
APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

PMC-Sierra, Inc. 105 - 8555 Baxter Place, Burnaby, BC Canada V5A 4V7 604 415 6000

PM7364

FREEDM

PROGRAMMER'S GUIDE

PRELIMINARY

Issue 1: March, 1997

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

PMC-Sierra, Inc. 105 - 8555 Baxter Place, Burnaby, BC Canada V5A 4V7 604 415 6000

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

1

CONTENTS

1 INTRODUCTION ... 3

1.1 Target Audience ... 3

1.2 Numbering Conventions ... 3

1.3 Register Description ... 3
1.3.1 Normal Mode Registers ... 3
1.3.2 PCI Configuration Registers ... 4

2 FREEDM OVERVIEW ... 5

2.1 FREEDM Summary .. 5

2.2 PCI Interface... 7

3 DATA STRUCTURES.. 9

3.1 Descriptor Table ... 9

3.2 Transmit Descriptor .. 10

3.3 Receive Packet Descriptor ... 14

3.4 Data Buffers.. 16

3.5 References ... 17

3.6 Queues ... 19

4 INTERRUPT ARCHITECTURE .. 27

5 PCI CONFIGURATION SPACE .. 29

5.1 Accesssing the PCI Configuration Space ... 29

5.2 PCI Configuration Registers ... 29

6 CONFIGURING THE SERIAL LINKS... 31

6.1 Channelized T1 Links ... 31

6.2 Channelized E1 Links ... 33

6.3 Unchannelized Links With Byte Synchronization 34

6.4 Unchannelized Links Without Synchronization....................................... 36

7 CONFIGURING THE PCI INTERFACE.. 38

7.1 Configuring the Receive DMA Controller (RMAC).................................. 38

7.2 Configuring the Transmit DMA Controller (TMAC) 40

7.3 Configuring the General Purpose PCI Controller (GPIC) 41

8 HDLC AND CHANNEL FIFO CONFIGURATION... 44

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

2

8.1 Configuring the RHDL... 44

8.2 Configuring the THDL ... 45

8.3 Programming a Channel FIFO ... 46
8.3.1 Receive Channel FIFO... 47
8.3.2 Transmit Channel FIFO.. 47

8.4 RHDL Channel Configuration ... 48

8.5 THDL Channel Configuration ... 50

9 FREEDM OPERATIONAL PROCEDURES.. 55

9.1 Device Identification, Location and System Resource Assignment 55

9.2 Reset .. 57

9.3 Initialization... 57

9.4 Activation Procedure .. 58

9.5 Deactivation Procedure .. 58

9.6 Provisioning a Channel... 59
9.6.1 Receive Channel Provisioning ... 59
9.6.2 Transmit Channel Provisioning .. 61

9.7 Unprovisioning a Channel... 63
9.7.1 Receive Channel Unprovisioning ... 63
9.7.2 Transmit Channel Unprovisioning .. 65

9.8 Transmit Sequence .. 67

9.9 Receive Sequence ... 69

9.10 Performance Counters.. 70

9.11 Line Loopback .. 72

9.12 Diagnostic Loopback .. 73

9.13 BERT Port .. 73

REFERENCES .. 75

CONTACTING PMC-SIERRA ... 76

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

3

1 INTRODUCTION

The FREEDM Programmer's Guide is intended to describe the configurable features
and operation of a FREEDM from a Programmer's perspective. This document may
not cover all applications of the FREEDM. Please contact a PMC-Sierra Applications
Engineer for specific uses not covered in this document.

This document is a supplement to the FREEDM Longform Datasheet[1]. Both
documents should be studied together to interface the FREEDM to an embedded
processor. In case of a discrepancy between the Programmer's Guide and the
Longform Datasheet, the Longform Datasheet shall always be considered correct.

1.1 Target Audience

This document has been prepared for readers with some prior knowledge of HDLC
and Frame Relay technology. Introductory material on Frame Relay is readily
available from several sources.

Although the examples provided in this document are described in C language
syntax, they are not meant as compile-ready code segments.

1.2 Numbering Conventions

The following numbering conventions are used:

binary 0001B, 1110B

decimal 129, 6, 12

hexadecimal 0x1FE2, 09FH

1.3 Register Description

Unless specified otherwise, FREEDM registers are described using the convention
REGISTER_NAME(byte offset from base address). There are two register spaces
that can be addressed on a FREEDM - these are the normal mode registers and the
PCI configuration registers.

1.3.1 Normal Mode Registers

Normal mode registers are used to configure, monitor and control the operation of the
FREEDM. Registers must be accessed as 32-bit values with a dword aligned
address. A register value is accessed at the PCI interface during a PCI memory read,
or write, transaction and has the following characteristics:

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

4

• Writing values into unused register bits has no effect. However, to ensure software
compatibility with future versions of the product, unused register bits should be
written with logic zero. Reading back unused bits can produce either logic one or a
logic zero; Hence unused register bits should be masked off by software during a
register read access.

• All configuration bits that can be written into can also be read back. This allows
the processor controlling the FREEDM to determine the programming state of the
block.

• Writable normal mode registers are cleared to logic zero upon reset unless
otherwise noted.

• Writing into read-only normal mode register bit locations does not affect FREEDM
operation unless otherwise noted.

• Certain register bits are reserved. These bits are associated with megacell
functions that are unused in this application. To ensure that the FREEDM
operates as intended, reserved register bits must only be written with their default
values. Similarly, writing to reserved registers should be avoided.

1.3.2 PCI Configuration Registers

PCI configuration registers are defined by the PCI SIG[2] and are used to install, and
configure devices on the PCI bus. Registers are accessed as 8-bit, 16-bit or 32-bit
values and register addresses are byte, word, and dword aligned respectively. These
registers are accessed via the PCI interface during a PCI configuration access
transaction and have the following characteristics:

• Writing values into unused register bits has no effect.

• All configuration bits that can be written into can also be read back. This allows
the processor controlling the FREEDM to determine the programming state of the
PCI device.

• PCI configuration registers are not cleared upon reset. They are set to the default
value on power-up.

• Writing into read-only register bit locations does not affect FREEDM operation.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

5

2 FREEDM OVERVIEW

2.1 FREEDM Summary

The PM7364 FREEDM is a highly integrated semiconductor device that is ideally
suited for Frame Relay applications that require many links to be terminated and
HDLC processed within a highly dense design. The functional blocks of the FREEDM
are illustrated in figure 1.

As many as 32 bi-directional serial links can be connected to the FREEDM. These
are processed by the RCAS and TCAS blocks. Links are individually clocked and can
be individually placed in line loopback. The RCAS and TCAS can be interfaced to
channelized T1, channelized E1, unchannelized links, or unchannelized links with
byte sychronization.

The data stream at each serial port can be assigned to one or more of the FREEDM
channels. There are as many as 128 receive channels and 128 transmit channels
available for assignment to unchannelized links or time-slots within a channelized link.

Each data stream can be HDLC processed on a channelized basis within the RHDL
and THDL. There is an 8 KByte buffer in the RHDL and another 8 KByte buffer in the
THDL that must be assigned to FREEDM channels to serve as Channel FIFO's. Each
buffer is a group of 512 blocks with 16 bytes per block, and a minimum of 3 blocks
must be assigned to a channel during provisioning. This allows flexibility in
assignment of a Channel FIFO based on the expected data rate for the channel.

The RHDL and THDL also provide the facility to transfer the raw data stream without
HDLC processing.

The FREEDM interfaces to an embedded processor and packet memory via the PCI
local bus[2]. The packet memory provides buffer locations where the receive data is
written to, and where the transmit data is read from. Data is organized into packets on
a per channel basis within the packet memory. The RMAC, the TMAC and the GPIC
blocks perform the DMA of buffer data across the PCI local bus.

Each channel provisioned within the FREEDM contends for access to the PCI bus
based on its configuration within the RMAC and TMAC blocks. This provides the
designer with the flexibility to individually configure each channel to avoid receive
overrun or transmit underrun, based on the channel data rate.

The PMON block provides performance monitor counts for a number of events.
These counters can be read via the PCI interface and provides a means for the host
software to accumulate performance statistics.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

6

Fig. 1 FREEDM Block Diagram

P
C

I
C

on
tr

ol
le

r
(G

P
IC

)
TDO
TDI
TCK
TMS
TRSTB

TBCLK

TBD

A
D

[3
1:

0]
C

/B
E

B
[3

:0
]

P
A

R
F

R
A

M
E

B
T

R
D

Y
B

IR
D

Y
B

S
T

O
P

B
D

E
V

S
E

LB
ID

S
E

L
LO

C
K

B

R
E

Q
B

G
N

T
B

P
E

R
R

B
S

E
R

R
B

P
C

IIN
T

B
P

C
IC

LK
P

C
IC

LK
O

S
Y

S
C

LK

JT
A

G
 P

or
t

T
D

[3
1:

0]

T
C

LK
[3

1:
0]

T
ra

ns
m

it
D

M
A

C
on

tr
ol

le
r

(T
M

A
C

)

R
D

[3
1:

0]

R
C

LK
[3

1:
0]

R
ec

ei
ve

D
M

A
C

on
tr

ol
le

r
(R

M
A

C
)

R
ec

ei
ve

C
ha

nn
el

A
ss

ig
ne

r
(R

C
A

S
)

T
ra

ns
m

it
C

ha
nn

el
A

ss
ig

ne
r

(T
C

A
S

)

RBD

RBCLK

R
ec

ei
ve

 H
D

LC
 P

ro
ce

ss
or

 /
P

ar
tia

l P
ac

ke
t B

uf
fe

r
(R

H
D

L)

PMCTEST

T
ra

ns
m

it
H

D
LC

 P
ro

ce
ss

or
 /

P
ar

tia
l P

ac
ke

t B
uf

fe
r

(T
H

D
L)

P
er

fo
rm

an
ce

 M
on

ito
r

(P
M

O
N

)
RSTB

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

7

In addition to the line loopback capability, the FREEDM provides a BERT port for
attachment to BERT hardware. Under software control this port can be connected to
any one of the 32 bi-directional links for additional diagnostic testing. Finally there is
an internal diagnostic loopback configuration for each channel, which can be used to
diagnose FREEDM operation on a per channel basis.

2.2 PCI Interface

Figure 2 shows an address map for a PCI bus which contains one FREEDM device.
These data structures are required to interface a FREEDM to the PCI bus. In this
figure PCI addresses are 32-bit physical addresses, which can be observed at the
address pins of the bus.

When multiple FREEDM's are attached to the bus each FREEDM must have a
unique set of the following data structures.

• Transmit Descriptor Table

• Receive Packet Descriptor Table

• Transmit Queue Space

• Receive Queue Space

• Normal Mode Register Space

The data structures within RAM are accessed by software running on the embedded
processor, or by the FREEDM. The software must specify the location of these data
structures by writing base addresses into the appropriate FREEDM registers, before
activating the FREEDM.

The FREEDM accesses RAM directly using physical addressing whereas the
software may use virtual addressing. In some systems which use virtual memory
management the software must translate between virtual addresses (ie pointers) and
physical addresses. The software must ensure that the values written to FREEDM
registers are physical addresses rather than virtual addresses. In systems that do not
use virtual addressing, or in systems where virtual addresses are identical to physical
addresses no address translation is required.

The Data Buffers are written with receive data by the FREEDM, or contain transmit
data which is read by the FREEDM. The descriptor tables and the queues are
required to manage these buffers.

The Normal Mode Register space is accessed by the software running on the
embedded processor to manage and control operation of a FREEDM device. This
register space is located in the FREEDM and is mapped into the PCI address space
by the software.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

8

Fig. 2 PCI Address Map

Transmit
Descriptor

Queues

Receive
Descriptor

Queues

Transmit
Descriptor

Table

Rx Packet
Descriptor

Table

Tx Queue Base

Rx Queue Base

Tx Descriptor Table Base

Rx Packet Descriptor
Table Base

PCI ADDRESS MAP
0

4GB

Normal
Mode
Register
Space

CBI Memory Base

RAM Addresses
(Packet Memory)

 Data
Buffers

FREEDM Addresses

The PCI Configuration Space does not reside in the PCI address map, but it is a
requirement for all PCI devices. The Configuration Space is a block of 256 contiguous
bytes that reside in the PCI device, and is accessed by the embedded processor in a
PCI bus Configuration Read (or Write) transaction, rather than a Memory Read (or
Write) transaction. Access to this configuration space is system specific and a
thorough discussion of it can be found in the PCI specification[2]. The Configuration
Space is discussed in a later section of this document.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

9

3 DATA STRUCTURES

The RAM data structures accessed by the FREEDM are descriptors, descriptor
tables, references and queues. The general relationship among them is shown in
figure 3.

In this figure, the direction of the arrows refers to the direction of the relationship. For
example, each reference can point to one descriptor. Also, one descriptor may point
to another descriptor, thereby specifying a linked-list of descriptors.

Fig. 3 Data Structure Relationship

Queue Descriptor Table

Reference

Data Buffer

Descriptor

is stored in contains

points to one

is stored in contains

points to
one

may point to
another

These data structures are also accessed by software. The queues specify the data
which may be accessed by the FREEDM or the software, but not both
simultaneously.

A Receive Packet consists of a reference pointing to one receive packet descriptor
(RPD), or a linked-list of RPD's. A Transmit Packet consists of a reference pointing to
one transmit descriptor (TD), or a linked-list of TD's. Transmit Packets may be linked
by software, or by the FREEDM, via seperate fields within each descriptor.

3.1 Descriptor Table

The descriptor table is essentially an array, whereby each element of the array is a
descriptor and an index to the array is a reference.

A descriptor table holds descriptors of the same kind. There are two descriptor tables.
For transmit packets there is the Transmit Descriptor Table and for receive packets
there is the Receive Packet Descriptor Table.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

10

Allocating a Descriptor Table

A descriptor table can be located anywhere within a 32 bit address space and must
be aligned on a 16 byte boundary. The memory allocation must specify a fixed
memory address space that cannot be swapped or moved by the operating system.

The size of a descriptor table is specified by the software during initialization. The
number of references associated with a FREEDM determines the size of the
descriptor table. The relationship is: Size (in bytes) = 16* Number of References.

The table index (reference) is a 14 bit value which limits the size to 16,384
descriptors, or 524288 bytes. The minimum size of the descriptor table depends on
the number of channels provisioned. For a descriptor table, where each packet is
represented by one descriptor, the number of references must be at least 3 times the
number of channels provisioned. If the number of descriptors used to represent a
packet is greater than one then the number of references must increase in proportion.

The following FREEDM registers must be written with the physical address of the
Receive Descriptor Table and the Transmit Descriptor Table, respectively:

Bit Register
RPDTB[15:0] RMAC Packet Descriptor Table Base LSW (0x288)
RPDTB[31:16] RMAC Packet Descriptor Table Base MSW (0x28C)

TDTB[15:0] TMAC Transmit Descriptor Table Base LSW (0x308)
TDTB[31:16] TMAC Transmit Descriptor Table Base MSW (0x30C)

Note: RPDTB[3:0] and TDTB[3:0] must be zero, thereby aligning the descriptor tables
on 16 byte boundaries.

3.2 Transmit Descriptor

A Transmit Descriptor (TD) is a 16 byte data structure that contains a number of fields
as shown in figure 4. TD's are used in the transmit direction to describe packets read
from packet memory and transmitted by the FREEDM. Each TD is located in the
Transmit Descriptor Table and is indexed from the base address using a TD
Reference (TDR).

Fig. 4 Transmit Descriptor

MVReserved (5) TCC[6:0]Bytes In Buffer [15:0]

Transmit Buffer Size [15:0]

Data Buffer Start Address [31:0]

Host Next TD Pointer [13:0]TMAC Next TD Pointer [13:0]

 Bit 31

CE

 Bit 0

IOCABT

Reserved (16)

Res(2)

P

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

11

Field Description

Data Buffer Start
Address [31:0]

The Data Buffer Start Address[31:0] bits point to the
data buffer in packet memory.
The Data Buffer Start Address field is valid in all TDs

Bytes In Buffer [15:0] The Bytes In Buffer[15:0] field is used by the software to
indicate the total number of bytes to be transmitted in the
current TD. If M is 1 (see below), this value must be a
non-zero multiple of 4, i.e. the buffer must not be empty
and must contain an exact number of Dwords.

P The Priority bit is set by the software to indicate the
priority of the associated packet in a two level quality of
service scheme. Packets with its P bit set high are
queued in the high priority queue in the TMAC. Packets
with the P bit set low are queued in the low priority
queue. Packets in the low priority queue will not begin
transmission until the high priority queue is empty.

V The V bit is used to indicate that the TMAC Next TD
Pointer field is valid. When set to logic 1, the TMAC
Next TD Pointer[13:0] field is valid. When V is set to
logic 0, the TMAC Next TD Pointer[13:0] field is invalid.
The V bit is used by the software to reclaim data buffers
in the event that data presented to the TMAC is returned
host due to a channel becoming unprovisioned. The V
bit is expected to be initialised to logic 0 by the host.

M The More (M) bit is used by the software to support
packets that require multiple TDs. If M is set to logic 1,
the TMAC assumes that the current TD is just one of
several TDs for the current packet. If M is set to logic 0,
the TMAC assumes that this TD either describes the
entire packet (in the single TD packet case) or describes
the end of a packet (in the multiple TD packet case).
Note: When M is set to logic 1, the only valid value for
CE is logic 0.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

12

CE The Chain End (CE) bit is used by the software to
indicate the end of a linked list of TDs presented to the
TMAC. The linked list can contain one or more packets
as delineated by the M bit (see above). When CE is set
to logic 1, the current TD is the last TD of a linked list of
TDs. When CE is set to logic 0, the current TD is not the
last TD of a linked list. When the current TD is not the
last of the linked list, the Host Next TD Pointer[13:0] field
is valid, otherwise the field is not valid.
Note: When CE is set to logic 1, the only valid value for
M is logic 0.
Note: When presenting raw (i.e. unpacketised) data for
transmission, the host should code the M and CE bits as
for a single packet chain, i.e. M=1, CE=0 for all TDs
except the last in the chain and M=0, CE=1 for the last
TD in the chain.

TCC[6:0] The Transmit Channel Code (TCC[6:0]) field is used by
the software to indicate with which channel a TD is
associated. All TD in a chain must be associated with
the same channel, i.e. have this field set to the same
value.

TMAC Next TD
Pointer [13:0]

The TMAC Next TD Pointer[13:0] bits are used to store
TDRs which permits the TMAC to create linked lists of
TDs passed to it via the TDRR queue. The TDs are
linked with other TDs belonging to the same channel. In
the case that data presented to the TMAC is returned to
the host due to a channel becoming unprovisioned, a
TDR pointing to the start of the per-channel linked list of
TDs is placed on the TDRF queue. It is the
responsibility of the host to follow the TMAC and host
links in order to recover all the buffers.

ABT The Abort (ABT) bit is used by the software to abort the
transmission of a packet. When ABT is set to logic 1,
the packet will be aborted. If ABT is set to logic 1 in the
current TD, the M bit must be set low and the CE bit
must be set to high.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

13

IOC The Interrupt On Complete (IOC) bit is used by the
software to instruct the TMAC to interrupt the embedded
processor when the current TD's data buffer has been
read. When IOC is logic 1, the TMAC will assert an
interrupt when the associated data buffer has been read,
provided the interrupt is enabled. Additionally, the Free
Queue FIFO will be flushed. If IOC is logic zero, the
TMAC will not generate an interrupt and the Free Queue
FIFO will operate normally.

Host Next TD
Pointer [13:0]

The Host Next TD Pointer[13:0] bits are used to store
TDRs which permits the software to support linked lists
of TDs. As described above, linked lists of TDs are
terminated by setting the CE bit to logic 1. Linked lists of
TDs are used by the software to pass multiple TD
packets or multiple packets associated with the same
channel to the TMAC .

Transmit Buffer
Size [15:0]

The Transmit Buffer Size[15:0] field is used to indicate
the size in bytes of the current TD's data buffer. (N.B.
The TMAC does not make use of this field.)

Initialization of a Transmit Descriptor By Software

The following fields of a TD (or a linked-list of TD's) must be assigned before writing
its reference to the TDR ready queue:

Field Value
Data Buffer Start Address value is determined during run time or preconfigured

Bytes In Buffer value is determined during run time or preconfigured
P value is determined during run time or preconfigured
V 0
M value is determined during run time or preconfigured
CE value is determined during run time or preconfigured

TCC value is determined during run time or preconfigured
ABT value is determined during run time or preconfigured
IOC value is determined during run time or preconfigured

Reserved 0
Host Next TD Pointer value is determined during run time or preconfigured

Fields Modified By FREEDM

The following fields may be modfied by the FREEDM after it reads the reference from
the TDR ready queue, but before the same reference is written to the TDR free
queue:

Field Value
V value is determined during run time

TMAC Next TD Pointer value is determined during run time

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

14

3.3 Receive Packet Descriptor

A Receive Packet Descriptor (RPD) is a 16 byte data structure that contains a
number of fields as shown in figure 5. RPD's are used in the receive direction to
describe packets that were received and written to packet memory. Each RPD is
located in the Receive Packet Descriptor Table and is indexed from the base address
using a RPD Reference (RPDR).

Fig. 5 Receive Packet Descriptor

Reserved (18)

CE

Next RPD Pointer [13:0]

Status [5:0] RCC [6:0]

Data Buffer Start Address [31:0]

Receive Buffer Size [15:0]

 0 Bit 31

Bytes In Buffer [15:0]

Reserved (16)

Offset[1:0]

Field Description

Data Buffer Start
Address[31:0]

The Data Buffer Start Address[31:0] bits point to the
data buffer in packet memory. This field is expected to
be configured by the software during initialisation.
The Data Buffer Start Address field is valid in all RPDs.

RCC[6:0] The Receive Channel Code (RCC[6:0]) bits are used by
the RMAC to indicate which channel an RPD is
associated with.

For a linked list of RPDs, all the RPDs’ RCC fields are
valid, i.e. all contain the same channel value.

CE The Chain End (CE) bit indicates the end of a linked list
of RPDs. When CE is set to logic one, the current RPD
is the last RPD of a linked list of RPDs. When CE is set
to logic zero, the current RPD is not the last RPD of a
linked list.
The CE bit is valid for all RPDs written by the RMAC to
the Receive Ready Queue. When a packet requires
only one RPD, the CE bit is set to logic one. The CE bit
is ignored for all RPDs read by the RMAC from the
Receive Free Queues, each of which is assumed to
point to only one buffer, i.e. not a chain.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

15

Offset[1:0] The Offset[1:0] bits indicate the byte offset of the data
packet from the start of the buffer. If this value is non-
zero, there will be ‘dummy’ (i.e. undefined) bytes at the
start of the data buffer prior to the packet data proper.
For a linked list of RPDs, only the first RPD's Offset
field is valid. All other RPD Offset fields of the linked list
are set to 0.

Status [5:0] The Status[5:0] bits indicate the status of the received
packet.

Status[0] Rx buffer overrun
Status[1] Packet exceeds max. allowed size
Status[2] CRC error
Status[3] Packet Length not an exact no. of bytes
Status[4] HDLC abort detected
Status[5] Unused (set to 0)

For a linked list of RPDs, only the last RPD's Status
field is valid. All other RPD Status fields of the linked list
are invalid and should be ignored. When a packet
requires only one RPD, the Status field is valid.

Bytes in Buffer [15:0] The Bytes in Buffer[15:0] bits indicate the number of
bytes actually used in the current RPD's data buffer to
store packet data. The count excludes the 'dummy'
bytes inserted as a result of a non-zero Offset field.
The Bytes in Buffer field is valid in all RPDs.

Next RPD
Pointer [13:0]

The Next RPD Pointer[13:0] bits store a RPDR which
enables the RMAC to support linked lists of RPDs. This
field, which is only valid when CE is equal to logic zero,
contains the RPDR to the next RPD in a linked list. The
RMAC links RPDs when more than one buffer is
needed to store a packet.
The Next RPD Pointer is not valid for the last RPD in a
linked list (when CE=1). When a packet requires only
one RPD, the Next RPD Pointer field is not valid.

Receive Buffer
Size [15:0]

The Receive Buffer Size[15:0] bits indicate the size in
bytes of the current RPD's data buffer. This field is
expected to be configured by the software during
initialisation. The Receive Buffer Size must be a non-
zero integer multiple of four.
The Receive Buffer Size field is valid in all RPDs.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

16

NOTE: For error checking purposes it is recommended to examine the Bytes in
Buffer[15:0] field to ensure that it does not exceed the Recieve Buffer Size[15:0].

Initialization of a RPD By Software

The following fields of each RPD must be assigned before writing its reference to the
the RPDRF Large queue, or the RPDRF Small queue:

Field Value
Data Buffer Start Address value is determined during run time or preconfigured

Receive Buffer Size value is determined during run time or preconfigured

RPD Fields Modified By FREEDM

The following fields are modfied by the FREEDM after it reads the reference from the
RPDRF large queue, or the RPDRF small queue, but before the same reference is
written to the RPDR ready queue:

Field Value
RCC value is determined during run time
CE value is determined during run time

Status value is determined during run time
Bytes In Buffer value is determined during run time

Next RPD Pointer value is determined during run time
Offset value is determined during run time

3.4 Data Buffers

In the receive path, the FREEDM writes receive packet data into data buffers. In the
transmit path, the FREEDM reads transmit packet data from data buffers. A buffer
must be allocated and assigned to each descriptor by the software.

Allocation of Data Buffers

Buffers must be allocated in fixed memory. The maximum size of each data buffer is
65536 bytes, and the minimum size is 4 bytes. There is no buffer address alignment
or additional size restrictions.

For a receive buffer the following fields of an RPD must be assigned:
Field Value

Data Buffer Start Address value is determined during run time or preconfigured
Receive Buffer Size value is determined during run time or preconfigured

For a transmit buffer the following fields of a TD must be assigned:
Field Value

Data Buffer Start Address value is determined during run time or preconfigured
Bytes In Buffer value is determined during run time or preconfigured

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

17

The FREEDM automatically links RPD's when the receive packet length exceeds the
buffer size.

The software must link TD's when the packet data is "scattered" among a number of
buffers.

3.5 References

References are dword structures used to access descriptors within a descriptor table.
They also have status bits which are written by the FREEDM after it has processed
the packet. These status bits must be read by software to identify whether the
FREEDM was successful in processing the packet.

A Transmit Descriptor Reference (TDR) has the following fields:

TDR[13:0]STATUS[2:0]

Bit 0Bit 31

UNUSED

Field Description

Status[2:0] The TMAC fills in the Status field to
indicate the results of processing the TD.
The encoding is:

Status[1:0] Description
00 Successful, last or only

buffer of packet.
01 Successful, buffer of partial

packet.
10 Failed, unprovisioned

channel.

11 Failed, malformed packet
(e.g. Bytes In Buffer field
set to 0).

Status[2] Description
0 No underflow detected.
1 Underflow detected.

TDR[13:0] The TDR[13:0] field contains the offset of
the TD returned.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

18

A Receive Packet Descriptor Reference (RPDR) has the following fields:

RPDR[13:0]STATUS[1:0]

Bit 0Bit 31

UNUSED

Field Description

Status[1:0] The encoding for the status field is as
follows:

00 - Successful reception of packet.
01 - Unsuccessful reception of packet.
10 - Unprovisioned partial packet.
11 - Reserved.

RPDR[13:0] The RPDR[13:0] field defines the offset
of the first RPD in a linked chain of
RPDs, each pointing to a buffer
containing the received data.

NOTES:

• When the FREEDM writes an RPDR into the RPDR Ready queue, or when it
writes a TDR into the TDR Free queue, it overwrites unused bits in byte 2 of the
reference with a zero value. This may be useful to software which polls host
memory to determine when a reference has been written into a queue, instead of
responding to an interrupt and reading a FREEDM register. The software should
write a non-zero value in byte 2 after reading the reference, and at a later time it
can check whether the non-zero value was overwritten by the FREEDM, indicating
the FREEDM has written another reference into this queue location.

• The reference, including status bits, is written into a queue by the FREEDM
during a queue write operation. The status bits indicate the success of receive or
transmit processing and should be checked by software when the reference is
read from the queue.

• Only one RPDR is written into the RPDR Ready queue per receive packet, and
this RPDR represents the linked list of RPD's which identify the receive packet.

• The TDR associated with each TD of a transmit packet is written to the TDR Free
queue. In the case of a packet with multiple TD's there will be multiple TDR's
written to the TDR Free queue.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

19

• The Status[2] field of a TDR can be used to identify the occurance of an underflow
condition on the channel associated with the TDR. The underflow may or may not
have occured on the buffer associated with the TDR read from the TDR Free
queue.

TD's or RPD's can be accessed using the index field of the reference and the base
address of the descriptor table as illustrated by the pseudo code below:

/* Need to mask out the upper 18 bits of the desc reference to extract
 * the index field. */
#define RPD_INDEX_MASK 0x00003FFF
#define TD_INDEX_MASK RPD_INDEX_MASK
#define MUL_16_BYTES 4

index = RxReference & RPD_INDEX_MASK;

/* The address of the descriptor in the descriptor table
 * can be determined as shown below */
desc_addr = desc_table_base_addr + (index << MUL_16_BYTES);

3.6 Queues

A queue is a FIFO buffer located in fixed memory and it holds a number of
references. The FREEDM has 5 queues which must be allocated. There are 2
queues for TDR's and 3 queues for RPDR's. The software must allocate memory for
each of these queues.

In the transmit direction there is the Transmit Descriptor Reference Ready queue
(TDR Ready queue) and the Transmit Descriptor Reference Free queue (TDR Free
queue). The software writes a TDR to the TDR Ready queue when it wants the
FREEDM to transmit a packet. The FREEDM reads from the TDR ready queue and
starts to transmit the packet, and when it has completed the transmit operation it
writes the TDR to the TDR Free queue. The software reads from the TDR Free queue
to confirm that the packet has been transmitted, and to reuse the TD for another
packet.

In the receive direction there is the Receive Packet Descriptor Reference Free Small
queue (RPDR Free Small queue), the Receive Packet Descriptor Reference Free
Large queue (RPDR Free Large queue), and the Receive Packet Descriptor
Reference Ready queue (RPDR Ready queue). The FREEDM reads from the RPDR
Free Large queue and the RPDR Free Small queue to get free buffers into which the
receive data is written. When the receive operation is complete the FREEDM writes a
RPDR to the RPDR Ready queue. The software reads from the RPDR Ready queue
to process a receive packet, and it writes to the RPDR Free Small (or Large) queue to
reuse the RPD for another packet.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

20

The FREEDM obtains free buffers from the RPDR Free Small (or Large) queue based
on the following 2-step algorithm:

1) The first buffer into which the receive packet is written is obtained from the RPDR
Free Small queue, and if this queue is empty it is obtained from the RPDR Large
queue.

2) If the receive packet length exceeds the small buffer size then the additional
receive data is written into buffers obtained from the RPDR Free Large queue. If the
RPDR Free Large queue is empty then the additional buffers are obtained from the
RPDR Free Small queue.

The entity (either the software or the FREEDM) which reads from a queue and the
entity which writes to a queue is as follows.

Queue Read By Written By
TDR Ready FREEDM Software
TDR Free Software FREEDM
RPDR Free Small FREEDM Software
RPDR Free Large FREEDM Software
RPDR Ready Software FREEDM

There are four indexes for each queue that are used to manage its state. These
indexes are located in the FREEDM Normal Mode Register space. The values are
described as follows:

Index Description
start The start index marks the lowest address of the

queue. This is the first location in the queue. This
value should not be modified after initialization.

write The write index is modified by the entity which writes
to the queue. The write index marks the address
where a reference can be written. After the reference
is written this value is incremented.

read The read index is modified by the entity which reads
from the queue. The read index marks the last
location accessed by the reading entity. After the
reference is read this value is incremented.

end The end index marks the address which follows the
last location (the highest addressable location) in the
queue. This value should not be modified after
initialization.

The empty queue states are illustrated in figure 6. The queue is empty when the read
index is one location before the write index.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

21

Fig. 6 Empty Queue States

start_ pointer

end_ point er

read_point er
writ e_point er

...

start_ pointer

end_ point er
read_point er

writ e_point er

...

DWORD

The full queue states are illustrated in figure 7. The queue is full when the read index
is the same as the write index.

Fig. 7 Full Queue States

start_ point er

end_ point er

read_ point erwrite_ pointer

...

start_ point er

end_point er
read_point er writ e_point er

...

Allocation of Queues

From figure 7 it can be seen that the physical size of a queue is one dword larger
than the number of references in the queue when it is full. Therefore in order to
create a queue that holds 128 references the software must allocate contiguous
memory of 129 dwords. In general, each queue must be large enough to hold one
reference per channel that is provisioned.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

22

To obtain the best bus utilization possible the size of a queue should not be too small,
as this would lead to more frequent accesses to the read and/or write index registers
of the FREEDM. The minimum recommended queue size is approximately 32
references. In general the queue should be large enough to hold one reference per
provisioned channel.

The queues used for transmit packets are located in fixed memory as offsets from a
base address. The queues used for receive packets are located in fixed memory as
offsets from another base address. Base addresses must be dword aligned and are
programmed as follows for the receive direction and transmit direction, respectively:

Bit Register
RQB[15:0] RMAC Receive Queue Base LSW (0x290)
RQB[31:16] RMAC Receive Queue Base MSW (0x294)
TQB[15:0] TMAC Transmit Queue Base LSW (0x310)
TQB[31:16] TMAC Transmit Queue Base MSW (0x314)

The TDR Ready queue and the TDR free queue must reside within 256K of the
TMAC Transmit Queue Base address. The size of each queue is specifed by
assignment of the start, write, read and end indexes.

The RPDR Free Large queue, the RPDR Free Small queue and the RPDR Ready
queue must reside within 256K of the RMAC Receive Queue Base address. The size
of each queue is specified by assignment of the start, write, read and end indexes.

Initialization of Queues

The software must initialize each queue after the allocation procedure. Normally, a
queue is initialized with the state shown below:

Queue Initial State
TDR Ready empty
TDR Free empty
RPDR Free Small full
RPDR Free Large full
RPDR Ready empty

The software must write valid RPD References into the RPDRF Small (and Large)
queues.

The software must also write the following FREEDM registers with valid indexes.
Bit Register

RPDRLFQS[15:0] RMAC Packet Descriptor Reference Large Buffer Free
Queue Start (0x298)

RPDRLFQW[15:0] RMAC Packet Descriptor Reference Large Buffer Free
Queue Write (0x29C)

RPDRLFQR[15:0] RMAC Packet Descriptor Reference Large Buffer Free
Queue Read (0x2A0)

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

23

RPDRLFQE[15:0] RMAC Packet Descriptor Reference Large Buffer Free
Queue End (0x2A4)

RPDRSFQS[15:0] RMAC Packet Descriptor Reference Small Buffer Free
Queue Start (0x2A8)

RPDRSFQW[15:0] RMAC Packet Descriptor Reference Small Buffer Free
Queue Write (0x2AC)

RPDRSFQR[15:0] RMAC Packet Descriptor Reference Small Buffer Free
Queue Read (0x2B0)

RPDRSFQE[15:0] RMAC Packet Descriptor Reference Small Buffer Free
Queue End (0x2B4)

RPDRRQS[15:0] RMAC Packet Descriptor Reference Ready Queue Start
(0x2B8)

RPDRRQW[15:0] RMAC Packet Descriptor Reference Ready Queue Write
(0x2BC)

RPDRRQR15:0] RMAC Packet Descriptor Reference Ready Queue Read
(0x2C0)

RPDRRQE[15:0] RMAC Packet Descriptor Reference Ready Queue End
(0x2C4)

TDRFQS[15:0] TMAC Transmit Descriptor Reference Free Queue Start
(0x318)

TDRFQW[15:0] TMAC Transmit Descriptor Reference Free Queue Write
(0x31C)

TDRFQR[15:0] TMAC Transmit Descriptor Reference Free Queue Read
(0x320)

TDRFQE[15:0] TMAC Transmit Descriptor Reference Free Queue End
(0x324)

TDRRQS[15:0] TMAC Transmit Descriptor Reference Ready Queue
Start (0x328)

TDRRQW[15:0] TMAC Transmit Descriptor Reference Ready Queue
Write (0x32C)

TDRRQR[15:0] TMAC Transmit Descriptor Reference Ready Queue
Read (0x330)

TDRRQE[15:0] TMAC Transmit Descriptor Reference Ready Queue
End (0x334)

Queue Operation

The following code illustrates how the software can access a queue. It should be
noted for a specific queue that the software will only read from it or write to it, but not
both read and write to it.

#define QUEUE_BATCH_SIZE 6

#define READ_INDEX_REGISTER(address) ((*address)&0xFFFF)
#define WRITE_INDEX_REGISTER(address,value) *address = (dword) value

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

24

BOOL ReadQueue(dword* pReference)
{

dword* pQueueElement;

/* The following code segment ensures the write index register
 * is not read too frequently. Thereby, minimizing
 * utilization of the PCI bus. */

if (Headroom == 0) {
/* Headroom was initialized to zero, and must be reinitialized
 * to a non-zero value in the following code segment before
 * the software is able to read a reference from the queue.
 * The Headroom is the number of references in the queue when the
 * write index was last read by software, minus the number of
 * these references that have been read. */
Write = READ_INDEX_REGISTER(pWriteRegister);
if (Write <= Read)

Headroom = Write - Start + End - Read - 1;
else

Headroom = Write - Read - 1;
/* Exit if the queue is empty */
if (Headroom == 0) return FALSE;

}
Headroom--;

/* Determine the read index of the reference in the queue.
 * Reading is a pre-increment operation. */
Read++;
if (Read == End)

Read = Start;

/* Read the reference from a RAM location */
pQueueElement = pQueueBaseAddress + Read;
*pReference = *pQueueElement;

/* The following code segment ensures the read index register
 * is not written too frequently. Thereby, minimizing
 * utilization of the PCI bus. */

if (CacheSize-- == 0) {
WRITE_INDEX_REGISTER(pReadRegister, Read);
CacheSize = QUEUE_BATCH_SIZE;

}

return TRUE;
}

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

25

BOOL WriteQueue(dword Reference)
{

dword* pQueueElement;

/* The following code segment ensures the read index register
 * is not read too frequently. Thereby, minimizing
 * utilization of the PCI bus. */

if (Headroom == 0) {
/* Headroom was initialized to zero, and must be reinitialized
 * to a non-zero value in the following code segment before
 * the software is able to write a reference from the queue.
 * The Headroom is the free space in the queue when the
 * read index was last read by software, minus the number of
 * these locations that have been written. */
Read = READ_INDEX_REGISTER(pReadRegister);
if (Read <= Write)

Headroom = Read - Start + End - Write;
else

Headroom = Read - Write;
/* Exit if the queue is full */
if (Headroom == 0) return FALSE;

}
Headroom--;

/* Write the reference to a RAM location */
pQueueElement = pQueueBaseAddress + Write;
*pQueueElement = Reference;

/* Update the write index for next time.
 * Write is a post-increment operation */
Write++;
if (Write == End)

Write = Start;

/* The following code segment ensures the write index register
 * is not written too frequently. Thereby, minimizing
 * utilization of the PCI bus. */

if (CacheSize-- == 0) {
WRITE_INDEX_REGISTER(pWriteRegister, Write);
CacheSize = QUEUE_BATCH_SIZE;

}

return TRUE;
}

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

26

An alternative method of reading from a queue is to poll a queue location in RAM,
waiting for the FREEDM to write a reference to the queue. This method is
recommended when interrupts RPQRDYI and TDQFI are disabled, and processing of
the TDR Free queue and the RPDR Ready queue must take place by polling. The
following code illustrates this method.

#define INVALID_REFERENCE 0xFFFFFFFF

/* this routine assumes all empty queue locations were initialized
 * with the value 0xFFFFFFFF */

BOOL PollQueue(dword* pReference)
{

dword* pQueueElement;

/* Read the reference from a RAM location */
pQueueElement = pQueueBaseAddress + NextReadLocation;
*pReference = *pQueueElement;

if (*pReference == INVALID_REFERENCE) {
/* the queue location was not overwritten by the FREEDM, so
 * the reference is invalid, and PollQueue() does not return
 * a valid reference, so... */
return FALSE;

}
else {

/* the queue location was overwritten by the FREEDM, so
 * the reference is valid, proceed by overwriting the queue
 * location with an invalid reference. */
*pQueueElement = INVALID_REFERENCE;

/* write the FREEDM register every n'th packet */
if (CacheSize++ == QUEUE_BATCH_SIZE) {

WRITE_INDEX_REGISTER(pReadRegister, NextReadLocation);
CacheSize = 0;

}

/* calculate next read index since
 * read is a pre-increment operation */
NextReadLocation++;
if (NextReadLocation == End) {

NextReadLocation = Start;
}
return TRUE;

}
}

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

27

4 INTERRUPT ARCHITECTURE

This section provides an overview of the FREEDM interrupt architecture. Detailed
information on the individual interrupts is available in the Longform Datasheet[1].

The FREEDM provides a number of individual interrupts which are identified as 'I' bits
within the FREEDM Master Interrupt Status (0x008) register. When an interrupt
source becomes active the 'I' bit is set and remains set until the FREEDM Master
Interrupt Status (0x008) register is read.

The FREEDM provides interrupts to the PCI bus via the PCIINTB pin of the FREEDM.
This signal is typically routed to an embedded processor via the INTA#, INTB#,
INTC# or INTD# pin on the PCI bus. The PCIINTB pin is gated by the FREEDM
Master Interrupt Enable (0x004) register. This register contains 'E' bits which can
mask the 'I' bit from causing an interrupt on the PCIINTB pin of the FREEDM. When
the 'E' and 'I' bits of an interrupt source are both high then the PCIINTB pin is active.
When the 'E' bit is low the interrupt source will not activate the PCIINTB pin,
regardless of the 'I' bit status.

The complete list of 'I' bits and 'E' bits is shown below:
'E' Bit 'I' Bit Description

SERRE SERRI System Error
PERRE PERRI Parity Error

RFCSEE RFCSEI Receive FCS Error
RABRTE RABRTI Receive Abort
RPFEE RPFEI Receive Packet Format Error

RFOVRE RFOVRI Receive FIFO Overrun Error
RPQSFE RPQSFI Small Buffer Cache Read
RPQLFE RPQLFI Large Buffer Cache Read

RPQRDYE RPQRDYI RPQR Ready Queue Write
RPDFQEE RPDFQEI RPDR Free Queue Error
RPDRQEE RPDRQEI RPDR Ready Queue Error

TDQFE TDQFI TDR Free Queue Write
TDQRDYE TDQRDYI TDR Ready Queue Read
TDFQEE TDFQEI TDR Free Queue Error

IOCE IOCI Interrupt On Complete
TFUDRE TFUDRI Transmit FIFO Underflow Error

Interrupt Service Routine

The following code segement illustrates how interrupts for transmit and receive
packets can be processed:

#define RPQSFI 0x0040
#define RPQLFI 0x0080

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

28

#define RPQRDYI 0x0100
#define TDQFI 0x0800
#define IOCI 0x4000
#define RX_FREE_INTERRUPT RPQLFI & RPQSFI
#define TX_RX_INTERRUPT TDQFI & IOCI & RPQRDYI
#define READ_REGISTER(address) ((*address)&0xFFFF)

/* read and clear the interrupt status */
Status == READ_REGISTER(pFreedmMasterInterruptStatusRegister);

if (Status&(TX_RX_INTERRUPT|RX_FREE_INTERRUPT)) {

/* disable interrupts scheduled for deferred processing */
Enable = READ_REGISTER(pFreedmMasterInterruptEnableRegister);

/* disable active TX_RX_INTERRUPT bits */
Enable &= ~TX_RX_INTERRUPT;
WRITE_REGISTER(pFreedmMasterInterruptEnableRegister, Enable);

/* Schedule processing of these interrupts within a
 * deferred processing routine. The deferred processing routine

 * should run after interrupt service routine, and with a lower
 * priority than the interrupt service routine. The deferred
 * processing routine must enable the relevant 'E' bits when it
 * is done with processing of Status values. */
ScheduleDPR(Status);

}

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

29

5 PCI CONFIGURATION SPACE

The purpose of the PCI Configuration Space is to provide device specific information
in a common template such that software can identify each PCI device in the system,
determine the individual functions provided by each device, and allocate system
resources to each device.

5.1 Accesssing the PCI Configuration Space

The FREEDM responds to Type 0 configuration cycles for a single function device, as
described in the PCI specification[2]. The FREEDM only uses the IDSEL pin and the
AD[1:0] = 00B to determine whether to respond to a configuration cycle. During the
address phase of the configuration cycle the AD[7:2] pins specify which of the 64
DWORD aligned Configuration Space registers is accessed, and the BE[3:0]# pins
specify which byte lanes within the 32-bit data bus are accessed.

The method of generating the configuration cycle is described in the PCI specification
for a PC-AT compatible architecture, but for other system architectures, the method of
generating configuration accesses is not defined in the PCI specification. The
designer of the system must provide a mechanism that allows PCI configuration
cycles to be generated by software. The designer must also specify an API to read
and/or write registers within the Configuration Space.

5.2 PCI Configuration Registers

Portions of the PCI Configuration Space are mandatory in order for a PCI device to
be in full compliance with the PCI specification. This section identifies the registers
which are implemented in the FREEDM. The reader is refered to the PCI
specification[2] and the Longform Datasheet[1] for an in depth description of these
registers.

The mandatory fields are listed below and shown in bold text in figure 8.

• Vendor ID

• Device ID

• Command

• Status

• Revision ID

• Class Code

• Header Type

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

30

Implementation of the other registers in a Type 0 Configuration Space is optional.
Fields marked with asterisks (*) are not implemented in the FREEDM Configuration
Space. These fields will return 0 when read.

Fig. 8 FREEDM Type 0 Configuration Space Header

DWORD
Register

Address Byte 3 Byte 2 Byte 1 Byte 0

1 0x00 Device ID Vendor ID

2 0x04 Status Command

3 0x08 Class Code Revision
ID

4 0x0C BIST* Header
Type

Latency
Timer

Cache Line
Size

5 0x10 Base Address 0 (CBI Memory Base Address)

6 0x14 Base Address 1*

7 0x18 Base Address 2*

8 0x1C Base Address 3*

9 0x20 Base Address 4*

10 0x24 Base Address 5*

11 0x28 Cardbus CIS Pointer*

12 0x2C Subsystem ID* Subsystem Vendor ID*

13 0x30 Expansion ROM Base Address*

14 0x34 Reserved*

15 0x38 Reserved*

16 0x3C Max_Lat Min_Gnt Interrupt
Pin

Interrupt
Line

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

31

6 CONFIGURING THE SERIAL LINKS

Each of the 32-bidirectional links are controlled via the RCAS and the TCAS blocks of
the FREEDM. The TCAS controls the transmit data stream while the RCAS controls
the receive data stream.

The TCAS sources data bits onto each of 32 transmit links, based on the link
configuration specified in the Normal Mode Register Space. The TCAS can provide
data aligned to a link's gapped clock in channelized mode, provide unaligned data in
unchannelized mode, or provide byte sychronized data in unchannelized mode.

The RCAS extracts data bits from each of 32 receive links, based on the link
configuration specified in the Normal Mode Register Space. The RCAS can align data
to a link's gapped clock in channelized mode, extract unaligned data in unchannelized
mode, or extract byte sychronized data in unchannelized mode.

Each of the serial link configurations are discussed seperately in the following
sections.

6.1 Channelized T1 Links

The receive bit stream is input on RD[n], and the RCLK[n] input is a 1.544 MHz clock
that provides bit timing. The clock is gapped to align time-slot 1 of the channelized E1
receive link (see figure 9).

The transmit bit stream is output on TD[n], and the TCLK[n] input is a 1.544 MHz
clock that provides bit timing. The clock is gapped to align time-slot 1 of the
channelized T1 transmit link (see figure 10).

In each direction, transmit or receive, a T1 frame consists of 24 time-slots or bytes
which are mapped to one or more channels of the FREEDM. The data stream of each
direction is processed and clocked independently.

Fig. 9 Channelized T1 Receive Link Timing

RCLK[n]

RD[n] B7 B8 F B1 B2 B3 B4 B5 B6 B7 B8 B1 B2 B3

TS 24 TS 1 TS 2

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

32

Fig. 10 Channelized T1 Transmit Link Timing

TCLK[n]

TD[n] B7 B8

F

B1 B2 B3 B4 B5 B6 B7 B8 B1 B2 B3

TS 24 TS 1 TS 2

B1

To configure the RCAS and TCAS to interface to channelized T1 links the following
bits are written:

Bit Register Value
CEN RCAS Link #n Configuration (see note) 1
E1 RCAS Link #n Configuration (see note) 0

BSYNC RCAS Link #n Configuration (see note) X
FTHRES[6:0] RCAS Framing Bit Threshold (0x108) 0x1F

CEN TCAS Link #n Configuration (see note) 1
E1 TCAS Link #n Configuration (see note) 0

BSYNC TCAS Link #n Configuration (see note) X
FTHRES[6:0] TCAS Framing Bit Threshold (0x408) 0x1F
FDATA[7:0] TCAS Idle Time-slot Fill Data (0x40C) 0xFF

NOTES:

• The RCAS Link #n Configuration register must be chosen from the range 0x180
through 0x2FC corresponding to the link being configured for channelized T1
operation. The BSYNC bit is present only in registers with 0 ≤ n ≤ 2. The BSYNC
value has no significance for the channelized mode of operation.

• The TCAS Link #n Configuration register must be chosen from the range 0x480
through 0x4FC corresponding to the link being configured for channelized T1
operation. The BSYNC bit is present only in registers with 0 ≤ n ≤ 2. The BSYNC
value has no significance for the channelized mode of operation.

• The FTHRES[6:0] value assumes a SYSCLK of 33Mhz. For other values of
SYSCLK the framing threshold value is 1.5 ⋅ f SYSCLK 1544000 (This value ensures
the threshold is suitable for both T1 and E1 links).

• The FDATA[7:0] bits of the TCAS Idle Time-slot Fill Data (0x40C) register, and
the FTHRES[6:0] bits of the RCAS Framing Bit Threshold (0x108) / TCAS
Framing Bit Threshold (0x408) registers, affect all links of a FREEDM. The
programmer should ensure that these values are suitable for all links attached to a
FREEDM.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

33

6.2 Channelized E1 Links

The receive bit stream is input on RD[n], and the RCLK[n] input is a 2.048 MHz clock
that provides bit timing. The clock is gapped to align time-slot 1 of the channelized E1
receive link (see figure 11).

The transmit bit stream is output on TD[n], and the TCLK[n] input is a 2.048 MHz
clock that provides bit timing. The clock is gapped to align time-slot 1 of the
channelized E1 transmit link (see figure 12).

In each direction, transmit or receive, an E1 frame consists of 31 time-slots or bytes
which are mapped to one or more channels of the FREEDM. The data stream of each
direction is processed and clocked independently.

Fig. 11 Channelized E1 Receive Link Timing

RCLK[n]

RD[n] B6 B7 F1 F2 F3 F4 F5 F6 F7 F8 B1 B2 B3

TS 31 FAS / NFAS TS 1

B8 B4 B5 B6 B7 B8 B1 B2 B3 B4

TS 2

Fig. 12 Channelized E1 Transmit Link Timing

TCLK[n]

TD[n] B6 B7 B1 B2 B3

TS 31 FAS / NFAS TS 1

B8 B4 B5 B6 B7 B8 B1 B2 B3 B4

TS 2

B1B1B1 B1B1B1 B1B1

To configure the RCAS and TCAS to interface to channelized E1 links the following
bits are written:

Bit Register Value
CEN RCAS Link #n Configuration (see note) 1
E1 RCAS Link #n Configuration (see note) 1

BSYNC RCAS Link #n Configuration (see note) X
FTHRES[6:0] RCAS Framing Bit Threshold (0x108) 0x1F

CEN TCAS Link #n Configuration (see note) 1
E1 TCAS Link #n Configuration (see note) 1

BSYNC TCAS Link #n Configuration (see note) X
FTHRES[6:0] TCAS Framing Bit Threshold (0x408) 0x1F
FDATA[7:0] TCAS Idle Time-slot Fill Data (0x40C) 0xFF

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

34

NOTES:

• The RCAS Link #n Configuration register must be chosen from the range 0x180
through 0x2FC corresponding to the link being configured for channelized E1
operation. The BSYNC bit is present only in registers with 0 ≤ n ≤ 2. The BSYNC
value has no significance for the channelized mode of operation.

• The TCAS Link #n Configuration register must be chosen from the range 0x480
through 0x4FC corresponding to the link being configured for channelized E1
operation. The BSYNC bit is present only in registers with 0 ≤ n ≤ 2. The BSYNC
value has no significance for the channelized mode of operation.

• The FTHRES[6:0] value assumes a SYSCLK of 33Mhz. For other values of
SYSCLK the framing threshold value is 1.5 ⋅ f SYSCLK 1544000 (This value ensures
the threshold is suitable for both T1 and E1 links).

• The FDATA[7:0] bits of the TCAS Idle Time-slot Fill Data (0x40C) register, and
the FTHRES[6:0] bits of the RCAS Framing Bit Threshold (0x108) / TCAS
Framing Bit Threshold (0x408) registers, affect all links of a FREEDM. The
programmer should ensure that these values are suitable for all links attached to a
FREEDM.

6.3 Unchannelized Links With Byte Synchronization

The bit stream of the unchannelized receive link that is attached to the RD[n] input is
sampled on rising edges of the RCLK[n] input (see figure 13). The receive data is
byte aligned to the gapped RCLK[n] input, with the most significant bit of the byte
clocked in following the gap.

The unchannelized transmit link is attached to the TD[n] output and is driven on falling
edges of the TCLK[n] input (see figure 14). The transmit data is byte aligned to the
gapped TCLK[n] input, with the most significant bit of the byte clocked out during the
gap.

This mode of operation is only available for links 0 through 2 of a FREEDM.

In each direction, transmit or receive, the data stream is processed and clocked
independently.

Fig. 13 Unchannelized Receive Link Timing With Byte Synchronization

RCLK[n]

RD[n] B6 B7 B1 B2 B3B8 B4 B5 B6 B7 B8 B1 B2 B3 B4B5

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

35

Fig. 14 Unchannelized Transmit Link Timing With Byte Synchronization

RCLK[n]

RD[n] B6 B7 B1B2 B3B8 B4 B5 B6 B7 B8B1 B2 B3 B4B5 B1B1B1B1B1B1B1B1

To configure the RCAS and TCAS to interface to byte sychronized unchannelized
links the following bits are written:

Bit Register Value
CEN RCAS Link #n Configuration (see note) 0
E1 RCAS Link #n Configuration (see note) 0

BSYNC RCAS Link #n Configuration (see note) 1
FTHRES[6:0] RCAS Framing Bit Threshold (0x108) (see

note)
CEN TCAS Link #n Configuration (see note) 0
E1 TCAS Link #n Configuration (see note) 0

BSYNC TCAS Link #n Configuration (see note) 1
FTHRES[6:0] TCAS Framing Bit Threshold (0x408) (see

note)
FDATA[7:0] TCAS Idle Time-slot Fill Data (0x40C) 0xFF

NOTES:

• The RCAS Link #n Configuration register must be chosen from the range 0x180
through 0x2FC corresponding to the link being configured. The unchannelized link
with byte synchronization is only supported in registers with 0 ≤ n ≤ 2.

• The TCAS Link #n Configuration register must be chosen from the range 0x180
through 0x2FC corresponding to the link being configured. The unchannelized link
with byte synchronization is only supported in registers with 0 ≤ n ≤ 2.

• The FTHRES[6:0] value must be set based on the expected gap width of RCLK[n]
or TCLK[n]. The reader should refer to the Longform Datasheet[1] on how to set
this value.

• The FDATA[7:0] bits of the TCAS Idle Time-slot Fill Data (0x40C) register, and
the FTHRES[6:0] bits of the RCAS Framing Bit Threshold (0x108) / TCAS
Framing Bit Threshold (0x408) registers, affect all links of a FREEDM. The
programmer should ensure that these values are suitable for all links attached to a
FREEDM.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

36

6.4 Unchannelized Links Without Synchronization

The bit stream of the unchannelized receive link that is attached to the RD[n] input is
sampled on rising edges of the RCLK[n] input (see figure 15). The receive data is not
aligned to the RCLK[n] input.

The unchannelized transmit link is attached to the TD[n] output and is driven on falling
edges of the TCLK[n] input (see figure 16). The transmit data is not aligned to the
TCLK[n] input.

In each direction, transmit or receive, the data stream is processed and clocked
independently.

Fig. 15 Unchannelized Receive Link Timing Without Synchronization

RCLK[n]

RD[n] B1 B2 B3 B4 X B5 X X X B6 B7 B8 B1 X

Fig. 16 Unchannelized Transmit Link Timing Without Synchronization

TCLK[n]

TD[n] B1 B2 B3 B4 B5 B6 B7 B8 B1B4 B6 B6 B6 B2

To configure the RCAS and TCAS to interface to unchannelized links the following
bits are written:

Bit Register Value
CEN RCAS Link #n Configuration (see note) 0
E1 RCAS Link #n Configuration (see note) 0

BSYNC RCAS Link #n Configuration (see note) 0
CEN TCAS Link #n Configuration (see note) 0
E1 TCAS Link #n Configuration (see note) 0

BSYNC TCAS Link #n Configuration (see note) 0
FDATA[7:0] TCAS Idle Time-slot Fill Data (0x40C) 0xFF

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

37

NOTES:

• The RCAS Link #n Configuration register must be chosen from the range 0x180
through 0x2FC corresponding to the link being configured for unchannelized
operation.

• The TCAS Link #n Configuration register must be chosen from the range 0x480
through 0x4FC corresponding to the link being configured for unchannelized
operation.

• The BSYNC bit must only be programmed for links where 0 ≤ n ≤ 2. For other links
there is no BSYNC bit.

• The FTHRES[6:0] bits of the RCAS Framing Bit Threshold (0x108) / TCAS
Framing Bit Threshold (0x408) register has no effect on operation of an
unchannelized link with BSYNC low, or on links with no BSYNC bit.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

38

7 CONFIGURING THE PCI INTERFACE

Configuration of the PCI interface involves initialization of data structures, which is
covered in section 3, and mapping of the Normal Mode Register Space, which is
covered in section 9.1. This section covers configuration and control of the DMA
activities. These are accessible within the RMAC, TMAC and GPIC block registers.

7.1 Configuring the Receive DMA Controller (RMAC)

The RMAC is the DMA controller which writes receive data into packet memory. It
sources data from the RHDL and requests the GPIC to write the data across the PCI
bus and into packet memory.

The RMAC is configured by programming bits within the RMAC Control (0x280)
register. The values programmed affect all receive channels. The default
configuration is as follows:

Bit Register Value
ENABLE RMAC Control (0x280) 0
LCACHE RMAC Control (0x280) 1
SCACHE RMAC Control (0x280) 1

RAWMAX[1:0] RMAC Control (0x280) 11B
RPQ_RDYN[2:0] RMAC Control (0x280) 000B
RPQ_LFN[1:0] RMAC Control (0x280) 00B
RPQ_SFN[1:0] RMAC Control (0x280) 00B

The default indicates that the RMAC is disabled from DMA'ing receive data into
packet memory.

Activation of the RMAC

By default, the RMAC is disabled from DMA'ing receive data into packet memory. The
ENABLE bit must be set to allow DMA of receive data into packet memory. The
encoding of this bit is:

ENABLE Function
0 The RMAC does not accept data from the RHDL and does not

write data to host memory.
1 The RMAC accepts data from the RHDL and writes it to host

memory.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

39

Free Buffer Cache Enable

The FREEDM reads from packet memory to obtain unused receive buffers and stores
them in a cache if it is enabled. The access can read just one RPDR, or six RPDR's if
the cache is enabled. There is a seperate cache for the small buffers and the large
buffers which can be individualy enabled.

LCACHE (or
SCACHE)

Function

0 The RMAC reads just one RPDR at a time.
1 The RMAC reads up to six RPDR and stores them in a cache.

Raw Data Notification

The RAWMAX[1:0] field determines notification of receive occurs. This field only
applies to channels that are provisioned with the DELIN bit set low within the RHDL
Indirect Channel Data Register #1 (0x204) register. When the unprocessed data
fills RAWMAX[1:0] + 1 buffers the resulting buffer chain is placed in the RPDR Ready
queue.

RPQRDYI, RPQLFI and RPQSFI Interrupt Frequency

The RPQ_RDYN[2:0] field indicates the number of RPDR's written to the RPDR
Ready queue by the FREEDM before an RPQRDYI interrupt is activated. It
essentially controls the frequency of RPQRDYI interrupts. When this interrupt occurs
the software must process the linked list of buffers for each RPDR (packet) that is
read from the RPDR Ready queue. Valid values are:

RPQ_RDYN[2:0] No of RPDRs
000 1
001 4
010 6
011 8
100 16
101 32
110 Reserved
111 Reserved

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

40

The RPQ_LFN[1:0] field indicates the number of RPDR's read from the RPDRF Large
queue by the FREEDM before an RPQLFI interrupt is activated. It essentially controls
the frequency of RPQLFI interrupts. When this interrupt occurs the software must
replenish the RPDRF Large queue with large buffers. Valid values are:

RPQ_LFN[1:0] No of Reads
00 1
01 4
10 8
11 Reserved

The RPQ_SFN[1:0] field indicates the number of RPDR's read from the RPDRF
Small queue by the FREEDM before an RPQSFI interrupt is activated. It essentially
controls the frequency of RPQSFI interrupts. When this interrupt occurs the software
must replenish the RPDRF Small queue with large buffers. Valid values are:

RPQ_SFN[1:0] No of Reads
00 1
01 4
10 8
11 Reserved

7.2 Configuring the Transmit DMA Controller (TMAC)

The TMAC is the DMA controller which reads transmit data from packet memory. It
reads TDR's from the TDR Ready queue to determine the transmit buffer data which
must be DMA'd across the PCI bus and passed onto the THDL block.

The TMAC is configured by programming bits within the TMAC Control (0x300)
register. The values programmed affect all transmit channels. The default
configuration is as follows:

Bit Register Value
ENABLE TMAC Control (0x300) 0
CACHE TMAC Control (0x300) 1

TDQ_RDYN[2:0] TMAC Control (0x300) 000B
TDQ_FRN[1:0] TMAC Control (0x300) 00B

The default indicates that the TMAC is disabled from DMA'ing transmit data from
packet memory.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

41

Activation of the TMAC

By default, the TMAC is disabled from DMA'ing data from packet memory. The
ENABLE bit must be set to allow DMA of transmit data. The encoding of this bit is:

ENABLE Function
0 The TMAC does not read the TDR Ready queue in packet

memory to transmit new packets. Once all linked lists of TD's
built up by the TMAC have been exhausted, no more data will
be transmitted on the TD[31:0] links.

1 The TMAC can read the TDR Ready queue in packet memory
to transmit new packets.

Free Buffer Cache Enable

The CACHE enable bit allows the TMAC to cache up to six TDR before writing them
to the TDR Free queue.

CACHE Function
0 The TMAC writes one TDR at a time to the TDR Free queue.
1 The TMAC caches up to six TDR and writes them to the TDR

Free queue at one time.

TDQFI Interrupt Frequency

The TDQ_FRN[1:0] field sets the number of TDR's read from the cache and written to
the TDR Free queue by the FREEDM before a TDQFI interrupt is asserted. It
essentially controls the frequency of TDQFI interrupts. When this interrupt occurs the
software must collect each TDR that is read from the RPDR Ready queue in order to
confirm a transmit packet was transmitted, and so that the buffers can be reused.
Valid values are:

TDQ_FRN[1:0] No of Cache
Reads

00 1
01 4
10 8
11 Reserved

7.3 Configuring the General Purpose PCI Controller (GPIC)

The GPIC provides the interface to a 32-bit PCI bus operating at up to 33 MHz and
bridges between the timing domain of the DMA controllers (specified by SYSCLK pin)
and the timing domain of the PCI bus (specified by PCICLK pin). All transactions on
the PCI bus that are initiated by the RMAC or TMAC are translated into PCI bus
activity by the GPIC. Except for the PCI Configuration Space registers and parity
checking, the GPIC does not perform operations on the PCI bus data.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

42

The GPIC is configured by programming bits within the GPIC Control (0x040)
register. The default configuration is as follows:

Bit Register Value
Reserved GPIC Control (0x040) 0
LENDIAN GPIC Control (0x040) 1
SOE_E GPIC Control (0x040) 0

PONS_E GPIC Control (0x040) 0
RPWTH[4:0] GPIC Control (0x040) 0000B

Little Endian Mode Bit

The LENDIAN bit controls the format of buffer data read from or written to packet
memory. By default, the LENDIAN mode bit is set indicating Little Endian format. The
encoding of this bit is:

LENDIAN Function
0 Buffer data is in Little Endian format.
1 Buffer data is in Big Endian format.

Big Endian Format
Bit 31 24 23 16 15 8 7 Bit 0

DWORD Address 00 BYTE 0 BYTE 1 BYTE 2 BYTE 3

 04 BYTE 4 BYTE 5 BYTE 6 BYTE 7

 • • • •
 • • • •
 • • • •

 n-4 BYTE n-4 BYTE n-3 BYTE n-2 BYTE n-1

Little Endian Format
Bit 31 24 23 16 15 8 7 Bit 0

DWORD Address 00 BYTE 3 BYTE 2 BYTE 1 BYTE 0

 04 BYTE 7 BYTE 6 BYTE 5 BYTE 4

 • • • •
 • • • •
 • • • •

 n-4 BYTE n-1 BYTE n-2 BYTE n-3 BYTE n-4

The SOE_E and PONS_E bits

The stop on error enable (SOE_E) and the report PERR on SERR enable (PONS_E)
are described in the Longform Datasheet[1]. These correspond to faults detected at
the hardware level at the PCI bus interface.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

43

Threshold for Early Bus Arbitration

The Receive Packet Write Threshold (RPWTH[4:0]) bits control early arbitration for
the PCI bus. When RPWTH[4:0] is non-zero the GPIC begins requesting access to
the PCI bus when the number of dwords specified by RPWTH[4:0] is available from
the RMAC.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

44

8 HDLC AND CHANNEL FIFO CONFIGURATION

The FREEDM processes the data stream in the receive direction via the RHDL block
and it processes the data stream in the transmit direction via the THDL block. Each of
these blocks must be configured via the Normal Mode Register Space.

8.1 Configuring the RHDL

The RHDL is configured by programming bits within the RHDL Configuration
(0x220) register and the RHDL Maximum Packet Length (0x224). The values
programmed affect all receive channels. The default configuration is as follows:

Bit Register Value
MAX[15:0] RHDL Maximum Packet Length (0x224) 0xFFFF
LENABRT RHDL Configuration (0x220) 0

TSTD RHDL Configuration (0x220) 0
Reserved[2:0] RHDL Configuration (0x220) 0x7

The default indicates no maximum packet length checking and datacom bit ordering.

Maximum Packet Length

The RHDL may be configured to abort packets which exceed a maximum length of n ,
where 0 ≤ n ≤ 0xFFFF. The following bits are written to enable or disable this feature:

LENABRT MAX[15:0] Function
1 n Enables aborts when the maximum packet

length is exceeded.
0 X Disables checking of maximum packet

length.

Datacom/Telecom Bit Order

The RHDL may be configured to reverse the order of bits within a data byte of a write
access on the PCI bus. The following bit is written to specify the order of bits.

TSTD Function
0 Datacom standard - least significant bit is the first HDLC bit

received.
1 Telecom standard - most significant bit is the first HDLC bit

received.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

45

8.2 Configuring the THDL

The THDL is configured by programming bits within the THDL Configuration (0x3B0)
register. The values programmed affect all transmit channels. The default
configuration is as follows:

Bit Register Value
BURST[2:0] THDL Configuration (0x3B0) 0
BURSTEN THDL Configuration (0x3B0) 0

TSTD THDL Configuration (0x3B0) 0
BIT8 THDL Configuration (0x3B0) 0

The default indicates PCI DMA transfer size is controlled by XFER[2:0] and data is
formatted in datacom bit ordering.

Enabling Burst DMA Transfer

The THDL may be configured to combine XFER[2:0] sized block transfers into a
single burst DMA transfer. The following bits are written to enable or disable this
feature:

BURST[2:0] BURSTEN Function
(0 through 7 is

valid)
1 The THDL may combine several XFER[2:0]

sized amounts in a single DMA transaction.
BURST[2:0] configures the maximum
number of blocks that can be burst in a
s ing le DMA t ransact ion, where
BURST[2:0]=0 is one block and
BURST[2:0]=7 is eight blocks.

X 0 DMA transactions are not greater than
XFER[2:0] in size.

Datacom/Telecom Bit Order

The THDL may be configured to reverse the order of bits within each data byte of a
read access on the PCI bus. The following bit is written to specify the order of bits.

TSTD Function
0 Datacom standard - least significant bit is the first HDLC bit

transmitted.
1 Telecom standard - most significant bit is the first HDLC bit

transmitted.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

46

BIT8

The BIT8 field affects channels of the THDL that are configured with 7BIT set. The
BIT8 value specifies the data bit transmitted on the least significant bit of each octet.

BIT8 Function
0 Channels configured for 7BIT will transmit a zero on the least

significant bit of each octet.
1 Channels configured for 7BIT will transmit a one on the least

significant bit of each octet.

8.3 Programming a Channel FIFO

A Channel FIFO is created from 3 or more blocks of internal RAM, and each block
holds 16 bytes of packet data. There is a total of 512 blocks (8 KBytes) available to
assign among the receive channels, and another 512 blocks (8 KBytes) available to
assign among the transmit channels.

A FIFO is created by assigning a circular linked list of blocks as shown in figure 17.
This shows a channel FIFO consisting of 5 blocks. The quantity of buffers and the
arrangement of links is choosen by the programmer, and the selection of blocks can
be arbitrary. The programmer must ensure that a block is not assigned to more than
one circularly linked list.

Fig. 17 Specifying a Channel FIFO

BPTR[8:0] BPTR[8:0]

BPTR[8:0]BPTR[8:0]

BPTR[8:0]

block 0 block 5

block 25

block 21

block 511

block 5

block 25

block 21
block 511

block 0

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

47

8.3.1 Receive Channel FIFO

A receive channel FIFO is programmed by repeating the following procedure for each
block within the circularly linked list:

1) Poll the BUSY bit of the RHDL Indirect Block Select (0x210) register until it is
zero. This ensures that a previous indirect RAM access has completed and that a
new indirect RAM access can be started.

2) Write the following register with the next block in the circular linked list, or exit if all
links have been programmed:

Bit Register Value
BPTR[8:0] RHDL Indirect Block Data (0x214) (0

through
0x1FF is

valid)

3) Specify the block and update the internal block pointer RAM by writing the
following register. Proceed to step 1.

Bit Register Value
BUSY RHDL Indirect Block Select (0x210) X
BRWB RHDL Indirect Block Select (0x210) 0

BLOCK[8:0] RHDL Indirect Block Select (0x210) (0
through
0x1FF is

valid)

8.3.2 Transmit Channel FIFO

A transmit channel FIFO is programmed by repeating the following procedure for
each block within the circularly linked list:

1) Poll the BUSY bit of the THDL Indirect Block Select (0x3A0) register until it is
zero. This ensures that a previous indirect RAM access has completed and that a
new indirect RAM access can be started.

2) Write the following register with the next block in the circular linked list, or exit if all
links have been programmed:

Bit Register Value
BPTR[8:0] THDL Indirect Block Data (0x3A4) (0

through
0x1FF is

valid)

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

48

3) Specify the block and update the internal block pointer RAM by writing the
following register. Proceed to step 1.

Bit Register Value
BUSY THDL Indirect Block Select (0x3A0) X
BRWB THDL Indirect Block Select (0x3A0) 0

BLOCK[8:0] THDL Indirect Block Select (0x3A0) (0
through
0x1FF is

valid)

8.4 RHDL Channel Configuration

The RHDL provides configurable options for each receive channel as identified in the
following register fields:

Bit Register
DELIN RHDL Indirect Channel Data Register #1 (0x204)
STRIP RHDL Indirect Channel Data Register #1 (0x204)

CRC[1:0] RHDL Indirect Channel Data Register #1 (0x204)
XFER[2:0] RHDL Indirect Channel Data Register #2 (0x208)

OFFSET[1:0] RHDL Indirect Channel Data Register #2 (0x208)
INVERT RHDL Indirect Channel Data Register #2 (0x208)

PRIORITY RHDL Indirect Channel Data Register #2 (0x208)
7BIT RHDL Indirect Channel Data Register #2 (0x208)

Delineation

The data bits from the RCAS can be written directly to the Partial Packet Buffer or
processed for flag sequence delineation, bit de-stuffing and CRC verification. The
following bit enables or disables this feature:

DELIN Function
0 Data is written directly to the Partial Packet Buffer without CRC

verification.
1 Data is processed for flag sequence delineation, bit de-stuffing

and CRC verification.

Strip FCS Bit

The indirect frame check sequence bit (STRIP) enables the RHDL to remove the FCS
data before writing to the channel FIFO. This feature is configured as follows:

STRIP Function
0 Includes FCS data with the data stream written to the channel

FIFO.
1 Removes the FCS data from the data stream written to the

channel FIFO.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

49

CRC Algorithm

The RHDL can perform CRC verification of the incoming data stream. The available
options are as follows:

CRC[1:0] DELIN Function
X 0 No CRC verification

00B 1 No CRC verification
01B 1 CRC-CCITT verification
10B 1 CRC-32 verification
11B 1 Reserved

DMA Transfer Size

The channel transfer size is required to limit the size of data read from the Partial
Packet Buffer during a single transaction. The channel transfer size also specifies the
amount of data read from the Partial Packet Buffer, when the buffer does not contain
an end of packet. After the transfer size is filled in the channel FIFO the RMAC will
attempt to DMA the data across the PCI bus to the RAM. During the PCI bus DMA
activity other channels cannot gain access to the bus. Specifying a large transfer size
may affect bus access latencies for other channels. The following bits specify the
channel transfer size:

XFER[2:0] Function
(valid values

are 0 through 7)
Specifies the data transfer size in blocks, where
blocks = XFER[2:0] +1, and there are 16 bytes per block.

Insertion of Offset Bytes

The RHDL can be configured to insert offset bytes into the data stream before writing
the data stream to the channel FIFO. The offset bytes are placed before each packet
and their value is undefined. The following configuration options are available:

OFFSET[1:0] Function
00B RHDL does not insert offset bytes
01B RHDL inserts 1 offset byte per packet
10B RHDL inserts 2 offset bytes per packet
11B RHDL inserts 3 offset bytes per packet

HDLC Data Inversion

The INVERT bit configures the RHDL to logically invert the incoming HDLC stream
from the RCAS before processing it. The bit is specified as follows:

INVERT Function
0 HDLC stream is not inverted
1 HDLC stream is inverted

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

50

Specifying Receive Channel Priority

All receive channels that must transfer data from their channel FIFO to packet
memory contend for access to the PCI bus. The PRIORITY bit allows specified
channels to have priority access to the PCI bus. The bit encoding is as follows:

PRIORITY Function
0 This channel is serviced after channels with PRIORITY=1.
1 This channel is serviced before channels with PRIORITY=0.

Handling of Robbed bit Signalling

The 7BIT enable configures the RHDL to ignore the least significant bit of each octet
(last bit of each octet received) in the corresponding link RD[n]. This bit is encoded as
follows:

7BIT Function
0 The entire receive data stream is processed.
1 The least significant bit (last bit of each octet received) is

ignored.

8.5 THDL Channel Configuration

The THDL provides configurable options for each transmit channel as identified in the
following register fields:

Bit Register
DELIN THDL Indirect Channel Data Register #1 (0x384)
IDLE THDL Indirect Channel Data Register #1 (0x384)

CRC[1:0] THDL Indirect Channel Data Register #1 (0x384)
FLEN[8:0] THDL Indirect Channel Data Register #2 (0x384)

DFCS THDL Indirect Channel Data Register #2 (0x384)
INVERT THDL Indirect Channel Data Register #2 (0x384)

PRIORITYB THDL Indirect Channel Data Register #2 (0x384)
7BIT THDL Indirect Channel Data Register #2 (0x384)

XFER[2:0] THDL Indirect Channel Data Register #3 (0x38C)
FLAG[2:0] THDL Indirect Channel Data Register #3 (0x38C)
LEVEL[3:0] THDL Indirect Channel Data Register #3 (0x38C)

TRANS THDL Indirect Channel Data Register #3 (0x38C)

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

51

Frame Delineation

The transmit packet data from packet memory can be written directly to the outgoing
data stream or processed for flag sequence insertion, bit stuffing and CRC
generation. The following bit enables or disables this feature:

DELIN Function
0 Packet data is written directly to the outgoing data stream

without processing.
1 Data is processed for flag sequence insertion, bit stuffing and

CRC generation before being transmitted on the outgoing data
stream.

Interframe Time Fill

The IDLE bit specifies the byte pattern inserted in the data stream between HDLC
packets.

IDLE Function
0 Flag bytes are inserted between HDLC packets
1 HDLC idle (all one's bit with no bit-stuffing) is inserted

between HDLC packets.

CRC Algorithm

The RHDL can perform CRC verification of the incoming data stream. The available
options are as follows:

CRC[1:0] DELIN Function
X 0 No CRC generation

00B 1 No CRC generation
01B 1 CRC-CCITT generation
10B 1 CRC-32 generation
11B 1 Reserved

Channel FIFO Length

The FLEN[8:0] field specifies number of blocks in the circular linked list of blocks for
the channel being provisioned.

FLEN[8:0] Function
(valid values
are 0 through

511)

Specifies the Channel FIFO size in blocks, where
blocks =FLEN[8:0] +1, and there are 16 bytes per block.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

52

Inverting the FCS

The diagnose frame check sequence bit (DFCS) specifies whether the FCS field
inserted into the transmit data stream is inverted. This is provided for diagnostic
purposes and is programmed as follows:

DFCS Function
0 FCS field in the outgoing HDLC stream is not inverted.
1 FCS field in the outgoing HDLC stream is logically inverted.

Specifying Transmit Channel Priority

All transmit buffer data must be read from packet memory, and across the PCI bus.
Each transmit channel contends for access to the PCI bus and the PRIORITYB bit
allows channels, where the Channel FIFO is filled to the expedite level, to have higher
priority access to the PCI bus. The bit encoding is as follows:

PRIORITYB Function
0 The channel has higher priority access when the Channel

FIFO is filled to the expedite level, and the last byte of the
packet has not been placed into the Channel FIFO.

1 The channel is inhibited from making expedited DMA requests.
It has lower priority than channels with PRIORITYB=1 when
the channel with PRIORITYB=1 has a partial packet in its
Channel FIFO and the Channel FIFO is at an expedited level.

Robbed Bit Signalling

The least significant stuff enable bit (7BIT) configures the THDL to stuff the least
significant bit of each octet assigned to the transmit channel in the corresponding
transmit link.

7BIT Function
0 Stuffing is disabled
1 Stuffing is enabled

DMA Transfer Size

The channel transfer size is required to limit the size of data read from packet
memory and copied into the Channel FIFO during a single transaction. The channel
transfer size also specifies the maximum amount of data read from a transmit buffer
during a DMA transaction. During the PCI bus DMA activity other channels cannot
gain access to the bus. Specifying a large transfer size may affect bus access
latencies for other channels. The following bits specify the channel transfer size:

XFER[2:0] Function
(valid values

are 0 through 7)
Specifies the data transfer size in blocks, where
blocks = XFER[2:0] +1, and there are 16 bytes per block.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

53

NOTE: To prevent lockup the transfer size should be less than or equal to the start
transmission level set by the LEVEL[3:0] and TRANS fields. Alternatively, the channel
transfer size can be set, such that the total number of blocks in the Channel FIFO
minus the start transmission level is an integer multiple of the channel transfer size.

Specifying The Number of Flag or Idle Bytes Inserted Between Frames

The THDL can be configured to insert either flag or idle bytes into the data stream
between HDLC packets. The number of these is programmed as follows:

FLAG[2:0] Function
000B 1 flag (or 0 idle bytes) is inserted
001B 2 flags (or 0 idle bytes) is inserted
010B 4 flags (or 2 idle bytes) is inserted
011B 8 flags (or 6 idle bytes) is inserted
100B 16 flags (or 14 idle bytes) is inserted
101B 32 flags (or 30 idle bytes) is inserted
110B 64 flags (or 62 idle bytes) is inserted
111B 128 flags (or 126 idle bytes) is inserted

Specifying the Channel FIFO's Expedite Level and Start Transmit Level

The expedite trigger level specifies the Channel FIFO minimum empty space in order
for the channel to request expedited DMA transactions. When there as many or more
than the expedite level of empty blocks in the Channel FIFO the channel may request
expedited DMA, provided the PRIORITYB bit is set.

The THDL starts to transmit a packet when the Channel FIFO empty space is less
than or equal to the start transmission level.

The start level and the expedite level are programmed via the LEVEL[3:0] and the
TRANS field as follows:

LEVEL[3:0]
Expedite

Trigger Level
Start Transmission
Level (TRANS=0)

Start Transmission
Level (TRANS=1)

0000 2 Blocks
(32 bytes free)

1 Block
(16 bytes free)

1 Block
(16 bytes free)

0001 3 Blocks
(48 bytes free)

2 Blocks
(32 bytes free)

1 Block
(16 bytes free)

0010 4 Blocks
(64 bytes free)

3 Blocks
(48 bytes free)

2 Blocks
(32 bytes free)

0011 6 Blocks
(96 bytes free)

4 Blocks
(64 bytes free)

3 Blocks
(48 bytes free)

0100 8 Blocks
(128 bytes free)

6 Blocks
(96 bytes free)

4 Blocks
(64 bytes free)

0101 12 Blocks
(192 bytes free)

8 Blocks
(128 bytes free)

6 Blocks
(96 bytes free)

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

54

0110 16 Blocks
(256 bytes free)

12 Blocks
(192 bytes free)

8 Blocks
(128 bytes free)

0111 24 Blocks
(384 bytes free)

16 Blocks
(256 bytes free)

12 Blocks
(192 bytes free)

1000 32 Blocks
(512 bytes free)

24 Blocks
(384 bytes free)

16 Blocks
(256 bytes free)

1001 48 Blocks
(768 bytes free)

32 Blocks
(512 bytes free)

24 Blocks
(384 bytes free)

1010 64 Blocks
(1 Kbytes free)

48 Blocks
(768 bytes free)

32 Blocks
(512 bytes free)

1011 96 Blocks
(1.5 Kbytes free)

64 Blocks
(1 Kbytes free)

48 Blocks
(768 bytes free)

1100 128 Blocks
(2 Kbytes free)

96 Blocks
(1.5 Kbytes free)

64 Blocks
(1 Kbytes free)

1101 192 Blocks
(3 Kbytes free)

128 Blocks
(2 Kbytes free)

96 Blocks
(1.5 Kbytes free)

1110 256 Blocks
(4 Kbytes free)

192 Blocks
(3 Kbytes free)

128 Blocks
(2 Kbytes free)

1111 384 Blocks
(6 Kbytes free)

256 Blocks
(4 Kbytes free)

192 Blocks
(3 Kbytes free)

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

55

9 FREEDM OPERATIONAL PROCEDURES

9.1 Device Identification, Location and System Resource Assignment

This section describes the software interaction required to identify a FREEDM device
on the PCI bus, map the Normal Mode Registers in packet memory, and initialize the
PCI configuration registers.

Identifying and Locating a FREEDM

The software can identify each device attached to a PCI bus segment by reading the
Device ID and the Vendor ID within the Configuration Space Header. As described in
section 5.1 the software must activate the IDSEL pin of a PCI device in order to
access the Configuration Space. The IDSEL pin of each PCI device is activated in
turn and the first DWORD register is read to identify whether it has the FREEDM
Device ID (0x7364) and Vendor ID (0x11F8). If a value other than 0xFFFF is read in
these fields then a PCI device is present at the IDSEL pin.

In addition to these fields the FREEDM specifies a revision identifier within the
REVID[7:0] field which may be useful to distinguish between future revisions of the
FREEDM.

Memory Mapping the Register Space

During power-up the packet software needs to build a consistent address map and
assign memory resources based on the requirements of each PCI device. The
memory requirements are identified via the 6 base address registers in the PCI
Configuration Space of each device.

The software writes a base address register with a value of all 1's and reads back the
register. The value read back determines the size of memory to assign to the base
address register. The software scans the value starting from the most significan bit to
determine the first 0 bit. For example, a device that wants a 1 M address space would
build the top 12 bits and hardwire the others to zero. The four least significant bits are
read-only and are not used to determine the memory requirement.

For a FREEDM device only the first base address register - the CBI Memory Base
Address Register (0x10) - is implemented, all other base address registers will be
read as a value of all 1's. The first base address register will return the memory space
requirement for the Normal Mode Registers - a memory size of 4K bytes.

The packet software must assign a base address for this 4Kbyte memory space by
writing the CBI Memory Base Address Register (0x10) within the PCI Configuration
Space with the base address. The value can be read from this register at a later time
to determine the mapping of the Normal Mode Register Space.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

56

Enabling the FREEDM onto the PCI Bus

Following assignment of the memory base address the software must enable the
FREEDM to respond to PCI memory accesses and to participate on the PCI bus as a
bus master. Additionally, the FREEDM can be enabled to report system and parity
errors. The 16-bit Command (0x6) register of the PCI Configuration Space is written
as follows:

Bit Word Sized Configuration Register Value
MCNTRL Command (0x6) 1
MSTREN Command (0x6) 1
PERREN Command (0x6) 1
SERREN Command (0x6) 1

Initializing the Configuration Space Registers

In addition to enabling the FREEDM onto the PCI bus the following register bits must
also be initialized.

Bit Byte Sized Configuration Register Value
CLSIZE[7:0] Cache Line Size (0xC) (see

note)
LT[7:0] Latency Timer (0xD) (see

note)
INTLIN[7:0] Interrupt Line (0x3C) (see

note)

NOTES:

• CLSIZE[7:0] should be set equal to the cache line size of the embedded
processor. The FREEDM uses the memory read/write multiple command if the
data transfer size is greater than the cache line size. It will use the memory
read/write cache line if the data transfer is the same size, or less than the cache
line, but greater than a dword. It uses a memory read/write if the data transfer size
is a single dword.

• LT[7:0] should be set based on the expected initial latency of data transfers on the
PCI bus, and on the expected maximum data transaction size specified via the
XFER field of the RMAC and TMAC blocks. The value is specified as a multiple of
the PCI bus clock frequency. For a transfer size of 8 blocks and no initial latency
the value should be larger than (8*4 + 3) = 35.

• INTLIN[7:0] should be assigned for use by the software after power-on. The value
is determined based on which input of the system interrupt controller the FREEDM
interrupt pin is connected to.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

57

9.2 Reset

This section describes the procedure to reset the FREEDM via software. The
FREEDM is powered on in an inactive state and should be reset via software
following a hardware reset, or as required by the embedded processor. The reset
procedure is normally followed by the Initialization Procedure.

The steps to reset a FREEDM are:

1) If the FREEDM was active before the reset procedure then the deactivation
procedure must be done. (see section 9.5).

2) The RESET bit in the FREEDM Master Reset and Identity (0x000) register must
be written high, then written low.

This reset procedure has the following effects:

• If the RESET bit is logic one, the entire FREEDM except the PCI Interface is held
in reset. This bit is not self-clearing. Therefore, a logic zero must be written to
bring the FREEDM out of reset. Holding the FREEDM in a reset state places it into
a low power, stand-by mode. A hardware reset clears the RESET bit, thus
negating the software reset.

• The Configuration Space register values are preserved under software reset. All
Normal Mode registers are set to their default values.

• None of the channel provisioning, or the Channel FIFO configuration is preserved
under software reset.

9.3 Initialization

This section describes the procedure to initialize the FREEDM. This procedure
assumes the software has already allocated the data structures in packet memory. A
detailed discussion of allocation of data structures can be found in section 3.

This initialization procedure normally follows the software reset procedure and is
followed by the activation procedure.

The steps to initialize a FREEDM are:

1) Assign base addresses for the Transmit Descriptor Table, the Receive Packet
Descriptor Table, the Transmit Queue Base and the Receive Queue Base. The
register accesses are described in sections 3.1 and 3.6.

2) Assign start, read, write and end indexes for all of the queues. The register
accesses are described in section 3.6.

3) Configure the serial links. The register accesses are described in section 6.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

58

4) Configure the GPIC interface. The register accesses are described in section 7.3.

5) Configure HDLC processing of the RHDL and the THDL blocks. The register
accesses are described in section 8.1 and 8.2.

9.4 Activation Procedure

The activation procedure is required to place the FREEDM in a state after which the
software may service FREEDM interrupts, provision/unprovision channels, make
transmit requests and monitor the status of the FREEDM.

The activation procedure normally follows the initialization procedure.

The steps to activate a FREEDM are:

1) Enable interrupt 'E' bits as described in section 4.

2) Enable the FREEDM DMA activity by setting the ENABLE bits of the RMAC and
TMAC as described in sections 7.1 and 7.2.

3) The SYSCLKA and the TDBA in the FREEDM Master Clock / BERT Activity
Monitor and Accumulation Trigger (0x00C) register should be read periodically
to detect for stuck at conditions. The SYSCLKA bit must be read high for proper
operation of the FREEDM. A low value indicates a failure in clocking that is
provided at the SYSCLK input pin of the FREEDM.

6) The TLGA[7:0] and the RLGA[7:0] bits in the FREEDM Master Link Activity
Monitor (0x010) register should be read periodically to detect for stuck at
conditions. The bits which correspond to links attached to the FREEDM should be
read high. A low value indicates a failure in clocking that is provided at the TCLK
or RCLK input pins.1

9.5 Deactivation Procedure

The deactivation procedure is required to place the FREEDM in a state in which it will
not interrupt the embedded processor, or make accesses to the packet memory. This
procedure should occur after the FREEDM was actively transfering packets, or to
gracefully shut down the FREEDM.

The steps to deactivate a FREEDM are:

1) Disable interrupt 'E' bits as described in section 4.

1Each RLGA[7:0] or TLGA[7:0] bit corresponds to a group of 4 links. If less than four links are
configured then the unused RCLK or TCLK inputs should be tied to the same clock as one of the
configured links in this group.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

59

2) Disable the FREEDM DMA activity by programming the ENABLE bits to zero in
the RMAC and TMAC as described in sections 8.1 and 8.2.

3) Continue by performing the software reset procedure.

9.6 Provisioning a Channel

The provisioning procedure normally follows the activation procedure and enables the
FREEDM to transmit and/or receive packets.

9.6.1 Receive Channel Provisioning

The steps to provision a receive channel RCC , where 0 ≤ RCC ≤ 127 are:

1) Disable FREEDM processing of the channel's data stream to allow for graceful
provisioning. Write the following bits:

Bit Register Value
CHAN[6:0] RCAS Channel Disable (0x10C) RCC

CHDIS RCAS Channel Disable (0x10C) 1

2) Program the Channel FIFO as described in section 8.3.1.

3) Poll the BUSY bit of the RHDL Indirect Channel Select (0x200) register until it is
zero. This ensures that a previous indirect RAM access has completed and that a
new indirect RAM access can be started.

4) Specify the HDLC configuration for this channel by writing appropriate bits in the
RHDL Indirect Channel Data Register #1 (0x204) and the RHDL Indirect Channel
Data Register #2 (0x208) as described in section 8.4. In writing the RHDL Indirect
Channel Data Register #1, ensure the PROV bit is set, and ensure the FPTR[8:0]
bits identify a block within the circular linked list of buffers of step 2.

5) Specify the RHDL channel to provision by writing the following register. Then poll
the BUSY bit to ensure it is low before proceeding with step 6.

Bit Register Value
CHAN[6:0] RHDL Indirect Channel Select (0x200) RCC

CRWB RHDL Indirect Channel Select (0x200) 0
BUSY RHDL Indirect Channel Select (0x200) X

6) Poll the BUSY bit of the RCAS Indirect Link and TIme-slot Select (0x100)
register until it is zero. This ensures that a previous indirect RAM access has
completed and that a new indirect RAM access can be started.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

60

7) Specify the RCAS channel that is provisioned. Write the following register:
Bit Register Value

CHAN[6:0] RCAS Indirect Channel Data (0x104) RCC
PROV RCAS Indirect Channel Data (0x104) 1

CDLBEN RCAS Indirect Channel Data (0x104) 0

8) For a channelized link, specify the time-slots which are assigned for processing on
this channel by writing the following register once for each time-slot that is assigned
to the channel. Valid values for TSLOT[4:0] is 1 through 24 for a T1 link, and 1
through 31 for an E1 link. For an unchannelized link, TSLOT[4:0] must only have the
value 0, and this register is written just once. Each write must be followed by a read
to determine whether the BUSY bit (bit15) is low, and ensures that the indirect RAM
has been updated.

Bit Register Value
BUSY RCAS Indirect Link and TIme-slot Select (0x100) X

TSLOT[4:0] RCAS Indirect Link and TIme-slot Select (0x100) (see
above)

LINK[4:0] RCAS Indirect Link and TIme-slot Select (0x100) (0
through

31 is
valid)

RWB RCAS Indirect Link and TIme-slot Select (0x100) 0

9) Enable FREEDM processing of the channel data stream to allow for graceful
provisioning. Write the following bits:

Bit Register Value
CHAN[6:0] RCAS Channel Disable (0x10C) RCC

CHDIS RCAS Channel Disable (0x10C) 0

Warning:

• The programmer must ensure the channel has not been provisioned, or has been
unprovisioned before doing the provisioning procedure. The reset procedure has
the affect of unprovisioning all channels of the FREEDM.

• Continuous polling of a register in a tight loop involves multiple PCI memory read
transactions and may have an adverse effect on the PCI bus bandwidth available
for other activities. The recommended method of polling the BUSY bit is to read
the register on expiration of a system timer, or after a number of CPU clock ticks.
Recommended time intervals are in the range 1 msec through 100 msec.

• A Channel is not provisioned until the BUSY bit toggles low.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

61

9.6.2 Transmit Channel Provisioning

The steps to provision a transmit channel TCC , where 0 ≤ TCC ≤ 127 are:

1) Disable FREEDM processing of the channel's data stream to allow for graceful
provisioning. Write the following bits:

Bit Register Value
DCHAN[6:0] TCAS Channel Disable (0x410) TCC

CHDIS TCAS Channel Disable (0x410) 1

2) Program the Channel FIFO as described in section 8.3.2 for a transmit channel.

3) Poll the BUSY bit of the THDL Indirect Channel Select (0x380) register until it is
zero. This ensures that a previous indirect RAM access has completed and that a
new indirect RAM access can be started.

4) Specify the HDLC configuration for this transmit channel by writing the THDL
Indirect Channel Data Register #1 (0x384), THDL Indirect Channel Data Register
#2 (0x388) and the THDL Indirect Channel Data Register #3 (0x38C) as described
in section 8.4. In writing the RHDL Indirect Channel Data Register #1, ensure the
PROV bit is set, and ensure the FPTR[8:0] bits identify a block within the circular
linked list of buffers of step 2.

5) Specify the THDL channel that is provisioned by writing the following register. Then
poll the BUSY bit to ensure it is low before proceeding with step 6.

Bit Register Value
CHAN[6:0] THDL Indirect Channel Select (0x380) TCC

CRWB THDL Indirect Channel Select (0x380) 0
BUSY THDL Indirect Channel Select (0x380) X

6) Poll the BUSY bit of the TCAS Indirect Link and TIme-slot Select (0x400)
register until it is zero. This ensures that a previous indirect RAM access has
completed and that a new indirect RAM access can be started.

7) Specify the TCAS channel to provision. Write the following register:
Bit Register Value

CHAN[6:0] TCAS Indirect Channel Data (0x404) TCC
PROV TCAS Indirect Channel Data (0x404) 1

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

62

8) For a channelized link, specify the time-slots which are assigned for processing on
this channel by writing the following register once for each time-slot that is assigned
to the channel. Valid values for TSLOT[4:0] is 1 through 24 for a T1 link, and 1
through 31 for an E1 link. For an unchannelized link, TSLOT[4:0] must only have the
value 0, and this register is written just once. Each write must be followed by a read
to determine whether the BUSY bit (bit15) is low, and ensures that the indirect RAM
has been updated.

Bit Register Value
BUSY TCAS Indirect Link and TIme-slot Select (0x400) X

TSLOT[4:0] TCAS Indirect Link and TIme-slot Select (0x400) (see
above)

LINK[4:0] TCAS Indirect Link and TIme-slot Select (0x400) (0
through

31 is
valid)

RWB TCAS Indirect Link and TIme-slot Select (0x400) 0

9) Poll the BUSY bit of the TMAC Indirect Channel Provisioning (0x304) register
until it is zero. This ensures that a previous indirect RAM access has completed and
that a new indirect RAM access can be started.

10) Specify the TMAC channel to provision. Write the following register fields, then
poll the BUSY bit to ensure the provisioning process has completed.

Bit Register Value
CHAN[6:0] TMAC Indirect Channel Provisioning (0x304) TCC

PROV TMAC Indirect Channel Provisioning (0x304) 1
RWB TMAC Indirect Channel Provisioning (0x304) 0
BUSY TMAC Indirect Channel Provisioning (0x304) X

11) Enable FREEDM processing of the channel data stream to allow for graceful
provisioning. Write the following bits:

Bit Register Value
CHAN[6:0] TCAS Channel Disable (0x410) TCC

CHDIS TCAS Channel Disable (0x410) 0

Warning:

• The programmer must ensure the channel has not been provisioned, or has been
unprovisioned before doing the provisioning procedure. The reset procedure has
the affect of unprovisioning all channels of the FREEDM.

• Continuous polling of a register in a tight loop involves multiple PCI memory read
transactions and may have an adverse effect on the PCI bus bandwidth available
for other activities. The recommended method of polling the BUSY bit is to read
the register on expiration of a system timer, or after a number of CPU clock ticks.
Recommended time intervals are in the range 1 msec through 100 msec.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

63

• A Channel is not provisioned until the BUSY bit toggles low.

9.7 Unprovisioning a Channel

The unprovisioning procedure is normally applied to channels that are provisioned.

9.7.1 Receive Channel Unprovisioning

The steps to unprovision a receive channel RCC , where 0 ≤ RCC ≤ 127 are:

1) Disable FREEDM processing of the channel's data stream to allow for graceful
provisioning. Write the following bits:

Bit Register Value
CHAN[6:0] RCAS Channel Disable (0x10C) RCC

CHDIS RCAS Channel Disable (0x10C) 1

2) Poll the BUSY bit of the RCAS Indirect Link and Time-slot Select (0x100)
register until it is zero. This ensures that a previous indirect RAM access has
completed and that a new indirect RAM access can be started.

3) Specify the RCAS channel to unprovisioned. Write the following register:
Bit Register Value

CHAN[6:0] RCAS Indirect Channel Data (0x104) RCC
PROV RCAS Indirect Channel Data (0x104) 0

CDLBEN RCAS Indirect Channel Data (0x104) X

4) For a channelized link, specify the time-slots which are being unassigned on this
channel by writing the following register once for each time-slot that is unassigned.
Valid values for TSLOT[4:0] is 1 through 24 for a T1 link, and 1 through 31 for an E1
link. For an unchannelized link, TSLOT[4:0] must only have the value 0, and this
register is written just once. Each write must be followed by a read to determine
whether the BUSY bit (bit15) is low, and ensures that the indirect RAM has been
updated.

Bit Register Value
BUSY RCAS Indirect Link and TIme-slot Select (0x100) X

TSLOT[4:0] RCAS Indirect Link and TIme-slot Select (0x100) (see
above)

LINK[4:0] RCAS Indirect Link and TIme-slot Select (0x100) (0
through

31 is
valid)

RWB RCAS Indirect Link and TIme-slot Select (0x100) 0

5) Poll the BUSY bit of the RHDL Indirect Channel Select (0x200) register until it is
zero. This ensures that a previous indirect RAM access has completed and that a
new indirect RAM access can be started.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

64

6) Read the RHDL channel data by writing the following register. Then poll the BUSY
bit to ensure it is low before proceeding with step 7.

Bit Register Value
CHAN[6:0] RHDL Indirect Channel Select (0x200) RCC

CRWB RHDL Indirect Channel Select (0x200) 1
BUSY RHDL Indirect Channel Select (0x200) X

7) Read the RHDL indirect channel data and check that the TAVAIL bit of the RHDL
Indirect Channel Data #1 (0x204) register is zero. This ensures that the last DMA
transfer request for this channel has completed. If the TAVAIL bit is zero proceed to
step 8, otherwise return to step 6.

8) Write the RHDL Indirect Channel Data #1 (0x204) register with PROV modified to
zero, and keeping the same FPTR[8:0] bits.

9) Specify the RHDL channel to unprovision by writing the following register. Then
poll the BUSY bit to ensure it is low before proceeding with step 10.

Bit Register Value
CHAN[6:0] RHDL Indirect Channel Select (0x200) RCC

CRWB RHDL Indirect Channel Select (0x200) 0
BUSY RHDL Indirect Channel Select (0x200) X

10) Poll the BUSY bit of the RMAC Indirect Channel Provisioning (0x284) register
until it is zero. This ensures that a previous indirect RAM access has completed and
that a new indirect RAM access can be started.

11) Ensure partially filled buffer(s) for the channel are returned to the RPDR Ready
queue by writing the following register. Then poll the BUSY bit to ensure it is low
before proceeding with step 12.

Bit Register Value
CHAN[6:0] RMAC Indirect Channel Provisioning (0x284) RCC

PROV RMAC Indirect Channel Provisioning (0x284) 0
RWB RMAC Indirect Channel Provisioning (0x284) 0
BUSY RMAC Indirect Channel Provisioning (0x284) X

12) Enable FREEDM processing of the unprovisioned channel. Write the following
bits:

Bit Register Value
CHAN[6:0] RCAS Channel Disable (0x10C) RCC

CHDIS RCAS Channel Disable (0x10C) 0

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

65

Warning:

• Continuous polling of a register in a tight loop involves multiple PCI memory read
transactions and may have an adverse effect on the PCI bus bandwidth available
for other activities. The recommended method of polling the BUSY bit is to read
the register on expiration of a system timer, or after a number of CPU clock ticks.
Recommended time intervals are in the range 100 msec through 1 msec.

• A Channel is not unprovisioned until the BUSY bit toggles low.

9.7.2 Transmit Channel Unprovisioning

The steps to unprovision a transmit channel TCC , where 0 ≤ TCC ≤ 127 are:

1) Unprovision the TMAC channel. Poll the BUSY bit of the TMAC Indirect Channel
Provisioning (0x304) register until it is zero. Then write the following bits:

Bit Register Value
CHAN[6:0] TMAC Indirect Channel Provisioning (0x304) TCC

PROV TMAC Indirect Channel Provisioning (0x304) 0
RWB TMAC Indirect Channel Provisioning (0x304) 0
BUSY TMAC Indirect Channel Provisioning (0x304) X

2) Poll the BUSY bit of the TMAC Indirect Channel Provisioning (0x304) register
until it is zero. This ensures that the previous indirect RAM access has completed and
that a new indirect RAM access can be started.

3) Disable FREEDM processing of the channel's data stream to allow for graceful
unprovisioning. Write the following bits:

Bit Register Value
DCHAN[6:0] TCAS Channel Disable (0x410) TCC

CHDIS TCAS Channel Disable (0x410) 1

4) Poll the BUSY bit of the TCAS Indirect Link and TIme-slot Select (0x400)
register until it is zero. This ensures that a previous indirect RAM access has
completed and that a new indirect RAM access can be started.

5) Specify the TCAS channel to unprovision. Write the following register:
Bit Register Value

CHAN[6:0] TCAS Indirect Channel Data (0x404) TCC
PROV TCAS Indirect Channel Data (0x404) 0

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

66

6) For a channelized link, specify the time-slots to be unassigned by writing the
following register once for each time-slot. Valid values for TSLOT[4:0] is 1 through 24
for a T1 link, and 1 through 31 for an E1 link. For an unchannelized link, TSLOT[4:0]
must only have the value 0, and this register is written just once. Each write must be
followed by a read to determine whether the BUSY bit (bit15) is low, and ensures that
the indirect RAM has been updated.

Bit Register Value
BUSY RCAS Indirect Link and TIme-slot Select (0x100) X

TSLOT[4:0] RCAS Indirect Link and TIme-slot Select (0x100) (see
above)

LINK[4:0] RCAS Indirect Link and TIme-slot Select (0x100) (0
through

31 is
valid)

RWB RCAS Indirect Link and TIme-slot Select (0x100) 0

7) Poll the BUSY bit of the THDL Indirect Channel Select (0x380) register until it is
zero. This ensures that a previous indirect RAM access has completed and that a
new indirect RAM access can be started.

8) Read the THDL channel data by writing the following register. Then poll the BUSY
bit to ensure it is low before proceeding with step 9.

Bit Register Value
CHAN[6:0] THDL Indirect Channel Select (0x380) TCC

CRWB THDL Indirect Channel Select (0x380) 1
BUSY THDL Indirect Channel Select (0x380) X

9) Read the THDL Indirect Channel Data Register #1 (0x384). Then write this
register with PROV modified to zero, and keeping the same FPTR[8:0] bits.

10) Specify the THDL channel to unprovision by writing the following register. Then
poll the BUSY bit to ensure it is low before proceeding with step 11.

Bit Register Value
CHAN[6:0] THDL Indirect Channel Select (0x380) TCC

CRWB THDL Indirect Channel Select (0x380) 0
BUSY THDL Indirect Channel Select (0x380) X

11) Enable FREEDM processing of the channel. Write the following bits:
Bit Register Value

CHAN[6:0] TCAS Channel Disable (0x410) TCC
CHDIS TCAS Channel Disable (0x410) 0

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

67

Warning:

• Continuous polling of a register in a tight loop involves multiple PCI memory read
transactions and may have an adverse effect on the PCI bus bandwidth available
for other activities. The recommended method of polling the BUSY bit is to read
the register on expiration of a system timer, or after a number of CPU clock ticks.
Recommended time intervals are in the range 100 msec through 1 msec.

• A Channel is not unprovisioned until the BUSY bit toggles low.

9.8 Transmit Sequence

The following sequence of activities take place when a packet is transmitted on a
provisioned transmit channel:

1) The software initializes and links one or more TD's to identify the transmit
packet(s). The software must not re-use a TD within the Transmit Descriptor Table
until it has been freed on the TDR Free queue.

2) The software writes one or more TDR's to the TDR Ready queue as per the
WriteQueue() routine of section 3.6. Each TDR that is written to the TDR Ready
queue points to the first TD in chain of TD's which describe the packet(s).

3) The software writes the TMAC Transmit Descriptor Reference Ready Queue
Write (0x23C) register during the WriteQueue() routine. In response to a change
in this register the FREEDM reads packet memory at the TDR Ready queue
locations that were written by the software.

4) The TMAC links the first TDR of each packet read from the TDR Ready queue to
a linked list maintained by the TMAC. The TMAC linked list is maintained on a
channel basis. The TMAC writes the TMAC Next TD Pointer[13:0] field and the V
bit field within the first TD of the last packet in the TMAC linked list. There is no
linking if the TMAC linked list is empty.

5) The TMAC reads and transmits buffer data according to the Host linked list and
the TMAC linked list. The priority and configuration of each provisioned channel
determines when the buffer data is read.

6) After reading the contents of a buffer the TMAC assigns the STATUS[2:0] bits of
the TDR and then writes the TDR as follows:

• the TDR is written directly to the TDR Free queue if the CACHE bit is zero
within the TMAC Control (0x300) register. Or,

• if the IOC bit is set within the TD then all TDR's within the TDR Cache are
flushed to the TDR Free queue the TDR is written to the TDR Free queue.
Or,

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

68

• the TDR is written to the TDR cache because the CACHE bit is set within
the TMAC Control (0x300) register. When the TDR cache is full (ie the 6'th
TDR has been processed) all TDR's are written to the TDR Free queue.

7) The embedded processor is interrupted if either of the following has occured:

• one or more TDR are written to the TDR Free queue because the IOC bit
was set in the last TD processed by the TMAC. The IOCI status bit is set
within the FREEDM Master Interrupt Status (0x008) register.

• one or more TDR are written to the TDR Free queue because the CACHE
bit is set, and the TDQ_FRN[1:0] bits of the TMAC Control (0x300) register
specify that an interrupt should occur. The TDQFI status bit is set within the
FREEDM Master Interrupt Status (0x008) register.

• one TDR is written to the TDR Free queue because the CACHE bit is zero
in the TMAC Control (0x300) register. The TDQFI status bit is set within
the FREEDM Master Interrupt Status (0x008) register.

8) The software responds to the interrupt by reading from the TDR Free queue as
per the ReadQueue() procedure of section 3.6. The FREEDM returns TDR's to the
free queue (or the TDR cache) one at a time, as the data buffer is processed.
Therefore the software must examine the Status[2:0] field of the TDR to determine
whether the TDR is associated with the last data buffer in the linked list - indicating
the transmit packet has been completely processed - or to determine whether any
errors occured in processing the individual data buffers of the linked TD's that
form the packet.

NOTE:

• During the transmit channel unprovisioning procedure a TDR that is being
processed by the FREEDM and that belong to the unprovisioned channel is
written to TDR Free queue. The software must examine the STATUS[2:0] bits to
determine whether the TDR is associated with an unprovisioned partial packet. If
the TDR is an unprovisioned partial packet then the software must unlink the chain
based on the V bit and the TMAC Next TD Pointer[13:0] of each TD in the chain. It
must also unlink descriptors in the host chain, based on the CE bit and the
HostNext TD Pointer[13:0], of the unprovisioned TDR. This will ensure that all
TD's (and data buffers) of the unprovisioned channel are returned to the host.

• The TDR cache may need to be disabled before performing the device
unprovisioning procedure. This is required to ensure the FREEDM immediately
places the unprovisioned TDR onto the TDR Free queue. The TDR cache is
disabled by setting the CACHE bit to zero within the TMAC Control (0x300)
register.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

69

9.9 Receive Sequence

The following sequence of activities take place when a packet is received on a
provisioned receive channel:

1) The FREEDM reads a RPDR associated with a free buffer as follows:

• If this is the first buffer of the receive packet it will read a RPDR associated
with a small free buffer from the Small Buffer Cache, or if the cache is
empty, from the RPDRF Small queue. RPDR's are read from the queue six
at a time and stored in the cache.

• If this is not the first buffer of the receive packet it will read a RPDR
associated with a large free buffer from the Large Buffer Cache, or if the
cache is empty, from the RPDRF Large queue. RPDR's are read from the
queue six at a time and stored in the cache.

2) The FREEDM generates an interrupt if the programmed number of RPDR's have
been read from the RPDR Small (or Large) queue. The RPQSFI or the RPQLFI
status bits of the FREEDM Master Interrupt Status (0x008) register indicate
which queue must be replenished with free RPDR's by the software. The software
can use the WriteQueue() routine of section 3.6 to replenish the queue. The
frequency of the interrupt, and the number of RPDR's to replenish per interrupt,
can be programmed via the RPQ_LFN[1:0] and the RPQ_SFN[1:0] bits of the
RMAC Control (0x280) register.

3) If the receive packet requires multiple buffers to be filled, and the RPDR is not the
first for this packet, then the following fields of the previous RPD are written by the
FREEDM: RCC[6:0], CE, Status[5:0], Bytes in Buffer[15:0], and Next RPD
Pointer[13:0].

4) The FREEDM reads the RPD associated with the free RPDR to determine the
buffer address, size and offset.

5) The FREEDM writes receive data to the buffer. The priority and configuration of
the channel determines when the PCI bus access may occur, and the number of
blocks transferred in each access.

6) The above sequence is repeated until the end of packet occurs.

7) When the end of packet occurs the following fields of the RPD are written by the
FREEDM: RCC[6:0], CE, Status[5:0], Bytes in Buffer[15:0], and Next RPD
Pointer[13:0].

8) The STATUS[1:0] field of the RPDR is assigned and the first RPDR in the linked
list of RPD's which describe the receive packet data is written to the RPDR Ready
queue by the FREEDM.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

70

9) The embedded processor is interrupted if the programmed number of RPDR's
have been written to the RPDR Ready queue. The RPQRDYI interrupt status bit is
set within the FREEDM Master Interrupt Status (0x008) register. The number of
RPDR's required to generate an interrupt is specified by the RPQ_RDYN[2:0] field
of the RMAC Control (0x280) register.

10)The software responds to the interrupt by reading from the RPDR Ready queue as
per the ReadQueue() procedure of section 3.6. Each RPDR represents one
packet, whereby the RPDR points to the first RPD in the packet. When the
Status[1:0] bits of the RPDR read from the queue has an error status of 01B the
software must go to the last RPDR that links the individual RPD's and examine the
Status[5:0] field of the last RPD to determine the cause of error.

NOTE: During the receive channel unprovisioning procedure all RPDR's read from
the RPDRF Large or Small queue that are partially processed for the unprovisioned
channel are written to RPDR Ready queue. The software must examine the
STATUS[1:0] bits of the RPDR to determine whether it is an unprovisioned partial
packet. If the RPDR is an unprovisioned partial packet then the software must unlink
the chain based on the CE bit and the RMAC Next RPD Pointer[13:0] of each RPD in
the chain. This will ensure that all RPD's and data buffers are returned to the RPDR
Ready queue.

9.10 Performance Counters

The FREEDM provides four count registers within the Normal Mode Register Space.
These are as follows:

Bits Register
OF[15:0] PMON Receive FIFO Overflow Count (0x504)
UF[15:0] PMON Transmit FIFO Underflow Count (0x508)
C1[15:0] PMON Configurable Count #1 (0x504)
C2[15:0] PMON Configurable Count #2 (0x504)

The software must poll these counters to prevent overflow. figure 18 illustrates the
sequence of events when the counters are polled. The PMON Status (0x500) register
provides status bits which indicate whether any of the four internal holding counters
has overflowed.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

71

Fig. 18 Event Sequence For Polling of Counters

Int ernal
Count er

V isib le
Count er

Count Value
T ransf er

Reset
Count er

Accumulation Period NAccumulat ion Period N-1 Accumulati on Period N+1

Count Events

Time (Not t o Scale)

Reset
Count er

Count Value
T ransf er

Read
Count er

Reload
Count er

Max
7 uS

The software initiates a counter reload by writing to the FREEDM Master Clock /
BERT Activity Monitor and Accumulation Trigger (0x00C) register. There is a
small delay to transfer data from internal counters to the visible counters. The
recommended polling strategy is to read the counters first before initiating a reload.
Using this strategy the transfer latency can be ignored.

Counters are normally configued during initialization. The first configurable count
register is assigned by setting one of the following register bits, all other bits must be
zero:

Bits Register
RSPE1EN FREEDM Master Performance Monitor Control (0x024)

RFCSE1EN FREEDM Master Performance Monitor Control (0x024)
RABRT1EN FREEDM Master Performance Monitor Control (0x024)
RLENEIEN FREEDM Master Performance Monitor Control (0x024)

RP1EN FREEDM Master Performance Monitor Control (0x024)
TABRT1EN FREEDM Master Performance Monitor Control (0x024)

TP1EN FREEDM Master Performance Monitor Control (0x024)

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

72

The second configurable count register is assigned by setting one of the following
register bits, all other bits must be zero:

Bits Register
RSP2EN FREEDM Master Performance Monitor Control (0x024)
RLEN2EN FREEDM Master Performance Monitor Control (0x024)

RABRT2EN FREEDM Master Performance Monitor Control (0x024)
RFCS2EN FREEDM Master Performance Monitor Control (0x024)

RP2EN FREEDM Master Performance Monitor Control (0x024)
TABRT2EN FREEDM Master Performance Monitor Control (0x024)

TP2EN FREEDM Master Performance Monitor Control (0x024)

9.11 Line Loopback

Each serial port of the FREEDM can be placed in line loopback. In this configuration
receive data from the serial link is loopbacked to the transmit serial link as illustrated
in figure 19.

Fig. 19 Line Loopback

FREEDMSerial Link
Interface

PCI Host
Interface
(transmit data is
dropped before
reaching the
link)

Tx

RxRx

Tx

Each serial port can be placed in line loopback by setting the appropriate bit within
one of the following registers. There are 32 bits corresponding to the 32 serial ports.

Bits Register
LLBEN[15:0] FREEDM Master Link Loopback #1 (0x014)
LLBEN[31:16] FREEDM Master Link Loopback #2 (0x018)

NOTE: The software should unprovision channels associated with the link that is
placed in line loopback mode before placing the link in line loopback.This will prevent
the data stream at the serial link from passing through the FREEDM to the PCI
interface.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

73

9.12 Diagnostic Loopback

Each channel of the FREEDM can be placed in a diagnostic loopback mode. In this
configuration the transmit data stream is looped back to the receive data stream as
illustrated in figure 20. The pair of transmit/receive channels is configured in
diagnostic loopback mode by provisioning both the transmit and the receive channels
as specified in section 9.6, except with the CDLBEN bit set high within the RCAS
Indirect Channel Data (0x104) register.

In diagnostic loopback mode the transmit channel data is looped back as well as
driven onto the transmit serial link. The channel data from the receive serial link is
dropped. The TCLK[n] input pin provides the bit timing for the diagnostic loopback
mode.

Fig. 20 Diagnostic Loopback

FREEDM

Serial Link
Interface
(receive
channel
data is
dropped)

PCI Host
Interface

Tx Tx

RxRx

9.13 BERT Port

The FREEDM provides pins to transmit/receive a BERT data stream on any of the
serial links. The following register is written to enable the BERT port and
transmit/receive the BERT data stream on serial port n , where 0 ≤ n ≤ 31.

Bit Register Value
RBSEL[4:0] FREEDM Master BERT Control (0x020) n

RBEN FREEDM Master BERT Control (0x020) 1
TBSEL[4:0] FREEDM Master BERT Control (0x020) n

TBEN FREEDM Master BERT Control (0x020) 1

The BERT port is disabled by programming the following register:
Bit Register Value

RBSEL[4:0] FREEDM Master BERT Control (0x020) X
RBEN FREEDM Master BERT Control (0x020) 1

TBSEL[4:0] FREEDM Master BERT Control (0x020) X
TBEN FREEDM Master BERT Control (0x020) 1

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

74

The TDBA bit of the FREEDM Master Clock / BERT Activity Monitor and
Accumulation Trigger (0x00C) can be read by software to determine whether
transmit data is present at the BERT port.

NOTE: The FREEDM channels which are assigned to the same link as the BERT port
should be unprovisioned to prevent the receive BERT data stream from passing
through the FREEDM and the PCI interface.

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

75

REFERENCES

[1] PMC-931127, PMC-Sierra, "Frame Relay Protocol Engine and Datalink Manager"
Standard Product Datasheet, July, 1996, Issue 5

[2] PCI SIG, PCI Local Bus Specification, June 1, 1995, Version 2.1

APPLICATION NOTE
PMC-Sierra, Inc.

PM7364 FREEDM

ISSUE 1 FREEDM Programmer's Guide

PMC-Sierra, Inc. 105 - 8555 Baxter Place, Burnaby, BC Canada V5A 4V7 604 415 6000

CONTACTING PMC-SIERRA

PMC-Sierra, Inc.
105 - 8555 Baxter Place
Burnaby, B.C.
Canada V5A 4V7

Telephone: 604-415-6000
Facsimile: 604-415-6200

Product Information: info@pmc-sierra.bc.ca
Applications information: apps@pmc-sierra.bc.ca

World Wide Web Site: http://www.pmc-sierra.com

Seller will have no obligation or liability in respect of defects or damage caused by unauthorized use, mis-use,
accident, external cause, installation error, or normal wear and tear. There are no warranties, representations or
guarantees of any kind, either express or implied by law or custom, regarding the product or its performance,
including those regarding quality, merchantability, fitness for purpose, condition, design, title, infringement of
third-party rights, or conformance with sample. Seller shall not be responsible for any loss or damage of
whatever nature resulting from the use of, or reliance upon, the information contained in this document. In no
event will Seller be liable to Buyer or to any other party for loss of profits, loss of savings, or punitive, exemplary,
incidental, consequential or special damages, even if Seller has knowledge of the possibility of such potential
loss or damage and even if caused by Seller’s negligence.

© 1997 PMC-Sierra, Inc.

PMC-970281 Issue date: March, 1997

