® MON| “OdOMON © WAON| ‘OdDMON. O IMON| ‘045NON. 3 WAON| ‘040MAON. O MON
LN LME+ , IMH‘LME+ , IMH+IMY | SME'ZME+ SME+EMY | PMYZME+ PME+IMY | EME'ZME+ SMU+IMY | SMY'ZMH+ CMEHIMY | MY LM M +EMY a+
VNSO ON, @ WON| INSOMAON | © MWION WSO WION| © MON| IWHDIMON O WAON| INSOMION. ® WAON| WHOWON © WON| WdOWON 8 Won
LMY LM+ | LMH+OMY | 9MH'ZME+ | IMH+OMY | SMH'ZMb+ | SME+OMY | PMY' LMY+ | PMH+OMY | EMH'ZMY+ | SMH+OMY | ZMH'ZMd+ | IMH+OMY | MY LM+ HMH+OMY o+
MO IO, © MAON| ONSOWON, © WAON| OMSOMAON © WON| OWSOWION. O MWION| OMIOWION © WON| ONHDMON, O NAON| ONSDWMON. 6 MON
| IMH'9IP+ : : PMH'9IP+ : | CME9IP+ ! IMH'EME® a+
EMHO MAOIN EMHO MAOIN EMHO MAOIN MAOW
LMH'9IP+ , IMH'9IP+ , ism,m:i : TME'9LP+ : IMHTMHD | HME'9IP+ : §>mm>>m@ v+
M@ MAON MAOW | 2MH® MAOIN CMH® MAON CMH® MAOWN MAOW | 2MH® MAOW MAOW
9D e | e ” OO MUD | NEINEE | WO D ot
HME® MAOW: MAOW | HMH® MAOW MAOW| FMH® MAOW: LMH® MAOW IME® MAOW MAOW | HMH® MAON MAOW
gt :;W:p‘?‘%m@‘ omdo W;:@?i@:%_?i‘w ““““““““ P aOIP | NSONS | LNEUIP | LNSONSO | oMt | ot
OMd® MAOW: MAOI | OMH® MAOW MAOI| OMH® MAOW: 0MH® MAOW 0MH® MAOW MAOW | OMH® MAON : MAOI | OMH® MAONW : MAOWN
ML MEIME | OMHIL OMNIMH | SWHEPRL . SMHIMY | DMWSRL i GMELM | OMHSPRL o OMUMY | GWSEPR OWELWE | NGB e | ML OMELME Ly
MH® MAOW: MAOM | MH® MAOW : MAOM| MH® MAOW: MAOM | MH® MAOW MAOM| MH® MAOW: MAOW | MHD MAOW : MAOW MH® MAOW MAOW
s | oo | GO SO | G | SWHGNS | WS WOl | ONSWNO | CUSONS | MW | GMONS | WO | e | oW wos |
MH® MAOW MH® MAOW : MH® MAOW : MAOW| MH® MAOW: MH® MAOW : MAOW | MH® MAOW : MAOW
s aioos s oo | owies s s | owws owsa |
MH® MAOW MH® MAOW MH® MAOW MAOW| MH® MAOW: MH® MAOW MAOW | MH® MAOW MAOWN
e e | M | S s e | o W | onew e | wwwe e | owew e |
MH® MAOW: MAOW | MH® MAON : MAOW| MH® MAOW: MAOWN | MH® MAOW MAOW| MH® MAOW: MAOW| MH® MAOW : MAOW | MH® MAOW : MAOW | MH® MAOW : MAOW
s WHONS | SN GNTNS | W NS | WG WM | WD OO | M | AN | W DoN | owiene .
MH® MAOW: MAOWN | MH® MAOW MAON| MH® MAOW: MAON | MH® MAOW MAON | MH® MAOW: MAON | MH® MAOW : MAOW | MHD MAOW MAOW | MH® MAOW MAOWN
BT T T T T T e T T T T T i VT Y T [V T I
MH® MAOW: MAOW | MH® MAOW : MAOW| MH® MAOW: MAOW | MHD MAOW : MAOW| MH® MAOW: MAOW| MH® MAOW : MAOW | MH® MAOW : MAOW | MH® MAOW : MAOWN
mwn o | o Cawi | e e | om | ome | owwe | ome | e i | owen | .
MH® MAOW MAOW | MH® MAOWN MAOW| MH® MAOW MAON | MH® MAOW MAOW| MH® MAOW MAON| MH® MAOW MAOW | MH® MAOW MAOW | MH® MAOW MAOWN
UGN | SN0 | WOWS | SN SIONS | W0 | WO | OO | CHNON | o0 GiGONS | 0 | dons | w0 oo |
MH® MAOW: MAOW | MH® MAOW MAOW| MH® MAOW: MAOW | MH® MAOW : MAOW| MH® MAOW: MAOW| MH® MAOW MAOW | MHD® MAOW : MAOW | MH® MAOW : MAOW
] 03 od 00 09 ov 06 08 0L 09 0g oy 0og 0c (o] 00

457

APPENDIX B INSTRUCTIONS

=7E n)

Table B.9-20 XCH Ri, ea Instruction (first byte

9kppe +EMH®'/H | 9MPPE | +EMH®'OH | 9Lippe | tEMH®'SH | 9MLPPE | +EMY®'PH | 9LIPpE | +EMYD'EY | 9kppE | +EMY®'2H | 9HPppE | HEMHO® I | 9kppE | +EMH®'0Y 1+

““““““““““““ HOX
+ZMY® ‘04 2+

“““““ HOX
+LMH® ‘04 a+

‘4 HOX | ‘o4 HOX ! HOX| ‘sd HOX: HOX| ‘Pd HOX: HOX | ‘edl HOX | ‘24 HOX ! HOX | ‘id HOX: HOX | ‘0d HOX: | HOX
Emésm@w +OMH®‘ Y Emésm@W +OMH®0H o4

‘l4 HOX! HOX | ‘O HOX: HOX
a+
v+
IMd®‘ed m%:%@f;m@ﬁm w?_;m@w_\sm@é @_?;\E@W LMd® ‘04 6+

o pdHOX: o HOX) 'W HOX: HOX| ‘ed HOX: | HOX | W HOXD HOX | ‘o HOX: | HOX
@Gésm@w OMHO'YH | 9LPHOMH® | OMH®'Y 9LPHMED | OMHO'2H @Fu,ro;m@wesm@»_m o_?ozgwo\sm@dm 8+

M HOXD o HOX| BW HOX: HOX| 'ad HOX: HOX| HoOHOXE HOX| ‘OH HOX: | HOX
8PHLME® 140 It

““ HOX | ‘0 HOX: ~ HOX
%ésgw o

““““““““““““““““““ HOX| O HOX: HOX
BPYSMHD | -

““““““““““““““ HOX | ‘04 HOX'!

” %ism@W PH'H 8P+HMHO W:‘EME “““““ W?EM@:W pH'0d -

‘94 HOX ! HOX| ‘sd HOX HOX | ‘¥ HOX! HOX ‘4 HOX ! HOX | ‘04 HOX'! HOX
3?‘?@@?@?_ “““““ MU | oo | %‘%@3&; “““““ HEMED | ?5@4 ewod ot

‘94 HOX ! HOX| ‘4 HOX HOX| ‘PH HOX! HOX ‘4 HOX: HOX | ‘04 HOX: HOX
;‘?imms&g “““““ ?‘%@, s | ?‘N‘?@W;‘N&m “““““ ?;w@:wsm? “““““ ?N‘?@%?m ““““ ot

‘94 HOX : HOX| ‘sd HOX HOX | ‘P4 HOX: HOX M OHOX HOX | ‘OH HOX: HOX
CeHMEe | oy | PHMEO | LS | PHMED | luhd 8PHMID | L PHMEO W7 | sPMED W | PHMYO | lod Ly

‘04 HOX: HOX| ‘SH HOX! HOX | ‘vH HOX: HOX | ‘ed : HOX | ‘24 HOX : HOX | ‘W HOX: HOX | ‘04 HOX: HOX
3?5@@% ““““““ ?E@, owed | ?‘e‘s‘m@%%é:s gpromd® m %?";i;?;m@ﬂag “““““ M‘?%@W‘?‘m_ “““““ ?EM@;W‘ ooy or

‘94 HOX ! HOX| ‘i HOX: HOX | ‘#d HOX: HOX | ‘ed HOX: HOX | ‘24 HOX ! HOX | ‘ld HOX': HOX | ‘04 HOX: HOX

04 03 0a 00 og ov 06 08 0L 09 0 o oe 02 ok 00

458

APPENDIX B INSTRUCTIONS

=7F W)

Table B.9-21 XCHW RWi, ea Instruction (first byte

9Lippe +EMH®'ZM | 9Lppe +EMH@'9M| 9Lppe . +EMHO'SM | 9bippe T +EMHO®'M| 94ippe . +EMH@'EM| 9kppe T +EMH®'ZM| 9bippe T +EMH®'HM| 9lppe D oemdoom]
‘LMY MHOX: ‘SMH MHOX ‘TMH MHOX: ‘SMH MHOX! H MHOX| ‘ZMHMHOX: H MHOX| ‘LMHMHOX: ‘OMH MHOX! H MHOX
OIPHOdD; FIMHOM| 9IPrOdD !l tamMHOOM| 9IPHOdD: HIMHO'SM | 9IPFOdD; +IMHOTM | 9IPHOdD! +EMHD'EM ﬁ?on_@W +2MHO ‘ZM @_?oh_@w 9IP*0dD | +ZMHD OM a4+
‘SMH MHOX ‘TMH MHOX: 'SMH MHOX! H MHOX| ‘ZMd MHOX: H MHOX| ‘LMH MHOX:
:N%r;m@ ““““““““ Em_r;m@‘w‘:L;m@m; "Em_r;m@‘m:ai‘m@‘@;‘ LMD | LM IMEO | a+
‘PME MHOX: ‘EMH MHOX! H MHOX| Z2MH MHOX: H MHOX| ‘LMY MHOX: ‘OMY MHOX
L d ' o+
, , , ‘TMH MHOX | H MHOX ,
9?%&@ osé\&@W mssgm@w "‘&uh,‘m;m_‘@‘mim;m@gm wsé;m@w EMHD LMY EMHO OMY a+
MY MHOX: MHOX| ‘EMH MHOX: MHOX | ‘ZMH MHOX ! MHOX | “HMH MHOX' MHOX MHOX
ZMHO LMY 9lp+eMHe | 9IPtIMHD; ZMH®YMY ms&;m@w ZMHO ‘EMY ms&;m@W TMHR'TMH | 9IPZTMHD | IMHD'IMY ZMHD OMY V4
‘IMH MHOX MHOX ‘SMH MHOX ‘TMH MHOX: MHOX| ‘EMH MHOX MHOX | ‘2MH MHOX | MHOX | ‘LMY MHOX MHOX MHOX
‘:ﬂuw_;m‘@”i:sm_@w? | iw&:;m@w IPHIMHE. LMHO 7MY wsx\sm@w IMHOEME | OIPHIMHE | IMHOTME | SIPHIMHD! LMHO'IMY| OIPtiMHD: IMH® ‘OMY 6+
‘OMY MHOX | MHOX| ‘SMY MHOX: MHOX | ‘7MH MHOX: MHOX| ‘EMH MHOX: MHOX | ‘ZMH MHOX MHOX| ‘LMY MHOX: MHOX MHOX
OMHO'9MH| 9IPYOMHD: OMHO'SMH| 9IPHOMHD! OMHO'VMH :9?&5‘@%‘Sm@‘m‘;‘m :‘m‘aa;m@%‘o;m@w;m_::o‘v‘ua;m_@mzo‘;m@‘gm " 0MH® OMH o+
MHOX| ‘SM MHOX' MHOX| ‘7MY MHOX: MHOX| ‘EMH MHOX MHOX | ‘ZMH MHOX | MHOX | ‘LY MHOX MHOX MHOX
:i::;:;‘S‘m@;m;:iaum;m@ﬂcsm‘_.w? ““““ %mgm_‘@w;m«;m ““““ ?Sm@‘wzg‘mgm “““ %%,N;m_‘@%gm.w\sm::‘::w‘?;m_@ﬂ%m;‘;mi LMHOMY L4
‘SMH MHOX MHOX| ‘7MH MHOX: MHOX| ‘EMH MHOX: MHOX | ‘ZMH MHOX ! MHOX | ‘IMH MHOX' MHOX MHOX
ey VR m?@;m_‘@w Mg TME | %a;m@w‘ Tomdeme | 8PHOMHD TOMHZME | sproME® ToMETME IMH MY o4
‘YME MHOX; MHOX| ‘EMH MHOX | MHOX | ‘ZMH MHOX | MHOX | ‘IMH MHOX MHOX MHOX
, UpMED) SMHEMd | BPHEMHD | SMHTME |)| SMHIME | PHSMED | ¢ SMHOME ot
: ‘SMH MHOX MHOX | ‘ZMH MHOX MHOX MHOX
8oL MY MY ::w?wgm@‘wz«im@gm “““ @?vgm‘@‘w‘gm,wgm‘i::w‘i\sm‘_@wz;m;‘gm? %+§>m@‘wi$smd;m: bt
‘TMH MHOX: MHOX| ‘EMH MHOX: MHOX | ‘ZMH MHOX ' MHOX | “EMH MHOX: MHOX | ‘OMH MHO MHOX
EMY'ZMY HEM L MUY i My : [: N et
‘LMY MHOX: MHOX ‘TMH MHOX: MHOX| ‘EMH MHOX: MHOX | ‘ZMH MHOX : MHOX MHOX
::%ﬁ;m@‘” “““““““““““““““““““““ , ::@?Ngm@‘w TMNHTMY | 8pteMED W:N‘imﬂ;‘\a ““““““““““““““““ 24
TMY MHOX | MHOX | “HMH MHOX MHOX
: %:;x@w INHEME T BOFIMED MW BaFARE .
‘SME MHOX MHOX ‘ZME MHOX | MHOX | “HMH MHOX MHOX
, , ::w‘?&;m@w “““ m?o;m_‘@:wzogmii ““““ w?o‘\sm@‘w‘ “omdgeme] wu«ogm@‘w‘o‘\sm@sm) mzaimﬁgmf , o0+
LMY MHOX: MHOX| “OMH MHOX MHOX| ‘SMY MHOX MHOX| ‘7MY MHOX! MHOX| ‘MY MHOX MHOX | ‘MY MHOX | MHOX | LMH MHOX' MHOX| ‘OMH MHOX' MHOX
o4 03 0a 00 og ov 06 08 0L 09 0 oy o 0z oL 00

459

APPENDIX C Timing Diagrams in Flash Memory Mode

APPENDIX C Timing Diagrams in Flash Memory Mode

Each timing diagram for the external pins of the MB90F594 in the Flash Memory mode
is shown below.

m Data read by Read Access

Figure C-1 Timing Diagram for Read Access

t

r RC 1
1 1
AQ16 to AQD X Address stable X
1 . 1
: f/-\L,L 1 1
1 e
J— ' 1 1
ce \ . T\
T 1
1 1
1 1
! le—toe—=; : :<—tDF—>:
1
] i]
OF ! N\ ! ?r | \
. toen , ! ! :
r 1 1
1 1 I 1 1
WE ' ' ' ' \
1 1 1t
_/ | . | , ©oH
B CE’
1
1

High
impedance

DQ7 t0 DQO e High impedance _(<< < { Output defined i > >)—

m Write, Data polling, Read (WE control)

Figure C-2 Write Data polling Read (WE control)

Third bus cycle
' e ' Data polling

AZEEX T % XXX X)I X:

Le— tyc —d le——tre——!
h

§1
;

1
1
[B ' b 1! 1 :
| e [WHWH1 1 [[
| 1 N ' ! | [L
N 1 1 1 1 T I |
WE; | 1 !
/ * f S‘ / [
1 (m h ! 1 1 ltog, .
v tes : ! : -
| e oy | : :) toE!
'
\ | \ g
bor 20) €D &
to [T ' I : ! ! !
pQo tpg besd ! |
o [
! 1 ton
: |
5.0 T ;
Ly
'otce

PA: Write address

PD: Write data

DQ7: Reverse output of write data
Doyr: Output of write data

Note: The last two bus cycle sequences out of the four are described.

460

APPENDIX C Timing Diagrams in Flash Memory Mode

Write Data Polling Read (CE control)

Figure C-3 Timing Diagram for Write Access (CE Control)

Third bus cycle

Data polling
R S S o S e—
...... A d
h—t —l
we v tas | tan
, fwH—1 [
1
1 ! 1
Vo |
1 e loHwy !
1
N 1
o Vi : . ! _/—
'
1 1 tcp. : 1 ' '
1 ™, : T twHWH1 1
1 1 1 | ' 1 1
__ / _l_\i |f_!k.' f_\ 1) S——
CE 1 \ \ 1 1
1) | — 1
HI—H 1 : tepH! 1
vlws ey \ 1
L L ton h
| 1
tos !

PA: Write address

PD: Write data

DQT: Reverse output of write data
Doyt: Output of write data

Note: The last two bus cycle sequences out of the four are described.

Chip Erase/sector Erase Command Sequence

Figure C-4 Timing Diagram for Write Access (Chip Erasing/Sector Erasing)

Tas 1 TaH
,<—>|
AQ18

N X 7AAAAH X 75555, X TAAAA, X TAAAA, X 75555, X SA* X)<:

g

1
1
:
L 1
WE !
/N \./f | \./ v/ VV/ v \/
|
: tes’ -_H r—toH
1 | f— f— f— f—
be7 N _AAA, 55, N 80, \—/ Ar; \—55, \—/ 10,30,
1 1
DQo 11— Le—1ps
L
Vee A :
A
' tycs

Note*: SA is the sector address at sector erasing. 7AAAAL (or 6AAAAL) is the address at chip
erasing.

461

APPENDIX C Timing Diagrams in Flash Memory Mode

m Data Polling

Figure C-5 Timing Diagram for Data Polling

v len ,
[a— \ |
_ ! 1
CE 1 \ [
1 '
1 ! : v toe pe—Ipp—m
1 | 1 1
T 1 1
OE 1 : \ ! f :
1 1 I k ' 1
1 toen L 1 : : 1
1 1 ' . | 1
WE Z 1 : : 1 \
: :‘_tCE_-' ! ton :
l : * T High
1 J77E ! ! : impedance
—_—\ — —
DQ7 > s DQ7 X DQ7 = Valid data

n 1
twHwWH1 OF ! 1 1
1 1

' twHw2 ,
1
DQ6 to DQO Y ((((DQ6 to DQO = Invalid }))

T
L]
' loe

Note*: DQ7 is valid data (The device terminates automatic operation).

m Toggle Bit

Figure C-6 Timing Diagram for Toggle Bit

-
P

Data (DQ7 to DQO) >—< DQ6 = Toggle >—< DQ6 = Toggle H DQ6 = Stop togg"ﬂ@)‘(DC?OQ =7 \;glid>_
e

T
Note*: DQ6 stops toggling (The device terminates automatic operation).
m RY/BY Timing During Writing/erasing

Figure C-7 Timing Diagram for Output of RY/BY Signal during Writing/Erasing

e\ /

_,: Rising edge of last write pulse
1

RY/BY

1 1
tgusy

462

APPENDIX C Timing Diagrams in Flash Memory Mode

RST and RY/BY timing

Figure C-8 Timing Diagram for Output of RY/BY Signal at Hardware Reset

Enable Sector Protect/verify Sector Protect

Figure C-9 Enable Sector Protect/Verify Sector Protect

AQ18 to AQY X SA X Shy

AQ8, AQ2, and AQ1 X (AQ8, AQ2, AQ1) = (0, 1, 0)

1
LEE RN

MDo 12V
5V et A,

1
5V _I/: \
1
_ tLHT
OE

1
1
1
1
1
! 1
— : typ 7l
X 1
1
1
1
1
1

1
1
WE v twpp !
1T 1
D\ / !
1 f 1
]] 1
CE , ' loesp | :
r tesp ! I /—
A '
' 1
DQ7 to DQO |
X '
IH
! 01y
! N/
1
}q—tOE——l
'

SA,: First sector address
SAy: Next sector address

463

APPENDIX C Timing Diagrams in Flash Memory Mode

m Temporary Sector Protect Cancellation

Figure C-10 Temporary Sector Protect Cancellation

2Vemuuasenm bl 4 5V
MD1 5 V e/t) V"
1 1
1 1
1 1
I]
CE | ! T
' * / \ “ / 1
1 . 1
1 | 1
1 . 1
WE T | Y
1 \ / 1
] 1 1
L tvLHT : Write/erase command —————!
RY/BY ! sequence

(I

464

APPENDIX D List of MB90590 Interrupt Vectors

APPENDIX D List of MB90590 Interrupt Vectors

The interrupt vector table to be referenced for interrupt processing is allocated to
FFFCO0y to FFFFFF in the memory area and also used for software interrupts.

m List of MB90590 Interrupt Vectors

Table D-1 MB90590 Interrupt Vectors

Table D-1 lists the interrupt vectors for the MB90590 series.

Software Vector Vector Vector Mode Interrupt Hardware interrupt
interrupt address L address M | address H register No.
instruction
INT O FFFFECH FFFFEDH FFFFEER Unused #0 None
INT 7 FFFFEOy FFFFE1y FFFFE24 Unused #7 None
INT 8 FFFFDCy FFFFDDy FFFFDER FFFFDF #8 (RESET vector)
INT 9 FFFFD8y FFFFD9y FFFFDAY Unused #9 ROM correction
INT 10 FFFFD4y FFFFD54 FFFFD6y Unused #10 <Exception>
INT 11 FFFFDOy{ FFFFD1y4 FFFFD24 Unused #11 Time base timer
INT 12 FFFFCCy FFFFCDy FFFFCEY Unused #12 External interrupt
(INTO to INT7)

INT 13 FFFFC84 FFFFC94 FFFFCARH Unused #13 CAN 0 RX
INT 14 FFFFC44 FFFFC54 FFFFC64 Unused #14 CAN 0 TX/NS
INT 15 FFFFCOy FFFFC1y FFFFC24 Unused #15 CAN 1 RX
INT 16 FFFFBCH FFFFBDy FFFFBER Unused #16 CAN 1 TX/INS
INT 17 FFFFB8H FFFFB9y FFFFBAY Unused #17 PPG 0/1
INT 18 FFFFB4y FFFFB5y FFFFB6y Unused #18 PPG 2/3
INT 19 FFFFBOy FFFFB1y FFFFB2y4 Unused #19 PPG 4/5
INT 20 FFFFACH FFFFADY FFFFAEY Unused #20 PPG 6/7
INT 21 FFFFAS8 FFFFA9 FFFFAAY Unused #21 PPG 8/9
INT 22 FFFFA4y FFFFAS5H FFFFAGH Unused #22 PPG A/B
INT 23 FFFFAOH FFFFAl1L FFFFA24 Unused #23 16-bit reload timer 0
INT 24 FFFFOCH FFFFODy FFFFOEY Unused #24 16-bit reload timer 1
INT 25 FFFFO8H FFFF99 FFFFOAH Unused #25 Input capture 0/1

465

APPENDIX D List of MB90590 Interrupt Vectors

Table D-1 MB90590 Interrupt Vectors (Continued)

Software Vector Vector Vector Mode Interrupt Hardware interrupt
interrupt address L address M address H register No.
instruction
INT 26 FFFF94,, FFFFO5, FFFF96, Unused #26 Output compare 0/1
INT 27 FFFF90H FFFF91H FFFF92H Unused #27 Input capture 2/3
INT 28 FFFF8CH FFFF8DH FFFF8EH Unused #28 Output compare 2/3
INT 29 FFFF88y FFFF89 FFFF8AL Unused #29 Input capture 4/5
INT 30 FFFF84y FFFF85y FFFF86y Unused #30 Output compare 4/5
INT 31 FFFF804 FFFF81y FFFF82y Unused #31 A/D converter
INT 32 FFFF7CH FFFF7Dy FFFF7EQ Unused #32 I/O timer/watch-dog
timer

INT 33 FFFF784 FFFF79y4 FFFF7AQ Unused #33 Serial /0
INT 34 FFFF744 FFFF754 FFFF764 Unused #34 Sound generator
INT 35 FFFF70y FFFF71y FFFF72, Unused #35 UART 0 RX
INT 36 FFFF6CH FFFF6DY FFFFGEY Unused #36 UART 0 TX
INT 37 FFFF684 FFFF69y FFFF6AH Unused #37 UART 1 RX
INT 38 FFFF64y FFFF65y FFFF66 Unused #38 UART 1 TX
INT 39 FFFF60H FFFF61y FFFF62y Unused #39 UART 2 RX
INT 40 FFFF5CH FFFF5Dy FFFF5ER Unused #40 UART 2 TX
INT 41 FFFF58 FFFF59y FFFF5A Unused #41 Flash Memory
INT 42 FFFF544 FFFF554 FFFF564 Unused #42 Delayed interrupt
INT 43 FFFF504 FFFF51y FFFF52y Unused #43 None
INT 254 FFFCO44 FFFCO5y FFFCO6H Unused #254 None
INT 255 FFFCOO0y FFFCO1y FFFCO2y Unused #255 None

m Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers

466

Table D-2 summarizes the relationships among the interrupt causes, interrupt vectors, and

APPENDIX D List of MB90590 Interrupt Vectors

interrupt control registers of the MB90595 series.

Table D-2 Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers

) Interrupt vector Interrupt control
Interrupt cause Iillegrs register
Number Address Number Address

Reset N #08 FFFFDCy — —
INT9 instruction N #09 FFFFD8y — —
Exception N #10 FFFFD4y — —
Time base timer N #11 FFFFDOy
External interrupt (INTO Y1 #12 FFFFCCy ICROO | 0000BOH
to INT7)
CAN 0 RX N #13 FFFFC8y4

ICRO1 0000B14
CAN 0 TX/NS N #14 FFFFC4y
CAN 1 RX N #15 FFFFCOy

ICRO2 0000B24
CAN 1 TX/NS N #16 FFFFBCy
PPG 0/1 N #17 FFFFB8y

ICRO3 0000B34
PPG 2/3 N #18 FFFFB4
PPG 4/5 N #19 FFFFBOy

ICRO4 0000B4y
PPG 6/7 N #20 FFFFACH
PPG 8/9 N #21 FFFFA8

ICRO5 0000B54
PPG A/B N #22 FFFFA4,,
16-bit reload timer O Y1 #23 FFFFAOL

ICRO6 0000B6y
16-bit reload timer 1 Y1 #24 FFFFICy
Input capture 0/1 Y1 #25 FFFF984

ICRO7 0000B7y4
Output compare 0/1 Y1 #26 FFFF94
Input capture 2/3 Y1 #27 FFFF90H

ICRO8 0000B8y
Output compare 2/3 Y1l #28 FFFF8CH
Input capture 4/5 Y1 #29 FFFF88

ICRO9 0000B9y
Output compare 4/5 Y1l #30 FFFF844
A/D converter Y1 #31 FFFF80y

ICR10 0000BAK
I/0 timer/watchdog time N #32 FFFF7CH
Serial I/O Y1 #33 FFFF78y

ICR11 0000BBy
Sound generator N 34 FFFF74y
UART 0 RX Y2 35 FFFF70y

ICR12 0000BC
UART 0 TX Y1 36 FFFF6CY

467

APPENDIX D List of MB90590 Interrupt Vectors

468

Table D-2 Interrupt Causes, Interrupt Vectors, and Interrupt Control Registers

EI20S

Interrupt vector

Interrupt control

Interrupt cause register
clear
Number Address Number Address

UART 1 RX Y2 37 FFFF68,

ICR13 0000BDy
UART 1 TX Y1l 38 FFFF64,
UART 2 RX Y2 39 FFFF60H

ICR14 0000BEH
UART 2 TX Y1 40 FFFF5CH
Flash memory N 41 FFFF58H

ICR15 0000BFH
Delayed interrupt N 42 FFFF54H

Y1: An EI?0S interrupt clear signal or EI20S register read access clears the interrupt request

flag.

Y2: An EI?0S interrupt clear signal or EI20S register read access clears the interrupt request
flag. A stop request is issued.

N: An EI20S interrupt clear signal does not clear the interrupt request flag.

Notes:

For a peripheral module having two interrupt causes for one interrupt number, an EI20S

interrupt clear signal clears both interrupt request flags.

When EI?0S ends, an EI?OS clear signal is sent to every interrupt flag assigned to each

interrupt number.

EI20S is activated when one of two interrupts assigned to an interrupt control register (ICR)

is caused while EI20S is enabled.

This means that an EI?0S descriptor that should
essentially be specific to each interrupt cause is shared by two interrupts. Therefore, while

one interrupt is enabled, the other interrupt must be disabled.

INDEX

INDEX

The index follows on the next page.
This is listed in alphabetic order.

469

INDEX

Index
Numerics
16-bit free-running timer...............cce v veveveiiiniinnnns 118
16-bit free-running timer block diagram................ 121
16-bit free-running timer operation....................... 125
16-bit free-running timer timingcccevvvvvennn. 126
16-bit I/O timer, block diagram ofccccccennn. 119
16-bit reload timer (in internal clock mode), input pin
function of ... 150
16-bit reload timer (with event count function),
outline of ..o 142
16-bit reload timer registercccovvvvvveeevvvvnnnnnns 144
16-bit reload timer, block diagram of.................... 143
16-bit reload timer, internal clock operation of 149
16-bit reload timer, output pin function of............. 153
16-bit reload timer, underflow operation of........... 152
16-bit timer register (TMR)/16-bit reload register
(TMRLR), register layout Ofcccoenne 148
24-bit operand specificationccoovcvviiieeeennnnn. 21
2M-bit flash memory feature..............ccccvvvveeenennn. 350
8/16-bit PPG hardware, initial value of................. 180
8/16-bit PPG, function ofccccceiiiiniiiiiiiienen. 164
8/16-bit PPG, selecting count clock for 177
A
A/D converter, block diagram ofccoeie 196
acceptance filter, settingccccceeeeveieiiiiiineeeeeeenn. 311
acceptance filteringccccoveviiieinnie e 307
acceptance mask registers 0 and 1
(AMRO and AMRL)......cccceevvviieeeeiiiiee e 297
acceptance mask select register (AMSR) 295
ACCUMUIALON (A) eeivieeee i 27
ACHVALION ... 115
address generation type...........uuuveeeverniiiiiininineeeens 19
AAAreSSING...ccciieiiiieiie e 406
amplitude data register..........ccccvvvvevericiiinieinieenn, 333
analog input enable register.........cccceevveiiieinieenennn. 195
B
bank addressing typeccccevveeviiniiiiiiieeeee e 22
bank select PrefixX ... 35
bit timing register (BTR)ccoeevvvvieiiiiiieeeeeeeeias 281
bit timing, Settingccoovviiii 311
block diagram ..., 5,77
buffer address pointer (BAP).........ccovvvvveeeevvivrnnnnnnns 59

470

bus mode setting bit...................cc

bus operation stop (HALT = 0), condition for
(or= 1 g Tot= 11 o T

bus operation stop (HALT = 1), state during...

bus operation stop (HALT=1), condition for
ES1] 1] o [P

C

CAN controller, block diagram of

CAN controller, canceling transmission
request from.......cccccveeviiviiciiieee,

CAN controller, completing transmission of....
CAN controller, feature ofccccvvevieeneennn.
CAN controller, reception flowchart of
CAN controller, starting transmission of..........
CAN controller, transmission flowchart of.......
CE CONLIOl ..vvvviiiiiciicce e,
chip erase/sector erase command sequence .
CLK asynchronous baud ratecccccevvveeeee
CLK synchronous baud ratecccccceeeennn.
clock generator, Note ONccvvvvevevevnninnnnnn.
clock selection register (CKSCR)..........unenn.
clock selection, status transition of
command sequence table...........cccccccvnnnnnnn.
common register bank prefix (CMR)...............

compare registers 0 and 1 being used, output
waveform sample when.................co.....

compare registers, output waveform sample
WIth WO ..

condition code register (CCR)..........vvvvvuennnnnnn.
CONtINUOUS MOAE.......cciiiiiiiiiie e
continuous mode, starting EI2OS iN.ccveeeeenn.
control status register............eevvvvvvvevvvvevnennnnnnn
control status register (ADCSO0)cccoocuveeeen.
control status register (ADCS1)cvvueeennnnn.
control status register (CSR).........ccccvvvvvneennnnnn.
control status register (FMCS), flash memory
control status rgister..........cccvvvvvvvvevevvvvinniennnnnn.
conversion data protection.............cccceeeeieeennnn.
counter operation stateccccceeeevviiinninnnnn.
CPU memory space, outline of

D
data counter (DCT)cooovviiiiiiiiieeeeeeeee i

data frame and remote frame, processing for

reception Of ..., 308
data Polling........coeevvvieiiiiiccee e, 462
data polling flag (DQ7)evuvueeeiiiiiiiiiiiiieeeeeeeeeenn, 360
data regiSter.....cooveiiiiiiee e 122
data register x (x =0t0 15) (DTRX)cceeeeeeeennnnn. 303
data registers (ADCR1 and ADCRO) 204
decrement grade register.........ccccvvvveeeeriiiieeeenns 334
delayed interrupt cause issuance/cancellation

register (DIRR).......ovvuiiviiiiieeiee e 67
delayed interrupt OCCUITENCEcccceeveiiieeeeeeieeeeen, 68
delayed interrupt, block diagram of........................ 66
direct addreSsing...........uvvevveiiiiiiiiiiiieieeeieeeeeeeeeeen, 408
DLC register x (x =0to 15) (DLCRX)........cevvvneee. 302
DTP 0Peration.........ccceeeeiiieeeeeiiniieee e 189
DTP request, switching between external

interrupt and..........cocoeeeeieiiiiiie e, 190
DTP/external interrupt, note on using 191
E
effective address fieldccovvvveeiienninnn. 407, 422
EI20S 0peration floWcovceeeeeeeeeeeerererenns 61
EI20S status register (ISCS)ooveereeerererenns 60
EI20S, conversion U] oo R 208
enable sector protect/verify sector protect........... 463
EPROM Memory Map....ccooeevvveeviiiinnieeiiiiinneeeeeennns 340
erasing ChiP......oocveeiiii e 369
erasing flash memory..........cccocoevveiiiiiiiie e, 350
€rasiNg SECIONccevveviiiieieiiiie e 370
erasing sector in flash memoryccccoeeeeee 370
execution Cycle CoUNt...........vveiiiiiiiiieee e, 419
execution cycle count, calculating....................... 419
extended intelligent I/O service (EI?0S).......... 41, 56

extended intelligent 1/O service descriptor (ISD).... 58
extended serial I/0O interface, interrupt function of258

external CloCKvvvviiiiiiii e, 232
external event counterccccceeeeeeenniiiiiieeeeenn. 151
external interrupt operation...............oeeeeeeeeeennnn. 188
external interrupt requestcccoovcvveeeeiiiiieeeenis 190
external shift clock modeccccccooiiniiiiiiiennnenn. 253
F
flag change disable prefix (NCC)ccceeevviiiinnnns 36
flash memory control signalccccceeinineenn. 353
flash memory modeccccoevvveiiiiiiiii, 353
flash memory registerccoceeeeeiieee 350
flash memory write/erase, detailed

explanation ofccccocveiiiiiii 365
flash memory, block diagram of entire................. 351

flash memory, Writing t0........cccccoeeviiiiiiniiie e 367
flash microcomputer programmer (power supplied
from writer), example of minimum
CONNECHION 1O ..t 391
flash microcomputer programmer (user power supply
used), example of minimum connection t0.389

frame format, setting...........cccccvveevieei i, 311
frequency data register........ccccceevvviiiiieeeeeeeeeeeeee 332
G
general-purpose registercovvevcciiveriieerieiieeeenn 26
H
hardware interruptcccccceveeeeeenieeeeeeeen 40, 49
hardware interrupt operationccccceeeeeeieiiineennnn. 50
hardware interrupt, occurrence and release of....... 51
hardware interrupt, structure ofccccceeveeeennnn. 49
hardware sequence flagccoevvvvveveriviiinniiennn. 358
hardware standby mode, releasingcc........ 89
hardware standby mode, transition to 89
I
1@ 1 =T o 394
1@ o) SR 100
1/O POIt regiStEr......vveieeiiiiiee e 101
I/0 register address pointer (IOA)cccevvvevveeeenes 58
ID register X (x =0 to 15) (IDRX).........ccceeevvererennn. 300
IDE register (IDER)........cuviieiiiiiiiee i 284
indirect addressingccceeevveieiieeeeeeee s 413
initial conditionccvviiiiiii e 340
INPUE CAPLUNE ... 135
input capture (2 channels per one module).......... 118
input capture block diagramccevvvvviviiiiinnnns 135
input capture data register.........ccoceeeviieeeenninnenn. 136
input capture fetch timing, sample of.................... 138
input capture iNput tiMiNgoovvvvvveviiiieeieiieeens 139
input data register (UIDR) and output data register

(UODR) ..ttt 225
INPUL IMPEdAaNCEeueiiiiiieiiiiiiee e 195
INPUt-OULPUL CIFCUILevviiiiiiiiieee e 12
instruction map, structure ofcccccccveereeiinnns 438
instruction presentation item and symbol,

description ofiiiiiiiii 424
INTO INLEITUPL.....vvveeeeiiiie e 343
intelligent 1/O service (EI?0S) function and

1) (=14 U] o) SRR 142
intermittent CPU operationcocccvvviiieienenennnn. 90
internal and external clocK..............cccoviieiieennnn. 232
internal shift clock mode.........ccccccooviiiiiiiennenenn, 253

471

INDEX

Interrupt cause, interrupt vector, and interrupt

CONLrol registercvveveviviiieeiee e 466
interrupt control registercccoovevivvveeeiiiiiiinnns 466
interrupt control register (ICR)..........cocvvvvvvvvvivennnnnns 44
interrupt disable instructioncccoceeeiiiiiienns 37
interrupt floOW........ooooei i a7
interrupt level mask register (ILM)............covvvvvennnnns 30
INerrupt VECION ... 43, 466
interrupt, 8/16-bit PPGo oo, 179
interrupt, intelligent I/O service (EIZOS)

function and ... 142
interrupt/DTP enable registercccooveeviininnnen. 186
interval interrupt function.............ccccevvvviviinnn. 109
L
last event indicator register (LEIR)..............vvvueees 278
layout of rate and data register (URD) 226
low power mode control registercccvvvvvvnnnes 78
low power mode control register (LPMCR) 79
lower-power control circuit, outline of 76
low-power consumption mode, setting................. 311
low-power mode control register access, note of...84
low-power mode operation............cccevvcuveeeeriiineeene 83
M
machine clock, initializing.............ccccevvvvvvviviiiiiininnns 91
main clock and PLL clock, switching between 91
MB90595 interrupt vector, list ofccooeienne 465
MEeMmOory access MOde............cceevevvivieieeeeeeieieiiees 94
MEMOIY SPACE MAP....ccuuirieeeeerierinreeereriinneeeaeeeninnn 20
memory space, multi-byte data allocation in.......... 24
message buffercooo 299
message buffer (data register), list of................... 271
message buffer (DLC register and data register),

ISt Of e 269
message buffer (ID register), list ofcovvveees 266

message buffer (x), procedure for reception by ...315
message buffer (x), procedure for

transmisSioN BYceevvviiiiiiiin i, 313
message buffer valid register (BVALR)................ 283
MOAE AALAceeieiiiiiiiiiie e 96
MOAE PN Leeiiiiiiieiee e 95
mode setting bit............co e 96
multi-byte data, accessing..........cccccvvvvveveeevviiinnninnns 24
multi-level message buffer, setting

configuration ofcccccceeeiiiiiiiiiiie, 317
multiple interrupt..........ccoiiii e 53

472

N
negative clock operationccccevevviiiineneninen, 259
O
operation, NOLE ON.........uuvvveieiiiiiiiiii e e e eeeeeeen 66
oscillation stabilization wait time, setting.......... 87, 89
OULPUL COMPAIEcoeiiiiiiiiiiieieii s 127
output compare (2 channels per one module)..... 118
output compare block diagram......................... 127
output compare register.......c.ccevvveeeeeinnieeeeenenen, 128
output compare register 0, clearing counter upon
match with...........ccooos 126
output compare timingcvveeeiiiiiiiineiieeeeeenn 133
output compare, control status register of............ 129
output data register (UODR)ccooovviiiiiiinenennn. 225
overflow, clearing counter bycccoeoviiiiiineene. 125
P
package dimenSioNnoccveeeeiiiiieie e 7
parity biteeeiieiieiiie 234
PIN @SSIgNMENt.........oooeeeiie i 6
PIN FUNCHON......ceiiiii s 8
PLL clock and main clock , switching between...... 91
port data register..........ccceeeiiiiiiiieieee 102
port direction registercccceevriveeieiniiie e, 103
PPGO operation mode control register (PPGCO0). 168
PPGO, 1 clock select register (PPGO01)................ 172
PPG1 operation mode control register (PPGC1).170
Prefix Code ... 37
prefix code, CONSECULIVEoevvvvvvvveviiiniiiiennn, 37
PrefiX iINStrUCON.........eveiii e 37
prefix instruction, restriction on interrupt disable
INStrUCtion andcooooviiiiiiiiiiiecee 37
processor status (PS)coovvvvvvvvveeeeviiiiicieeenn 29
program counter (PC)ccccvveiiiieieeiniiiee s, 32
PWM control O registercccoeeeveeeeeeiiiiiiiceees 322
PWM1&2 compare register.........ccccvvvevvivivevinnnnns 323
PWM1&2 select registercococveveeviieeeeiniineeenn, 324
R
rate and data register (URD) content................... 226
read access, dataread by..........ccoevvviiiiiiiiiinnnnnnn. 460
read state, setting flash memory to...................... 366
receive and transmit error counter (RTEC).......... 280
FECEIVE OVEITUN ..ottt 308
receive overrun register (ROVRR).........ccccoeevueee. 293
received message, Storing........cccevvvvevveniininnnnn. 307
reception complete register (RCR)cccccceeennn. 291

reception interrupt enable register (RIER) 294
recommended Settinguvvvvveiiiiiiiiiie e, 97
register bankcccooiiiiiiiie 33
register bank pointer (RP).......ccccovviiieinniiieeeien, 30
reload value and pulse width, relationship between
8/16-bit PPGooviviiie e, 176
remote frame receiving wait register (RFWTR) ... 287
remote frame, processing for reception of 308
remote request receiving register (RRTRR) 292
request level setting register.........cccoceeeeeveieieeeenn. 187
FESEL CAUSE ..oovviiiiieiiiiii et 73
reset CaUSE OCCUITENCE.uururrrriririiararaaaaeeeeeans 71
reset release, operation after..........cccceeeeeeviineeenn. 71
rESet SEQUENCEcoevrvieiiiiinennineeie e 342
reset state, setting flash memory to.................... 366
ROM correction address register 0/1
(PADRO/PADRL) ..ovvvvveiiiiieeeseiieeee e 338
ROM correction control register (PACSR) 339
ROM correction, block diagram of 338
ROM correction, operations ofcccccvvvvvvnnnnn. 339
ROM mirroring module, block diagram of 346
ROM mirroring register (ROMM)..........cccccvvvvvnnnee. 347
RST and RY/BY timingccoovvvvivviieeeeiiiieivienn 463
RY/BY timing during writing/erasing 462
S
sector configuration............coccevieieeeeeeeeen e 351
sector erase timer flag (DQ3).....cceveeeeiiiiiiirirennnnnn. 364
sector, restarting erasing of flash memory........... 373
sector, suspending erasing of flash memory 372
serial I/O operation.........cccceeeveieeeeeeeeeeeeeeee, 252, 254
serial 1/0 prescaler (CDCR)cceeeviviieeieiiiiinennn, 251
serial mode control register (UMC) content 221
serial mode control register (UMC), layout of 221
serial mode control status register (SMCS) 246
serial shift data register (SDR)......ccc.cccoeeveveveeennn. 250
serial write connection (power supplied from writer),
example of ... 387
serial write connection (user power supply used),
example Of ... 385
serial write connection, basic configuration of 382
set timing of SiX flagS........vviiiiiiiiiiie e, 235
SEttiNG ID .o 311
SINGIE MOAE.......ooiieieeee e, 206
single mode, starting EI2OS iN.voveeeeeeeeeen, 209
sleep mode, releasing.......cccccoevveeeiiiiiieeee i 85
sleep mode, transition t0.......cccooeveveieiiiiieeeeeee, 85
software INterruptevvvvvciiiiiiiiiie e, 40, 54

software interrupt operation............cocceevivieeennnnnen. 54
sound control register............uvvvvvveeeiiiiiiiieieeeee e, 330
sound generator registervevvvvveeneniiiiiinennn, 329
sound generator, block diagram of 328
special regisSter ... 25
status flag during transmit and receive operation.239
status register (USR) contentc.cccceeeevvivennee. 223
status register (USR) layoutccccceciiieiiennnnn. 223
stepping motor controller register..........ccccoeeeennnnn. 321
stepping motor controller, block diagram of.......... 320
SIOP MOE....ccc i 206
stop mode, releasingcevvvvvveeiiiiiiiieieeeee e, 87
stop mode, starting EI20S in........ccocoevevuereennnnn. 213
stop mode, transition t0evvvciiiiiiiieiieeee e, 87
SITUCTUI ... 57
SuUb-second register.........ccoviieeeinieee e 160
system stack pointer (SSP), user stack pointer

(USP) and.........oooriiieieee e 28
T
time base counter.........ccooviiiiiiieee 109
time base timer control register (TBTC) 107
time base timer, block diagram of......................... 106
time base timer, outline ofccccccceiiiiiiinnn 106
timer control register.........cccv v 158
timer control register (TMSCR), register

content Of ... 145
timer control register (TMSCR), register layout of 145
timer mode, releasing.........cccccceveeveeeee i 86
timer mode, transition t0...........cceeveeeieeiiiiniiiiiie, 86
timing limit exceeded flag (DQ5)ccevvvvvvvvvveennns 363
toggle Dit.......cooiiiie 462
toggle bit flag (DQB) ...cccoeeveeeeeeeeieiieeeeeeeeee, 362
tone CoUNt reQISteruvvveieiieicee e, 335
transfer data format ..o 233
transmission cancel register (TCANR) 288
transmission complete register (TCR).................. 289
transmission interrupt enable register (TIER)....... 290
transmission request register (TREQR) 285
transmission RTR register (TRTRR) 286
U
undefined instruction, exception due to

eXEeCUtioN Of ..., 64
undefined instruction, execution of 64
user power SUPPIY cooovvveveeeeeeeeee, 385, 389
user stack pointer (USP) and system stack

POINEEN (SSP) ..vvviiiiiieee e 28

473

INDEX

w

WAaLCh-d0g COUNEN.......coviiiieiiiiiieee i 115
(V1TZ= 101 1 BT (0T <) (o] o 115
watch-dog timer block diagram 112
watch-dog timer control register (WDTC)............. 113
watch-dog timer register.........ccccceeveviiieeeennen, 157

474

watch-dog timer, block diagram of 156
WE CONEIOL ... 460
write data polling read (CE control)..................... 461
write, data polling, read (WE control)................... 460
WITEET 1t 387, 391
writing to flash memory........cccocceeeiiiiiiii . 350

CM44-10105-2E

FUJITSU SEMICONDUCTOR « CONTROLLER MANUAL

F2MC-16LX FAMILY

16-BIT MICROCONTROLLER
Type MB90590 SERIES
HARDWARE MANUAL

November 1999 the second edition

Published FUJITSU LIMITED Electronic Devices

Edited Technical Communication Dept.

(o8
FUJITSU

*xCM44-10105-2E+

FUJITSU SEMICONDUCTOR F2MC-16LX FAMILY 16-BIT MICROCONTROLLER MB90590 SERIES HARDWARE MANUAL

