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2 Glossary 
Term Definition 
AIS   Alarm Indication Signal.  An OAM cell that indicates to downstream entities that the 

connection is not receiving cells. 
CC Continuity Check.  An OAM cell sent through the network so that downstream entities 

may differentiate between a failure and periods of low user cell traffic. 
FM Fault Management.  The mechanism used by the network to inform management 

entities and other network equipment of faults within the network. 
OAM Operations, Administration, and Maintenance.  The maintenance of VCs within the 

network. 
PM Performance Management.  The mechanism used by the network to monitor the 

performance parameters of a particular VC. 
RDI Remote Defect Indication.  An OAM cell sent to an upstream entity at the OAM flow 

endpoint to indicate that a connection in the flow is not receiveing cells. 
VC Virtual Connection.  This refers to either a Virtual Path Connection (VPC) or a Virtual 

Channel Connection (VCC) within a physical link. 
VCC Virtual Channel Connection.  A virtual connection between two network elements.  A 

virtual channel connection is normally a constituent member of a virtual path 
connection, where the VPC consists of one or more VCCs.  This is sometimes known 
as an F5 connection. 

VPC Virtual Path Connection.  A virtual connection between two network elements.  A 
virtual path connection may span one or more physical links.  This is sometimes 
known as an F4 connection. 
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3 Introduction 
This document provides software routines that may be used to ease the integration of the PM7234 
S/UNI-ATLAS into an application, such as a switch or add/drop multiplexer. It is intended for 
software and system designers who are using or planning to use the ATLAS, as well as for 
audiences in general who would like to have a better understanding of the VC identification 
algorithm that the ATLAS uses, or the powerful OAM capabilities of the ATLAS. 

It is assumed that the reader has a basic understanding of the ATLAS.  Please refer to document 
PMC-971154, “PM7324 S/UNI-ATLAS Datasheet” for a detailed description.  In addition, basic 
knowledge of the ATM protocol would be helpful.   

The routines provided are of a basic nature, written in ANSI C.  Therefore, it is assumed that the 
reader has a reasonable understanding of the C programming language.  To maintain operating 
system and processor independence, the routines rely on low level routines to access ATLAS 
registers.  The intent of this document is not to implement a software driver, but to illustrate the 
operation of various ATLAS operations and how they may interact with software.  As such, there 
is no pretense that the software presented here is exhaustive or optimal.  It is expected that 
modifications shall be required to customize the example code for a specific system. 
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4 Programming the VC Search Tables 
Search tables and context tables for the ATLAS are stored in external SRAM.  There is one 
SRAM interface for the ingress, and one for the egress.  Figure 1 below illustrates the 
organization of the ingress SRAM.  The Primary Search Table is made up of the set of Primary 
Table Records.  Similarly, the Secondary Search Table is made up of the set of Secondary Search 
Records, and the VC Table is made up of the set of VC Table Records.  The egress SRAM is 
organized in a similar fashion, except that there is no search table since the egress side of the 
ATLAS uses a direct lookup for VC identification. 

Figure 1 SRAM Organization 
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To identify the VC associated with a particular cell, the ATLAS performs a search in the VC 
Search Tables using the information in the PHY ID, cell header, prepend, and postpend.  Once the 
VC associated with the cell has been identified, the cell may be processed according to the VC’s 
properties, which are stored in the VC Table.  Both the VC Search Tables and VC Tables are 
stored in external SRAM. 

It is important to note that although the VC Tables and Search Tables occupy the same physical 
memory space, the Search Table Records are not necessarily associated with the VC Table 
Records at the same SRAM location. 

4.1 SRAM Access 

SRAM access is provided indirectly through the microprocessor interface. Table 1 below lists the 
registers that are relevant to SRAM accesses in the ATLAS.  For a detailed description of these 
registers, refer to the S/UNI-ATLAS Datasheet. 

Table 1 SRAM Access Registers 

Address Register 
0x181 Ingress VC Table External RAM Address (LSB) 
0x182 Ingress VC Table External RAM Access Control 
0x183 Ingress VC Table External RAM Row Select 
0x184 Ingress VC Table Write Mask 
0x190 – 0x1CB Ingress VC Table External RAM Data 
0x2AB Egress VC Table External RAM Address (LSB) 
0x2AC Egress VC Table Write Mask and Access Control 
0x2AD Egress VC Table External RAM Row Select 
0x2AE – 0x2CD Egress VC Table External RAM Data 

An entire VC Table’s data can be cached in the ATLAS, to reduce the amount of attention 
required by the microprocessor in performing accesses.  To perform a write, execute the 
following steps: 

1. Check that the BUSY bit in the Access Control Register is deasserted.  Do not proceed if the 
BUSY bit is asserted. 

2. Write data to the External RAM Data Registers for the fields required. 

3. Write the appropriate information to the External RAM Row Select Register. 

4. Write the SRAM address to be accessed to the External RAM Address Register. 

5. Perform a write to the Access Control Register with the RWB bit set to 0.  This will initiate 
the access and assert the BUSY bit.  When the BUSY bit is deasserted, the SRAM access is 
complete. 

To perform a read, execute the following steps: 
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1. Check that the BUSY bit in the Access Control Register is deasserted.  Do not proceed if the 
BUSY bit is asserted. 

2. Write the appropriate information to the External RAM Row Select Register. 

3. Write the SRAM address to be accessed to the External RAM Address Register. 

4. Perform a write to the Access Control Register with the RWB bit set to 1.  This will initiate 
the access and assert the BUSY bit.  When the BUSY bit is deasserted, the SRAM access is 
complete. 

5. Read the data from the External RAM Data Registers for the fields required. 

As an alternative to polling the BUSY bit, the BUSYB pin may be polled or used as an interrupt 
by a microprocessor.  The BUSYB pin includes the status of both the egress and ingress BUSY 
bits. 

4.2 ATLAS VC Identification 

In the Ingress, the search consists of two stages: the Primary Search, and the Secondary Search.  
The first is a direct lookup using a key based upon the PHYID and up to 16 contiguous bits of the 
cell prepend, postpend, and header.  The result of the Primary Search is the address of the root 
node of a binary tree that is used in the Secondary Search.  The binary tree is traversed using a 
key based upon the cell’s VPI/VCI and up to 11 contiguous bits of the cell prepend, postpend, and 
header.  The termination of the binary search provides the address of the VC Table Record for the 
connection. 

In the egress, the search consists of a direct lookup using a 16 bit key based upon the PHY ID, 
and 2 sets of up to 16 contiguous bits of the cell prepend, postpend, and header.  The result of the 
lookup provides the address of the VC Table Record for the connection. 

Table 2 below lists the registers associated with VC identification in the ATLAS.  For a detailed 
description, refer to the S/UNI-ATLAS datasheet. 

Table 2 VC Identification Registers 

Address Register 
0x180 Ingress Search Engine Configuration 
0x185 Field A Location and Length 
0x186 Field B Location and Length 
0x282 Egress Cell Processor Direct Lookup Configuration 1 
0x283 Egress Cell Processor Direct Lookup Configuration 2 
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4.2.1 Ingress VC Search 

When a cell enters the ATLAS, a routing word is constructed from the cell header, prepend and 
postpend.  A Primary Key and Secondary Key are extracted from the routing word based upon the 
settings of STARTA[6:0], STARTB[6:0], LA[4:0], and LB[4:0] in registers 0x185 and 0x186.  
This is illustrated in Figure 2 below. 

Figure 2 Ingress Search Key Composition 
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The ATLAS first uses the Primary Key.  The Primary Key is the SRAM address of the Primary 
Search Table record for the particular connection.  The contents of the Primary Search Table 
record is the address of Secondary Search Table entry which is the root node of the binary search 
tree for the particular connection.  The Secondary Search Table Record contains the information 
for the next stage of the binary search.  Figure 3 below illustrates the contents of the Secondary 
Search Table record. 

Figure 3 Secondary Search Table Record 

ISD[55:50] ISD[49] ISD[48:33] ISD[32] ISD[31:16] 
Selector Left Leaf Left Branch Right Leaf Right Branch 
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Notes 

1. Selector. The index of the Secondary Search Key bit upon which the branching decision is based.  An 
index of zero represents the LSB.  If the selected bit is a logic one, the "Left Leaf" and "Left Branch" 
fields are subsequently used.  Likewise, if  the selected bit is a logic zero, the "Right Leaf" and "Right 
Branch" are subsequently used.  Typically, the Select value decreases monotonically with the depth of 
the tree, but other search sequences are supported by the flexibility of this bit.  (i.e. typically, one starts 
from the most significant bit side and heads towards the least significant bit when selecting the bits to 
be used for branching decisions) 

2. Left Leaf. This flag indicates if this node is a leaf.  If "Left Leaf" is a logic one, the left branch is a leaf 
and the binary search terminates if the decision bit is a logic one.  If "Left Leaf" is a logic zero, "Left 
Branch" value points to another node in the binary tree. 

3. Left Branch. The 16-bit SRAM address pointing to the node accessed if the decision bit is a logic one.  If 
"Left Leaf" is a logic one, "Left Branch" contains the SA[15:0] address identifying the VC Table Record 
for the incoming cell.  If "Left Leaf" is a logic zero,  "Left Branch" contains the SA[15:0] value pointing to 
another Secondary Search Table entry. 

4. Right Leaf. This flag indicates if this node is a leaf.  If "Right Leaf" is a logic one, the Right branch is a 
leaf and the binary search terminates if the decision bit is a logic zero.  If "Right Leaf" is a logic zero, 
"Right Branch" value points to another node in the binary tree. 

5. Right Branch. The pointer to the node accessed if the decision bit is a logic zero.  If "Right Leaf" is a 
logic one, "Right Branch" contains the SA[15:0] address identifying the VC Table Record for the 
incoming cell.  If "Right Leaf" is a logic zero,  "Right Branch" contains the SA[15:0] value pointing to 
another Secondary Search Table entry. 

At each step in the binary search, the ATLAS will look at the bit in the secondary key identified 
by the selector field.  Based upon the value of the bit, the left branch or right branch in the tree 
will be taken.  The left or right branch will be either a VC Table Record or another node in the 
tree, depending on the setting of the left or right leaf bits.  If a node, the search continues.  If a 
leaf, then the search terminates.  The ATLAS will then compare the secondary key to the values 
for Field B, , VPI, and VCI found in the VC Table where the search terminated.  If they match, 
the cell is processed.  Otherwise, the cell is discarded.  This process is illustrated in below. 

Figure 4 VC Search Data Structure 
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4.2.2 Detailed Example 

This example illustrates how the search could be constructed and what happens when a cell enters 
the ATLAS ingress.  For this example, we will setup the ATLAS for eight connections.  Table 2 
shows the connection characteristics.  We will assume that there is no prepend or postpend, so 
that the connection can be uniquely identified by the cell’s header contents and PHY ID.  For 
simplicity, the PHY ID and VPI for each of the eight connections is the same.   

Table 2 VC Characteristics 

VC # VPI VCI PHY ID 
1 5 00B5 0 
2 5 00B0 0 
3 5 008F 0 
4 5 0023 0 
5 5 0020 0 
6 5 0017 0 
7 5 0016 0 
8 5 0010 0 

To setup the ATLAS to support these connections, the ATLAS is configured to use the PHY ID 
and VPI for the Primary Search, and the VCI for the Secondary search.  The register settings for 
this configuration are summarized below in Table 3. 

Table 3 ATLAS Search Configuration 

Register Setting Effect Description 
0x185 0x0326 STARTA[6:0]= 0x26 

LA[4:0]=0x03 
Field A is the last 3 bits of the VPI 

0x186 0x081B STARTB[6:0]= 0x1B 
LB[3:0]=0x8 

Field B is the last 8 bits of the VCI 

0x180 0x1000 PHY[2:0]=0x0 
BCIFHECUDF=1 

Only using one PHY 
Cells from the Backward OAM Cell Interface 
have connection number encoded into 
HECUDF word. 

Figure 5 below illustrates the search setup.  The Secondary Search Table entries are shown at 
each node.  For simplicity, leading zeros are not included in each field.  These entries are 
arranged such that their vertical positions correspond to which bit is used to make the branching 
decision.  

The 3-bit SRAM addresses are shown for the search table entries and the VC Table Records 
themselves.  The SRAM addresses for the Secondary Search Table entries can be assigned 
arbitrarily.  The SRAM addresses for the VC Table Records can also be assigned arbitrarily.  In 
this case, they are assigned in descending order with the VC#'s.   
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Figure 5 Detailed Binary Search Tree 
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Suppose a cell comes in corresponding to VC# 2 in Table 2 above.  The primary key will be 0x5.  
The address of the root node (node A) of the Secondary Search Tree will be in the 5th record of 
the Primary Table.  The Secondary key will be 0xB0 (1011000).  At the root (node A), the 
Secondary Search Table entry is read from the SRAM.  The Selector field indicates that bit 111, 
or bit 7, should be examined.  It is a one, which means the left branch should be taken.  The leaf 
indicator is 0, meaning the leaf has not been found yet.  Thus, the left branch address, 000, is used 
to read the Secondary Search Table entry of the next node, node B.  Here, the Selector field is 
101, meaning bit 5 should be used.  Bit 5 is a one, meaning the left branch should be taken.  The 
leaf indicator is 0, meaning the leaf has not been found yet.  Thus, the left branch address, 011, is 
used to read the Secondary Search Table entry of the next node, node D.  Here, the Selector field 
is 010, meaning bit 2 should be used.  Bit 2 is a zero, meaning the right branch should be taken.  
The leaf indicator is 1, meaning the leaf has been found.  The right branch address is used to read 
the 8-bit identifier of the leaf, which is used to compare to the incoming cell.  They are the same, 
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and thus the 8-bit address is found that points to the correct VC Table Record that corresponds to 
VC# 2. 

In this example, the depth of the binary search is 4, which is equal to the number of bits in the 
secondary key as specified by the Selector field.  On one extreme, the 8 VC's can be uniquely 
identified using only 3 bits, giving a minimum depth of 3 for the binary tree.  On the other 
extreme, a maximum of 7 bits are used, giving a maximum depth of 7 for the binary tree. 

4.2.3 Egress VC Search 

When a cell enters the ATLAS at the egress, a routing word is constructed from the cell header, 
PHY ID, prepend, and postpend.  A direct lookup key is extracted from the routing word based 
upon the settings of STARTA[6:0], LA[4:0], PHY[2:0], STARTB[6:0], and LB[4:0] in registers 
0x282 and 0x283.  This is illustrated in Figure 6 below.  It is important to note that for a given 
bidirectional connection, the Ingress and Egress VC Tables must be related in one of three ways, 
as outlined in the ATLAS datasheet, Section 8.5.1.  This is necessary for OAM cell generation to 
work correctly. 

Figure 6 Egress Search Key Composition 
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4.2.4 Detailed Example 

This example illustrates how the VC Record Address is determined for a cell entering the egress 
of the ATLAS. For OAM processing to work correctly, the Ingress and Egress VC Tables must be 
related.  One of the ways that they can be related is by having the same VC Record address for 
both the Ingress and Egress Connection.  In this case, generated OAM cells may have their HEC 
and UDF bytes overwritten with a 16 bit VC Record Address.  Therefore, it will be assumed that 
cells entering the egress have their HEC and UDF bytes encoded with the VC Record Address 
(this is easily performed on the other side of the switch fabric, using header translation).  Table 4 
below illustrates the necessary configuration to extract the lookup key from the routing word. 

Table 4 ATLAS Search Configuration 

Register Setting Effect Description 
0x282 0x108F 

 

PHY[2:0]=0x0 
STARTA[6:0]= 0x0F 
BCIFHECUDF=1 
LA[4:0]=0x10 

Only one PHY selected 
Lookup key is equal to the HEC+UDF, being 
16 bits starting with the 15th bit. 

0x283 0x0000 STARTB[6:0]= 0x00 
LB[3:0]=8=0x0 

Field B is not used. 

With this configuration, a cell entering the ATLAS will have the HEC and UDF extracted from 
the cell and used as the location of the VC Record in SRAM. 

4.3  Operations 

This section describes how to initialize and build up the Primary and Secondary Search Tables.  
VCs can be added or removed on the fly without corrupting a binary search in progress.  It is 
assumed that there is a replica of the VC Table structure kept by the microprocessor, such that the 
microprocessor can determine how to add or remove VC's based on this replica.  Any 
modification to the actual VC Table Records (through the ATLAS) should be duplicated in the 
replica structure. 

4.3.1 Initialization 

The following are the microprocessor actions required to initialize the Search Tables and VC 
Table Records: 

1. Set the ISTANDBY and ESTANDBY bits of the Master Configuration register (0x01).  These 
bits default to a logic 1 after a reset or upon power-up. 

2. Write zeros (null pointer) to every Primary Search Table location (ISA[19:16] =0000). 

3. Write zeros to the third word (ISA[19:16]=0010) of all Ingress VC Table Records.  This 
clears the Active bit in the Configuration field. 

4. Write zeros to the first word (ESA[19:16]=0000) of all Egress VC Table Records.  This clears 
the Active bit in the Activation Field[2:0]. 
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5. Clear the ISTANDBY and ESTANDBY bits of the Master Configuration register (0x01). 

The remaining SRAM locations can be initialized as required for adding or removing 
connections. 

4.3.2 Adding Connections 

The following are the microprocessor actions required to provision a connection.  Note that the 
steps apply to ingress connections only.  For egress connections, one need only initialize the 
egress VC Table Record corresponding to the egress search key.  

1. Determine the next available Ingress VC Table Record address.  This address can simply be 
one higher than the highest existing VC Table Record address, or it can be the address of an 
VC Table Record that has been removed.  Initialize the contents of the VC Table Record via 
ingress SRAM access registers in Table 1. 

2. Perform a binary search (using the replica VC Table structure) to determine the insertion 
point.  The last pointer accessed in the search shall be the one modified, be it a Primary 
Search Table entry, left branch or right branch. 

3. Find a free Secondary Search Table entry and initialize it.  The only exception to this is when 
a single VC Table Record exists in a tree, in which case the solitary Secondary Search Table 
entry is modified. 

4. Perform a single SRAM write (via the Microprocessor RAM Address and Data registers) to 
incorporate the new Secondary Search Table entry in the existing tree structure.  This step 
must be performed last to ensure a binary search in progress is not corrupted. 

Five distinct types of insertions are possible based on the existing tree structure, and are detailed 
in the sections that follow.  In the accompanying diagrams, the following key is used: 

�� a, b, c: Pointers to Secondary Search Table records 

�� w, x, y, z: Pointers to VC Table Records 

�� k, m, n: Selector field contents 

�� Shaded: Fields which have been modified in the process. 

Case 1: Insertion Into an Empty Tree 

The binary tree is empty.  In this case, the null Primary Search Table pointer is modified to point 
to a newly created Secondary Search Table entry.  Because no bits within the Secondary Search 
Key are required, both the left and right branches of the Secondary Search Table entry point to the 
same VC Table Record.  The selector is a ‘don’t care’. 
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Figure 7 Case 1 
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Case 2: Insertion Into a Single Record Tree 

The binary tree contains only a single VC Table Record.  Modify the selector field to index the 
most significant bit of the Secondary Search Key which differs between the new and existing 
connection.  Modify the left or right branch, as appropriate, to point to the newly created VC 
Table Record. 

Figure 8 Case 2 
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The diagram illustrates the case where the new VC has a one in the decision bit position and the 
existing VC has a zero in the same bit position.  If the new VC had a zero in the decision bit 
position, the right branch would have been modified instead. 

Case 3: Insertion at the Root of a Tree 

The insertion point is at the root of the tree.  This occurs when the new decision bit index is 
greater any of the indices currently in the search tree.  In this case, the Primary Search Table entry 
is modified to point to the newly created Secondary Search Table entry.  The New Secondary 
Search Table entry points to the new VC Table Record and the old tree root. 
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Figure 9 Case 3 
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Case 4: Insertion at Middle of a Tree 

The insertion point is in the middle of the binary tree.  The new Secondary Search Table entry 
points to the new VC Table Record and an existing node in the tree.  The parent of the existing 
node is modified to point to the new Secondary Search Table entry in the final step of the 
insertion. 

Figure 10 Case 4 
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Case 5: Insertion at a Leaf 

The new Secondary Search Table entry is inserted at a leaf.  The search for a candidate insertion 
point ends on a node which already points to a VC Table Record.  The new Secondary Search 
Table entry points to the existing VC Table Record and the new VC Table Record.  The existing 
Secondary Search Table entry is modified to point to the new Secondary Search Table entry in the 
final step of the insertion. 

Figure 11 Case 5 
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4.3.3 Removing Connections 

The following are the microprocessor actions required to remove a connection: 

1. Find the location of the Secondary Search Table entry pointing to the connection's VC Table 
Record. 

2. Perform and SRAM write to modify the parent node (be it the Primary Table entry or another 
Secondary Search Table entry) of the Secondary Search Table entry being removed to point to 
the node remaining after the connection removal.  The only exception to this is when only 
two VC Table Records exist in a tree, in which case the solitary Secondary Search Table entry 
is modified.  The VC is now considered unprovisioned and any cells belonging to the VC will 
be discarded. 

3. Tag in software the removed Secondary Search Table entry as free. 

4. Read the final statistics for the connection from the VC Table Record and tag in software the 
VC Table Record address as free.  Also, clear the "Active" bit in the VC Table Record. 
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The connection removal process examples are not illustrated because the results are exactly the 
reverse of the connection provisioning process.  Note that the above steps are for ingress 
connections only.  For egress connections, one need only turn off the active bit in the egress VC 
Table Record and setup the appropriate parameters. 

4.4 Example Routines 

The services provided are detailed in the sections that follow.  Note that in all cases, other 
embodiments of the routines are possible, and the method presented here represents only one 
possible implementation. 

4.4.1 Accessing the ATLAS 

All operations on the ATLAS are performed through the microprocessor interface.  All example 
software in this document relies on low level service routines for the 16-bit read and write access 
in the ATLAS.  The sections that follow detail the routines that need to be defined.   

Type Definitions 

char BYTE; /* signed 8 bits, range [-128,127] */ 

unsigned char UBYTE; /* unsigned 8 bits, range [0,255] */ 

short WORD; /* signed 16 bits, range [-32768,32767] */ 

unsigned short UWORD; /* unsigned 16 bits, range [0,65535] */ 

long DWORD; /* signed 32 bits, range [-2147483648,2147483647] */ 

unsigned long UDWORD; /* unsigned 32 bits, range [0,4294967295] */ 

UWORD REG_TYPE; /* ATLAS registers are 16 bit */ 

Global Variables 

UDWORD DEVICE_BASE_ADDR[MAX_DEVICE_NUMBER+1]  /* array of base 
addresses */ 

UDWORD MAX_REG_ADDR[MAX_DEVICE_NUMBER+1]  /* array of devices’ max 
register */ 

UBYTE REG_BYTE_SIZE[MAX_DEVICE_NUMBER+1]  /* array of devices’ 
register size*/ 

ATLAS Read 

This routine performs a read of the specified register of the specified ATLAS device.  The 
specific implementation of this routine will rely entirely on the microprocessor and supporting 
hardware. 

Pseudocode: 

BYTE devRead( 

UBYTE device,  
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UDWORD regAddr,  

REG_TYPE *readData) 

{ 

address = DEVICE_BASE_ADDR[device] + regAddr*REG_SIZE 

if REG_BYTE_SIZE[device] = 1 then 

*readData = (UBYTE) contents of address 

else if REG_BYTE_SIZE[device] = 2 then 

*readData = (UWORD) contents of address 

if data is valid (check via exception handling) then 

return SUCCESS 

else return ERROR 

} 

Parameters: 

�� device Device to access 

�� regAddr Register address 

�� readData Stores the value read 

ATLAS Write 

This routine performs a write to the specified register of the specified ATLAS device with the 
specified data.  The specific implementation of this routine will rely entirely on the 
microprocessor and supporting hardware. 

Pseudocode: 

BYTE devWrite( 

UBYTE device,  

UDWORD regAddr,  

REG_TYPE wrData) 

{ 

address = DEVICE_BASE_ADDR[device] + regAddr*REG_SIZE 

if REG_SIZE[device] is 1 then 

contents of address = (UBYTE) wrData 

else if REG_SIZE[device] is 2 then 

contents of address = (UWORD) wrData 

else return ERROR 

} 

Parameters: 
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�� device Device to access 

�� regAddr Register address 

�� wrData Value to write into the register 

ATLAS Write with Mask 

This function modifies selected bits of a device register.  The register is read, the desired bits are 
modified, then the register is written with the new data.  Note that since this routine performs a 
read, bits that clear upon read, such as interrupt indication bits, will be lost. 

Pseudocode: 

BYTE devWriteMask( 

UBYTE device,  

UDWORD regAddr,  

REG_TYPE wrData,  

REG_TYPE wrMask) 

{ 

devRead(device, regAddr, &data) 

data = data & (~wrMask) 

data = data | (wrData & wrMask) 

devWrite(device, regAddr, data) 

} 

Parameters: 

�� device device number to access 

�� regAddr register address 

�� wrData value to write into the register(s) 

�� wrMask mask for bits to write into register, bits set = bits to modify 

Poll ATLAS Bit High 

This function polls a particular bit in a register until it is a logic 1 or a timeout occurs.  

Pseudocode: 

BYTE devBitHiPoll( 

UBYTE device,  

UDWORD regAddr,  

UBYTE bitPosition,  

UWORD numCheck) 



S/UNI-ATLAS Programmer’s Guide and Example Software  
 Released 

 

Proprietary and Confidential to PMC-Sierra, Inc., and for its customers’ internal use.  28 
Document No.: PMC-1980585, Issue 3 

 

{ 

Loop numCheck times 

devRead(device, regAddr, &data) 

 If read error then return error code from devRead() 

If (data >> bitPosition) & 0x01 = 1 then return SUCCESS 

 return ERROR_TIMED_OUT 

end loop 

} 

Parameters: 

�� device  device number to access 

�� regAddr  register address 

�� bitPosition bit to poll (0 = least significant bit) 

�� numCheck  number of times to check the bit before giving up 

Poll ATLAS Bit Low 

This function polls a particular bit in a register until it is a logic 0 or a timeout occurs.  

Pseudocode: 

BYTE devBitLowPoll( 

UBYTE device,  

UDWORD regAddr,  

UBYTE bitPosition, 

UWORD numCheck) 

{ 

Loop numCheck times 

 devRead(device, regAddr, &data) 

 If read error then return error code from devRead() 

 If (data >> bitPosition) & 0x01 = 0 then return SUCCESS 

End loop 

return ERROR_TIMED_OUT 

} 

Parameters: 

�� device    device number to access 

�� regAddr   register address 
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�� bitPosition   bit to poll (0 = least significant bit)) 

�� numCheck   number of times to check the bit before giving up 

4.4.2 SRAM Access Routines 

SRAM access routines are used by the SRAM diagnostic function and the table maintenance 
routines.  

Type Definitions 

typedef struct { 

    UWORD addr; /* Ingress VCRA (16 bits) */ 

    UWORD row; /* row(s) of the SRAM to access, bit n=row n */ 

    UBYTE data[IVCRAM_NUM_ROWS][IVCRAM_NUM_BYTES]; /* data as 2D 
array */ 

    UBYTE wrMask;  /* bytemask for single row access only */ 

    } IVCRAM_TYPE; 

 

typedef struct { 

    UWORD addr; /*  Egress VCRA (16 bits) */ 

    UWORD row;  /*  rows of the egress SRAM to access (bit n = row n) 
*/ 

    UBYTE data[EVCRAM_NUM_ROWS][EVCRAM_NUM_BYTES]; /* data as 2D 
array */ 

    UBYTE wrMask; /* bytemask for single row access only */ 

    } EVCRAM_TYPE; 

Ingress SRAM Read 

This function reads a record from the Ingress VC SRAM. 

Pseudocode: 

BYTE ivramRead( 

UBYTE device,  

IVC_TYPE *ivcData)  

{ 

(*ivcData).row = ((*ivcData).row & IVCRAM_ROWMASK) to mask out unused 
rows 

devBitLowPoll() /* to ensure BUSY is low */ 

devWrite(device, REG_IVC_ADDR, (*ivcData).addr) /* to setup address 
*/ 

devWrite(device, REG_IVC_ROW, (*ivcData).row) /* to setup row mask */ 
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devWriteMask(device, REG_IVC_CONTROL, 0x8000, 0x8000) /* to initiate 
read*/ 

devBitLowPoll() /* to check if access is complete */ 

for each row being accessed (0 - 14) 

 for each word in the row 

  devRead(appropriate register, based on offset using row, 
word) 

  *ivcData.data[row][byte]=result of devRead 

  *ivcData.data[row][byte+1]=result of devRead>>8 

} 

Parameters: 

�� device Device to access 

�� *ivcData Pointer to a record of IVC_TYPE 

Ingress SRAM Write 

This function writes a record to the Ingress VC SRAM. 

Pseudocode: 

BYTE ivcramWrite( 

UBYTE device,  

IVC_TYPE ivcData) 

{ 

ivcData.row = (ivcData.row & IVCRAM_ROWMASK); /* mask out unused rows 
*/ 

devBitLowPoll() /* to ensure BUSY is low-*/ 

devWrite(device, REG_IVC_ADDR, ivcData.addr) /* to setup address*/ 

devWrite(device, REG_IVC_ROW, ivcData.row) /* to setup row*/ 

for each row not masked out 

for each word in the row 

regData = ivcData.data[row][byte+1] 

regData = (ATLAS register << 8) | ivcData.data[row][byte] 

regAddr = appropriate offset from row, word 

devWrite(device, regAddr, regData) 

 

devWrite(device, REG_IVC_WRMASK, ivcData.wrMask) /* setup bytemask if 
used*/ 

devWriteMask(device, REG_IVC_CONTROL, 0x0000, 0x8000) /*initiate 
write*/ 
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return devBitLowPoll() /* to ensure access is complete */ 

} 

Parameters: 

�� Device Device to access 

�� IvcData Record of  IVC_TYPE 

Egress SRAM Read 

This function reads a record from the Egress VC SRAM. 

Pseudocode: 

BYTE evcramRead( 

UBYTE device,  

EVC_TYPE *evcData) 

{ 

(*evcData).row = ((*evcData).row & EVCRAM_ROWMASK) /* maskout unused 
rows*/ 

devBitLowPoll() to ensure BUSY is low 

devWrite(device, REG_EVC_ADDR, (*evcData).addr) /*setup address */ 

devWrite(device, REG_EVC_ROW, (*evcData).row)/* setup row*/ 

devWriteMask(device, REG_EVC_CONTROL, 0x8000, 0x8000) /* initiate 
read*/ 

devBitLowPoll() /* check access is complete*/ 

for each row accessed 

 for each word 

  devRead(appropriate register) 

  *evcData.data[row][byte]=regData 

  *evcData.data[row][byte+1]=regData>>8 

return SUCCESS; 

} 

Parameters: 

�� device Device to access 

�� *evcData Pointer to a record of EVC_TYPE 

Egress SRAM Write 

This function writes a record to the Egress VC SRAM. 

Pseudocode 
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BYTE evcramWrite( 

UBYTE device,  

EVC_TYPE evcData) 

{ 

evcData.row = (evcData.row & EVCRAM_ROWMASK); 

devBitLowPoll()/*ensure BUSY is low*/ 

devWrite(device, REG_EVC_ADDR, evcData.addr) /* setup address*/ 

devWrite(device, REG_EVC_ROW, evcData.row); /* setup row*/ 

for each row accessed 

 for each word 

regData = ecData.data[row][byte+1] 

regData = (ATLAS register << 8) | evcData.data[row][byte] 

regAddr = appropriate offset from row, word 

devWrite(device, regAddr, regData) 

 

regData = (0x0000 | evcData.wrMask); 

devWriteMask(device, REG_EVC_CONTROL, regData, 0x8008) /*initiate the 
write*/ 

return devBitLowPoll() /* check access is complete*/ 

} 

Parameters: 

�� device Device to access 

�� evcData A record of EVC_TYPE 

4.4.3 SRAM Diagnostic Routines 

SRAM diagnostics should be performed at initialization to ensure data integrity at the interface 
between the ATLAS and the SRAM. 

Global Variables 

UBYTE pattern[MAXPATTERN]={0x00,0xFF,0x55,0xAA,0xCD,0x32} /* test 
patterns */ 

Ingress SRAM Diagnostics 

This function tests the external Ingress SRAM and the interface to it.  The test algorithm is based 
on "Fault Modelling and Test Algorithm Development for Static Random Access Memories” in 
the references.  The test is performed as follows: 

1. Write "pattern" to all locations with an incrementing address.  
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2. Read "pattern" and write inverse "pattern" to all locations with an incrementing address.  

3. Read inverse "pattern" and write "pattern" to all locations with an incrementing address.  

4. Read "pattern" and write inverse "pattern" to all locations with a decrementing address.  

5. Read inverse "pattern" and write "pattern" to all locations with a decrementing address. 

The byte "patterns" used are 0x00, 0x55 and 0xCD, repeated over the eight byte width of the 
SRAM bus.  The last pattern verifies the parity bits.  The global constant, IVC_NUM_RECORDS, 
determines the depth of RAM tested.  Depending on the depth of the SRAM, this test may take 
several seconds.  Missing SRAM fields may be masked out by use of the global constant 
IVC_ROWMASK.  Note that the test overwrites the contents of SRAM. 

Pseudocode: 

BYTE ivcramdiag( 

 UBYTE device, 

 UDWORD *faultLoc) 

{ 

IVCRAM_TYPE ivcDiag 

devWriteMask(device, REG_MASTER_CONFIG, 0x0001, 0x0001) /*set 
STANDBY*/ 

for each pattern 

for each vcra up to the maximum populated 

 ivcData.addr=vcra 

 for each row populated 

 ivcData.row=row 

  for each byte 

   ivcDiag.data[row][byte]=pattern 

 ivcramWrite(device,ivcDiag) to write to SRAM 

 for each row populated 

  for each byte 

   if ivcDiag.data[row][byte]!=pattern then return 
fail 

devWrite(device, REG_MASTER_CONFIG, 0x0000, 0x0001) /* clear STANDBY 
*/ 

return SUCCESS 

} 

Parameters: 

�� Device Pointer to the base address of the ATLAS device being accessed. 
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�� *FaultLoc A pointer to an integer which stores the SRAM address value at which 
the failure was detected. 

Egress SRAM Diagnostics 

The egress SRAM diagnostic is conducted in the same way as the ingress test, with the exception 
that the bus width is four bytes rather than eight. 

Pseudocode: 

BYTE evcramdiag( 

 UBYTE device, 

 UDWORD *faultLoc) 

{ 

EVCRAM_TYPE evcDiag 

devWriteMask(device, REG_MASTER_CONFIG, 0x0002, 0x0002) /*set 
STANDBY*/ 

for each pattern 

for each vcra up to the maximum populated 

 evcData.addr=vcra 

 for each row populated 

 evcData.row=row 

  for each byte 

   evcDiag.data[row][byte]=pattern 

 ivcramWrite(device,evcDiag) to write to SRAM 

 for each row populated 

  for each byte 

   if evcDiag.data[row][byte]!=pattern then return 
fail 

devWrite(device, REG_MASTER_CONFIG, 0x0000, 0x0002) /* clear STANDBY 
*/ 

return SUCCESS 

} 

Parameters: 

�� Device Pointer to the base address of the ATLAS device being accessed. 

�� *faultLoc A pointer to an integer which stores the SRAM address value at which 
the failure was detected. 
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4.4.4 Table Maintenance Routines 

This section details routines for adding and removing ingress and egress connections within the 
ATLAS.   A shadow copy of the configured connections is maintained in the microprocessor 
memory.  

Type Definitions 

typedef struct {    /* type definition for ingress VC records */ 

    UWORD fieldA;   /* this isn't part of the VC rec, but is req'd 
for search  

    UBYTE f4toF5AIS;    /* fieldA + phyID = primary search Key */ 

    UBYTE phyID; 

    UBYTE pmActive2; 

    UBYTE pmAddr2; 

    UBYTE pmActive1; 

    UBYTE pmAddr1; 

    UBYTE nni; 

    UWORD fieldB; 

    UWORD vpi; 

    UWORD vci; 

 . 

 . 

 . 

UBYTE receivedSegmentAisDefect[16]; 

    } IVC_RECORD_TYPE; 

     

typedef struct {     /* type definition for secondary tree nodes */ 

    UBYTE selector; 

    UBYTE leftLeaf; 

    UWORD leftBranch; 

    UBYTE rightLeaf; 

    UWORD rightBranch; 

    } NODE_TYPE; 

 

typedef struct {  /* type definition for egress VC records */ 

    UBYTE inPhyID; 

    UWORD fieldA;   /* inPhyID + fieldA + fieldB = address */ 

    UWORD fieldB;    

    UBYTE active; 
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 . 

 . 

 . 

    UBYTE receivedSegmentAisDefectLocation[16]; 

    } EVC_RECORD_TYPE; 

     

typedef struct {  /* type definition for search results */ 

    UWORD primary; /* - primary key used for the search */ 

    UBYTE secondary[SECONDARY_KEY_SIZE]; /* - secondary key 

    UBYTE matched;  /* Success of search: 1 = success; 0 = not found 
*/ 

    UBYTE root; /* search terminated on root node */ 

    UBYTE emptyTree; /* VC table is empty: 1 = empty; 0 otherwise */ 

    UBYTE singleBranch; /* the secondary tree has only 1 connection 
*/ 

    UWORD leafAddr; /* Address of secondary key found for comparison 
*/ 

    UBYTE leafValue[SECONDARY_KEY_SIZE]; /* secondary key found  

    UBYTE finalDirection; /* last search direction: 1 = left; 0 = 
right */ 

    UWORD finalNodeAddr; /* Address of final node searched */ 

    NODE_TYPE finalNode; /* the node where the search terminated */ 

    UBYTE previousDirection; /* the previous branch direction */ 

    UWORD previousAddr; /* - Address of previous node searched */ 

    UBYTE newSelector; /* - selector bit of the secondary key of the 
new VC */ 

    } IVC_SEARCH_RESULTS_TYPE; 

Global Variables 

UWORD gmIvcPrimaryTable[] /* local copy of the primary search table 
table */ 

NODE_TYPE gmIvcSecondaryTable[]/*  local copy of the secondary search 
table */ 

UBYTE gmIvcSecondaryKeys[][] /* local copy of the secondary search 
keys */ 

UWORD gmIvcSecondaryAddrList[] /* list of free secondary search nodes 
*/ 

UWORD gmIvcSecondaryAddrIndex = 0; /* points to next free node */ 

UBYTE gmIvcRecordAddrFree[] /* list of free VC addresses */ 

UWORD gmIvcRecordAddrFreeIndex = 0; /* points to gmIvcRecordAddrFree[ 
]  */ 
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UWORD gmIvcRecordNumFree = IVC_NUM_RECORDS;  

UBYTE gIvcPrimaryTableUsed; /* boolean, 1 if primary table is in use 
*/ 

UBYTE gIvcFieldALength; /* primary key length */ 

UWORD gIvcFieldAMask; /* mask off unwanted field A bits  */ 

UWORD gIvcPhyIDMask; /* mask off unwanted PhyID bits  */ 

UWORD gIvcFieldBMask; /* mask off unwanted field B bits */ 

UBYTE gIvcFieldBLength; /* length of field B */ 

 

UWORD gEvcFieldALength; /*  set up the egress direct lookup */ 

UWORD gEvcFieldAMask; /*  mask off field A bits */ 

UWORD gEvcFieldBLength; /*  set up the primary key  */ 

UWORD gEvcFieldBMask; /*  mask off unwanted field B bits, */ 

UWORD gEvcPhyIDMask; /*  mask off unwanted inPhyID bits */ 

UBYTE gmEvcRecordAddrExists[] /*   table to indicate which used 
egress VCs */  

Add Ingress VC 

The functions presented in this section set up an ingress connection.   This is accomplished 
through the steps below.    

1. Perform a search using the primary and secondary keys of the VC being added.  This will 
determine the structure of the associated search tree.  If the search terminates on a node (as 
opposed to an empty tree), then choose a selector value that corresponds to the most 
significant bit that differs between the new secondary key and the old secondary key. 

�� If the binary tree is empty, add a root node with both left and right branches pointing to 
the single VC Table Record (Case 1).  This completes the addition of the VC. 

�� If the binary tree has only one connection, modify the root node so that the appropriate 
branch points to the new VC Table Record (Case 2).  This completes the addition of the 
VC.    

2. Determine the correct insertion point for the new node that will point to the new VC Table 
Record (Case 3, 4 or 5).  The correct insertion point will be based on the selector value at 
each of the existing nodes and the selector value chosen for the new node. 

�� If the correct insertion point is at the end of a tree (Case 5), add a node with the 
appropriate branch pointing to the new VC Table record, and the other branch pointing to 
the old VC Table Record.  Modify the node above to point to the new node rather than the 
old VC Table Record. 

�� If the correct insertion point is at the root (Case 3), add a node with the appropriate 
branch pointing to the old root node, and the other branch pointing to the new VC Table 
Record. 
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�� If the correct insertion point is between two nodes (Case 4), add a node with the 
appropriate branch pointing to the node below, and the other branch pointing to the new 
VC Table Record.  Modify the node above to point to new node rather than the node 
below. 

4.4.5 Initialization 

Prior to use, the VC Tables and their internal copies must be initialized. 

Pseudocode: 

BYTE ivcInitialize(UBYTE device) 

{ 

for each vcra 

 gmIvcPrimaryTable[]=0 /*set the table to the null pointer*/ 

 ivcData.data[0][0]=0 

 ivcData.addr=vcra 

 ivcData.row=0 

 ivcData.wrMask=0xFFFC 

 ivcramWrite(ivcData) /*clear primary table in SRAM*/ 

 

gmIvcRecordNumFree = IVC_NUM_RECORDS; 

gmIvcRecordAddrFreeIndex = 0; 

 

ivcData.data[2][7] = 0; /* status field */ 

ivcData.row = 0x0040; /* row 0010 */ 

ivcData.wrMask = 0; 

for each vcra 

 ivcData.addr=vcra 

 ivcramWrite(ivcData) /*clear active bit in each vc record*/ 

 

/* Initialize list of free secondary node addresses */ 

for (addr = 1; (addr <= IVC_MAX_SECONDARY_ADDR); addr++) 

    gmIvcSecondaryAddrList[addr-1] = addr; 

return SUCCESS; 

} 

Parameters: 

None. 
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4.4.6 Add Connection 

Pseudocode: 

BYTE ivcAddVC( 

UBYTE device,  

IVC_RECORD_TYPE ivcRecord 

UBYTE addrForce 

UWORD *ivcAddr) 

{ 

IVC_SEARCH_RESULTS_TYPE searchResults; /* results from ivcSearch() */ 

IVC_SEARCH_RESULTS_TYPE insertResults; /* results from 
ivcFindInsertionPoint()  

UWORD primaryKey; /* primary Key of the connection being added */ 

UBYTE secondaryKey[SECONDARY_KEY_SIZE]; /* secondary key of the vc 
being added 

 

primaryKey = (ivcRecord.phyID +ivcRecord.fieldA) 

secondaryKey = (ivcRecord.fieldB+ivcRecord.vpi+ivcRecord.vci) 

ivcSearch(primaryKey, secondaryKey, &searchResults); 

if (searchResults.matched) return ERROR_IVC_ADD_VC_EXISTS; 

if (searchResults.emptyTree)  /* case 1 */  

  ivcAddToEmptyTree() 

if (searchResults.singleBranch)  /* case 2 */ 

  ivcAddToSingleBranch() 

if (searchResults.newSelector < searchResults.finalNode.selector) /* 
case 5 */ 

ivcAddToEndNode() 

ivcFindInsertionPoint() 

if (insertResults.root) /* case 3 */ 

    return ivcAddToRoot() 

else /* case 4 */ 

ivcAddToMiddleBranch() 

return ERROR_IVC_ADD_FAIL; /* no other options */ 

} 

Parameters: 

�� device Device to access 

�� ivcRecord The VC Table Record to be added 
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�� addrForce If TRUE, then add the VC to the address specified in ivcAddr.  If 
FALSE, then an address will be selected automatically and returned in ivcAddr 

�� ivcAddr SRAM address of the VC record 

4.4.7 VC Search 

This routine performs a binary search to help determine how the tree structure must be changed in 
order to add or remove a connection on the tree. 

Pseudocode: 

BYTE  ivcSearch( 

 UWORD primaryKey, 

UBYTE secondaryKey[SECONDARY_KEY_SIZE], 

IVC_SEARCH_RESULTS_TYPE *searchResults) 

{ 

ivcInitSearchResults(searchResults) /*initialize result values*/ 

currentNodeAddr = gmIvcPrimaryTable[primaryKey]; 

if currentNodeAddr=0 { /* case 1 - the search tree is empty */ 

    (*searchResults).emptyTree = TRUE; 

    (*searchResults).secondary = secondaryKey; 

    (*searchResults).primary = primaryKey;  

    return SUCCESS; 

    } 

 

previousNodeAddr = currentNodeAddr; 

foundLeaf = FALSE; 

while not foundLeaf { 

    if bit#currentNode.selector of secondaryKey=1 (go left) 

     if currentNode.leftLeaf=1 foundLeaf=TRUE 

    nextNodeAddr = 
gmIvcSecondaryTable[currentNodeAddr].leftBranch; 

    else (go right) 

      if currentNode.rightLeaf=1 foundLeaf=TRUE 

nextNodeAddr = 
gmIvcSecondaryTable[currentNodeAddr].rightBranch; 

    if not foundLeaf (continue search) 

        (*searchResults).previousDirection = currentDirection; 

        previousNodeAddr = currentNodeAddr; 

        currentNodeAddr = nextNodeAddr; 
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} /* end while loop */ 

 

(*searchResults).previousAddr = previousNodeAddr; 

(*searchResults).finalDirection = currentDirection; 

(*searchResults).finalNodeAddr = currentNodeAddr; 

(*searchResults).finalNode = gmIvcSecondaryTable[currentNodeAddr]; 

(*searchResults).leafAddr = nextNodeAddr; 

(*searchResults).leafValue = gmIvcSecondaryKeys[nextNodeAddr] 

(*searchResults).secondary = secondaryKey; 

(*searchResults).primary = primaryKey; 

if (previousNodeAddr == currentNodeAddr) (*searchResults).root = 
TRUE; 

if (((*searchResults).finalNode.leftBranch ==     
(*searchResults).finalNode.rightBranch) &&  

(*searchResults).finalNode.leftLeaf &&  

(*searchResults).finalNode.rightLeaf &&  

(*searchResults).root) (*searchResults).singleBranch = TRUE; 

 

/*if the secondary key of the new VC matches the secondaryKey 
(leafValue)*/ /*the VC that the search terminated on, then the VC 
already exists.*/ 

(*searchResults.newSelector)=the MSB that differs between the 2 keys 

/* the new selector is the most significant bit that differs between 
them */ 

return SUCCESS; 

} 

Parameters: 

�� PrimaryKey  Key to search in the primary table 

�� SecondaryKey Key to search in the secondary table 

�� SearchResults Pointer to a record of IVC_SEARCH_RESULTS_TYPE that will hold 
results of this search 

4.4.8 Case 1: Insertion Into an Empty Tree 

Pseudocode: 

BYTE ivcAddToEmptyTree( 

UBYTE device, 

IVC_SEARCH_RESULTS_TYPE searchResults, 

IVC_RECORD_TYPE ivcRecord,  
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UBYTE addrForce,  

UWORD ivcAddr) 

{ 

if addrForce=1 ivcMarkRecordAddr(recordAddr); /*go mark the record as 
used*/ 

else ivcGetFreeRecordAddr(&recordAddr); /*allocate a record*/ 

*ivcAddr = recordAddr; 

ivcGetFreeSecondaryAddr(&rootNodeAddr); /*allocate a new secondary 
node*/ 

 

rootNode.selector = 0;  /*set l&r to point to leaves at recorAddr*/ 

rootNode.leftLeaf = 1; 

rootNode.leftBranch = recordAddr; 

rootNode.rightLeaf = 1; 

rootNode.rightBranch = recordAddr; 

     

ivcUpdateRecord() /*map ivcRecord into SRAM*/ 

 

ivcUpdateSecondaryTable() /*modify both the local and external sec 
tables*/ 

ivcUpdatePrimaryTable() /*point to the new node*/ 

} 

Parameters: 

�� Device Device to be accessed 

�� SearchResults Pointer to a record of IVC_SEARCH_RESULTS_TYPE that will hold 
results of this search 

�� ivcRecord The VC Table Record to be added 

�� addrForce If TRUE, then add the VC to the address specified in ivcAddr.  If 
FALSE, then an address will be selected automatically and returned in ivcAddr 

�� ivcAddr SRAM address of the VC record 

4.4.9 Case 2: Insertion Into a Single Record Tree 

Pseudocode: 

BYTE ivcAddToSingleBranch( 

UBYTE device, 

IVC_SEARCH_RESULTS_TYPE searchResults, 

IVC_RECORD_TYPE ivcRecord, 
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UBYTE addrForce, 

UWORD *ivcAddr 

{ 

if addrForce=1 then mark the vc record as used 

else ivcGetFreeRecordAddr(&recordAddr) /* allocate a new record*/ 

 

newRootNode = searchResults.finalNode; (the new=(old + 
modifications)) 

newRootNode.selector = searchResults.newSelector; 

if bit#newSelector of secondaryKey=1 /* new record goes on left */  

    newRootNode.leftBranch = recordAddr; 

else /* new record goes on right */ 

    newRootNode.rightBranch = recordAddr; 

 

ivcUpdateRecord()/* setup the new vc record*/ 

ivcUpdateSecondaryTable() /*modify the secondary table (local and 
ext)*/ 

} 

Parameters: 

�� Device Device to access 

�� SearchResults Contains results from a VC binary tree search 

�� ivcRecord The VC Table Record to be added 

�� addrForce If TRUE, then add the VC to the address specified in ivcAddr.  If 
FALSE, then an address will be selected automatically and returned in ivcAddr 

�� ivcAddr SRAM address of the VC record 

4.4.10 Case 3: Insertion at the Root of a Tree 

Pseudocode: 

BYTE ivcAddToRoot( 

UBYTE device,  

IVC_SEARCH_RESULTS_TYPE searchResults, 

IVC_RECORD_TYPE ivcRecord, 

UBYTE addrForce, 

UWORD *ivcAddr) 

 

{ 
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if addrForce=1 then mark vc record as used 

else allocate a new vc record 

ivcGetFreeSecondaryAddr() allocate a new secondary node 

newRootNode.selector = searchResults.newSelector; 

if bit#newSelector of secondaryKey =1 (new record goes on left) 

    newRootNode.leftLeaf = 1; 

    newRootNode.leftBranch = recordAddr; 

    newRootNode.rightLeaf = 0; 

    newRootNode.rightBranch = searchResults.finalNodeAddr; 

     

else ( new record goes on right) 

    newRootNode.rightLeaf = 1; 

    newRootNode.rightBranch = recordAddr; 

    newRootNode.leftLeaf = 0; 

    newRootNode.leftBranch = searchResults.finalNodeAddr; 

     

ivcUpdateRecord() /*setup new vc record*/ 

ivcUpdateSecondaryTable() /*setup new node (local and external)*/ 

ivcUpdatePrimaryTable() /*link in the new node (local and external)*/ 

} 

Parameters: 

�� Device Device to access 

�� SearchResults Contains results from a VC binary tree search 

�� IvcRecord Record containing all fields of a vc record 

�� AddrForce If TRUE, then add the VC to the address specified in ivcAddr 

�� IvcAddr SRAM address of the vc record 

4.4.11 Case 4: Insertion at Middle of a Tree 

Pseudocode: 

BYTE ivcAddToMiddleBranch( 

UBYTE device, 

IVC_SEARCH_RESULTS_TYPE searchResults, 

IVC_RECORD_TYPE ivcRecord, 

UBYTE addrForce, 

UWORD *ivcAddr) 
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{ 

if addrForce=1 then mark the record as used 

else allocate a record 

allocate a new secondary node 

 

newNode.selector = searchResults.newSelector; 

if bit#newSelector=1 /*goes on left*/ 

    newNode.leftLeaf = 1; 

    newNode.leftBranch = recordAddr; 

    newNode.rightBranch = searchResults.finalNodeAddr; 

    newNode.rightLeaf = 0; 

else /*goes on right*/ 

    newNode.rightLeaf = 1; 

    newNode.rightBranch = recordAddr; 

    newNode.leftBranch = searchResults.finalNodeAddr; 

    newNode.leftLeaf = 0; 

 

previousNode = gmIvcSecondaryTable[searchResults.previousAddr]; 

if previous direction=1 then go left 

    previousNode.leftBranch = newNodeAddr; 

else go right 

    previousNode.rightBranch = newNodeAddr; 

 

ivcUpdateRecord() /*setup the new record*/ 

ivcUpdateSecondaryTable() /*setup the new node    */ 

ivcUpdateSecondaryTable() /* update the parent node*/ 

} 

Parameters: 

�� Device device to access 

�� SearchResults contains results from a VC binary tree search 

�� IvcRecord record of type IVC_RECORD_TYPE containing all fields of a vc record 

�� addrForce if TRUE, then add the VC to the address specified in ivcAddr 

�� ivcAddr  SRAM address of the vc record 

4.4.12 Case 5: Insertion at a Leaf 

Pseudocode: 
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BYTE ivcAddToEndNode( 

UBYTE device,  

IVC_SEARCH_RESULTS_TYPE searchResults, 

IVC_RECORD_TYPE ivcRecord,  

UBYTE addrForce,  

UWORD *ivcAddr 

{ 

if addrForce=1 then mark the record as used 

else allocate a record 

allocate a new secondary node 

 

modify the final node to point to the new node: 

modifiedNode = searchResults.finalNode; 

if (searchResults.finalDirection)  

    modifiedNode.leftLeaf = 0; 

    modifiedNode.leftBranch = nextNodeAddr; 

    } 

else { 

    modifiedNode.rightLeaf = 0; 

    modifiedNode.rightBranch = nextNodeAddr; 

    } 

 

Set up the new end node: 

nextNode.selector = searchResults.newSelector; 

nextNode.leftLeaf = 1; 

nextNode.rightLeaf = 1; 

if bit#newSelector of secondaryKey=1 then /*new record goes on the 
left*/ 

    nextNode.leftBranch = recordAddr; 

    nextNode.rightBranch = searchResults.leafAddr; 

else /*goes on the right*/ 

    nextNode.rightBranch = recordAddr; 

    nextNode.leftBranch = searchResults.leafAddr; 

 

ivcUpdateRecord() /*setup the new vc record*/ 

ivcUpdateSecondaryTable() /*add the setup the new node return*/ 
ivcUpdateSecondaryTable() /*modify the old node to link in the new*/ 

} 
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Parameters: 

�� Device device to access 

�� SearchResults contains results from a VC binary tree search 

�� IvcRecord record containing all fields of a vc record 

�� AddrForce if TRUE, then add the VC to the address specified in ivcAddr 

�� IvcAddr pointer, SRAM address of the vc record 

4.4.13 Insertion Point 

Pseudocode: 

BYTES ivcFindInsertionPoint( 

UBYTE decisionBit, 

IVC_SEARCH_RESULTS_TYPE *searchResults) 

{ 

while not foundPoint 

 if selecor(newNode)>selector(thisNode) 

  insertionPoint=thisNode 

  foundPoint=TRUE 

 thisNode=nextNode(left or right branch) 

} 

Parameters: 

�� DecisionBit Value to compare the node selector values to  

�� SearchResults Pointer to a record of IVC_SEARCH_RESULTS_TYPE 

Remove Ingress VC 

This function removes an ingress connection.  This is performed through the following steps: 

1. Search the associated binary tree to find the location of the Record within the tree. 

�� If the VC Table Record is the only Record in the tree (Case 1), simply free up the 
memory associated with the VC Table Record and Secondary Tree node. 

�� If there is only one node in the tree pointing to 2 VC Table records (Case 2), free up the 
memory associated with the VC Table Record being deleted.  Modify the root node so 
that both left and right branches point to the other VC Table Record. 

�� If the node is a root node (Case 3), modify the Primary Table to point to the next node 
down instead.  Free up the memory associated with the VC Table Record and old root 
node. 
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�� If the node is in the middle of the tree (Case 4), modify the previous node to point to the 
next node down.  Free up the memory associated with the VC Table Record and old node. 

�� If the node is last in the tree (Case 5), replace the address of the node in the previous node 
with the address of the VC Table Record that is not being removed.  Change the previous 
node’s appropriate ‘Leaf’ bit to a 1. 

4.4.14 Remove Connection 

Pseudocode: 

BYTE ivcRemoveVC( 

UBYTE device,  

IVC_RECORD_TYPE ivcRecord,  

UWORD *ivcAddr) 

{ 

primaryKey=extracted from ivcRecord 

SecondaryKey=extracted from ivcRecord 

 

ivcSearch(device, primaryKey, secondaryKey, &searchResults) 

if not searchResults.matched then return ERROR_IVC_VC_NOT_EXIST 

if not searchResults.root then /* case 4&5 */ 

 ivcRemoveEndNode(device, searchResults) 

else remove some part of the root node 

 if (searchResults.singleBranch = TRUE) then  /* case 1 */ 

  call ivcRemoveSingleBranch(device, searchResults) 

 if not SUCCESS then return error code from 
ivcRemoveSingleBranch() 

 else if (searchResults.finalNode.leftLeaf =1) and  

(searchResult.finalNode.rightLeaf=1) 
then 

  call ivcRemoveDoubleBranch(device, searchResults)  /* case 2 
*/ 

  else (must remove the root node) /* Case 3 */ 

call ivcRemoveRootNode(device, searchResults) 

return SUCCESS 

} 

Parameters: 

�� device Device to access 

�� ivcRecord The VC Table Record to be removed 
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�� ivcAddr The address of the VC Table record to be removed 

4.4.15 Case 1: Removing a Single Branch 

Pseudocode: 

BYTE ivcRemoveSingleBranch( 

UBYTE device,  

IVC_SEARCH_RESULTS_TYPE searchResults) 

{ 

ivcUpdatePrimaryTable() /*unlink the root node*/ 

release the vcRecord 

release the secondaryNode 

return SUCCESS 

} 

Parameters: 

Device  Device to access 

PrimaryKey Key to search in the primary table 

4.4.16 Case 2: Removing From a Double Branch 

Pseudocode: 

BYTE ivcRemoveDoubleBranch( 

UBYTE device,  

UWORD primaryKey, 

IVC_SEARCH_RESULTS_TYPE searchResults) 

{ 

release the vc record 

modifiedNode = searchResults.lastNode (modify the root node) 

 if searchResults.lastDirection = 1 then /*left*/ 

  modifiedNode.rightBranch = modifiedNode.leftBranch 

 else (right) 

  modifiedNode.leftBranch = modifiedNode.rightBranch 

Call ivcUpdateSecondaryTable() /*unlink the old VC record*/ 

} 

Parameters: 
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Device  Device to access 

PrimaryKey Key to search in the primary table 

SearchResults Results from ivcSearch 

4.4.17 Case 3 Removing the Root Node 

Pseudocode: 

BYTE ivcRemoveRootNode( 

UBYTE device,  

IVC_SEARCH_RESULTS_TYPE searchResults) 

{ 

if searchResults.lastDirection = 1 then 

newRoot = searchResults.lastNode.rightBranch 

 else newRoot = searchResults.lastNode.leftBranch 

 

ivcUpdatePrimaryTable() /*point to the new root node*/ 

release the VC record 

release the secondary node 

return SUCCESS 

} 

Parameters: 

Device  Device to access 

SearchResults Results from ivcSearch 

4.4.18 Case 4 & 5: Removing a Node From the End of a Tree 

Pseudocode: 

BYTE ivcRemoveEndNode( 

UBYTE device,  

IVC_SEARCH_RESULTS_TYPE searchResults) 

{ 

if the parent node is a left child of the grandparent /*left*/ 

 newNode.leftLeaf = oldLeaf 

newNode.leftBranch = oldBranch 

else /*right*/ 
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 newNode.rightLeaf = oldLeaf 

newNode.rightBranch = oldBranch 

 

ivcUpdateSecondaryTable() /* modify the grandparent node*/ 

release the vc record 

release the old secondary node 

return SUCCESS 

} 

Parameters: 

Device  Device to access 

SearchResults Results from ivcSearch 

Add Egress VC 

4.4.19 Initialization 

Pseudocode: 

BYTE ivcInitialize(void) 

{ 

evcramWrite() /*clear the active bit of each VC record*/ 

for each vcra 

    gmEvcRecordAddrExists[loopIndex] = FALSE; 

    evcramWrite() to clear the active bit of each VC record 

return SUCCESS 

} 

4.4.20 Add VC 

BYTE evcAddVC( 

UBYTE device,  

EVC_RECORD_TYPE evcRecord,  

UWORD *evcAddr) 

{ 

*evcAddr=(inPhyID+fieldA+fieldB) 

gmevcRecordAddrExists[*evcAddr]=TRUE 

evctableUpdateRecord() to map evcRecord into SRAM 

return SUCCESS 

} 
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Parameters: 

�� device Device to access 

�� evcAddr The address of the VC Record 

�� evcRecord The VC Table Record to be added 

Remove Egress VC 

Pseudocode: 

BYTE evcRemoveVC( 

UBYTE device, 

IVC_RECORD_TYPE evcRecord, 

UWORD *evcAddr) 

{  

*evcAddr=(inPhyID+fieldA+fieldB) 

evcRamWrite() /*clear active bit*/ 

gmEvcRecordAddrExists[*evcAddr] = FALSE 

return SUCCESS 

} 

Parameters: 

�� device Device to access 

�� evcAddr The address of the VC Table removed 

�� evcRecord The VC Table Record to be removed 
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5 Programming OAM 
This section introduces the Operations and Maintenance (OAM) ATM flow and how to enable 
these functions using the PM7324 S/UNI-ATLAS device. 

5.1 OAM Flows 

The OAM functions in the network are performed on five OAM hierarchical levels associated 
with the ATM and physical layers of the protocol reference model.  The functions result in 
corresponding bidirectional information flows on five different levels.  A pictorial explanation of 
the levels is shown in Figure 12 below.  The levels are as follows:  

�� F5, Virtual channel (VCC) level: Extends between network elements performing virtual 
channel connection termination and is shown extending through one or more virtual paths.  

�� F4, Virtual path (VPC) level: Extends between network elements performing virtual path 
connection termination and is shown extending through one or more transmission path. 

�� F3, Transmission path level: Extends between network elements assembling/disassembling 
the payload of a transmission system and associating it with its OAM functions.  

�� F2, Digital section level: Extends between section endpoints and comprises a maintenance 
entity.  

�� F1, Regenerator section level: A regeneration section (e.g. usually SONET optical interface) 
is a portion of a digital section and as such is a maintenance sub-entity.  
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Figure 12 ATM OAM Hierarchical Levels 

Note   

1. The F5 flow does not necessarily extend beyond the end point of F4 flow. 

Levels F1, F2 and F3 are physical layer (SONET) OAM flows, while F4 and F5 flows are the 
ATM layer OAM flows.  ATM Layer OAM flows are necessary, since a virtual connection may 
extend beyond the SONET network.  
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F4 flows refer to OAM flows over a VPC.  F5 flows refer to OAM flows over a VCC.  An OAM 
flow may extetend over the entire connection.  This is called an end-to-end flow.  An OAM flow 
may also cover a portion of the end to end connection.  This is called a segment flow.  Therefore, 
there are four main types of OAM flows: 

�� F4 End-to-end 

�� F4 Segment 

�� F5 End-to-end 

�� F5 Segment 

5.1.1 OAM Cell Format 

Figure 13 below shows an ATM OAM Cell.  The total size of any ATM Cell (including OAM 
cell) is 53 octets.  In the OAM cell, the forty-eight octets of the user payload are replaced with the 
OAM specific data.  

Figure 13 OAM Cell Structure 

The OAM cell is distinguished from a user cell by the VCI (in the case of F4 OAM cells), and the 
PT (in the case of F5 OAM cells).  Table 5 below shows the use of the VCI and PT fields for F4 
and F5 ATM cells.  Table fields related to the OAM cells are highlighted.  

Table 5 Cells at F4 and F5 Flow Level 

F4 F5 

VCI Interpretation PT  Interpretation 
0 Unassigned cell (VPI=0) 000 
0 Unused (VPI>0) 001 

User data cell, congestion not 
experienced 

1 Meta-signaling cell (UNI) 010 
2 General broadcast signaling cell (UNI) 011 

User data cell, congestion 
experienced 

3 Segment OAM F4 flow call 100 Segment OAM F5 flow call 
4 End-to-end OAM F4 flow call 101 End-to-end OAM F5 flow call 
5 Point-to-point signaling cell 110 Resource management cell 
6 Resource management cell 111 Reserved for future use 
7-15 Reserved for future use.  
16-31 Reserved for future use. 
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F4 F5 
>31 Available for user data transmission  

The first byte of the cell payload indicates the OAM cell type and function type.  There are 4 cell 
types defined:  Fault Management (FM), Performance Management (PM), 
Activation/Deactivation (A/D), and System Management (SM).  For each cell type, there are 
several Function Types.  For instance, a FM cell may be AIS, RDI, CC, or LB.  The various OAM 
cell types and function types are detailed in below. 

Table 6 OAM Cell Types and Functions 

OAM Cell Type OAM Function Type Description 
AIS (alarm indication signal) 0000 For reporting defect indications in the 

forward direction 
RDI (remote defect indication) 0001 For reporting remote defect 

indications in the backward direction 
CC (Continuity check) 0100 For continuously monitoring the 

availability of a link 

Fault 
Management 

0001 

LB (Loopback) 1000 For on-demand connectivity 
monitoring, fault localization, and pre-
service connectivity verification 

Forward monitoring 0000 For estimating performance over a link  
or segment of a link 

Performance 
Management 

0010 
Backward reporting 0001 For reporting performance estimations 

on the backward direction 
Performance Management A/D 
Forward Monitoring and 
backward Reporting  

0000 For activation/deactivation of PM 
functionality in a standard way 

Continuity check A/D 0001 For activation/deactivation of CC 
functionality in a standard way 

Activation/ 
Deactivation 

1000 

Forward monitoring A/D 0010 For activation/deactivation of FM 
functionality in a standard way 

System 
Management 

1111 Not specified in I.610 (1998)  

10 bits at the end of the OAM cell are dedicated to the EDC.  The EDC is calculated over the cell 
payload.  The EDC is used protect against erroneous decisions based on corrupted OAM cell 
data.  
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5.1.2 Fault Management Cells 

Figure 14 FM Cell Function Specific Fields 
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AIS and RDI Cells 

AIS cells are used to report defects in the downstream direction.  RDI cells are used to report 
defects in the upstream direction.  An example of the AIS and RDI flow is shown in Figure 15 
below.  



S/UNI-ATLAS Programmer’s Guide and Example Software  
 Released 

 

Proprietary and Confidential to PMC-Sierra, Inc., and for its customers’ internal use.  58 
Document No.: PMC-1980585, Issue 3 

 

Figure 15 AIS and RDI Flow 
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The example shown above has the OAM flows set as follows:  

�� “A” to “F” is an F5 End-to-End flow 

�� “B” to “E” is an F4 End-to-End flow 

�� “C” to “E” is a Segment F4 flow 

�� “D” is a connection point (non-end point to either flow).  

Consider a failure between “C” and “D”.  The network will react as follows:  

�� The failure is detected at “D” .  It may be detected at the physical layer or at the ATM layer. 

�� “D” generates Segment and End-to-End F4 AIS cells downstream once per second.  “D” does 
not generate RDI nor F5 AIS, since it is not an end-point for the F4 or F5 flows.  “D” may 
generate physical layer RDI, if appropriate. 

�� “E” is both a segment and end-to-end flow end point, and therefore terminates both F4 AIS 
cell flows.  In response to the AIS cells, “E” generates F4 Segment and End-to-End RDI cells 
upstream.  Additionally, since E is also a connecting point for the F5 flow, F5 End-to-End 
AIS cells are sent downstream once per second.  
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�� “F” is end-to-end flow end point, and therefore terminates the F5 End-to-End AIS.  In 
response to the AIS, “F” gernerates F5 End-to-End RDI cells upstream.  

�� “E” does not terminate the F5 End-to-End RDI generated at “F”, since it is not an end point 
for the F5 OAM flow.  

�� “D” does not terminate OAM cells since it is not an end point.   

�� “C” terminates the F4 Segment RDI generated by “E”.   

�� “B” terminates the F4 End-to-End RDI generated by “E”.  

�� “A” terminates the F5 End-to-End RDI cells generated by “E”.   

�� “A”, “B” and “C” do not generate any OAM cells related to this connection failure.  

CC Cells 

Continuity failures at the ATM layer are detected using Continuity Check (CC) cells.  Continuity 
check cells are inserted into a connection so the downstream entity may differentiate between a 
loss of continuity and a period of low cell flow. 

Figure 16 CC Flow 
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Connection points (intermediate nodes) in a segment and/or end-to-end OAM flow (F4 and F5) 
can be set to look for the presence of CC cells.  If a lack of user cells and CC cells is detected 
over 3.5 �0.5sec, a network entity may trigger CC alarm, which in turn may activate sending of 
AIS cells downstream.  The CC alarm triggered at the flow end-points may also activate sending 
RDI cells in upstream direction.  

Loopback Cells 

Another type of fault management cell is the loopback cell.  The intent of the loopback cell is to 
determine continuity in a connection after it has been setup, to isolate misconfiguration problems.  
This is a demand service used by network operators.  Examples of loopback flows are shown in 
Figure 17 below.  

Figure 17 Loopback Flow Examples 
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The simplest use of the loopback cell is shown in the top half of Figure 17.  The loopback cell is 
sent from one end of the connection and looped back at the end of the connection. 

A multiple loopback technique can be used to simplify the segment diagnostic process (as shown 
above).  In this case the Loopback Location ID (LLID) field of a cell generated at point “A” is 
filled with all 0’s.  Each connection point in the segment sends the loopback cell back with the 
LLID changed to that node’s ID and loopback indicator (LI) changed to 0.  The loopback cell 
originating point “A” can receive, for example, three cells.  If connection C��D is broken, 
point A receives only two loopback cells back (B anad C).  The segment loopback cell is 
terminated at the segment end point (D). 
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5.1.3 Performance Management Cells 

Performance Management (PM) cells are used to determine the performance of a particular VC.  
PM is generally a demand service initiated by the network operator.  Two types of PM cells are 
defined: forward monitoring and backward reporting.  The function specific fields of the PM cell 
are shown in Figure 18 below. 

Figure 18 PM Cell Function Specific Fields 
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A full description of each field is presented in I.610.  A brief summary is presented below.  

Forward Monitoring 
�� MCSN/FPM Monitoring Cell Sequence Niumber, forward PM 

�� TUC0+1 Total User Cells, CLP0+1  

�� BEDC0+1 Block Error Detection Code, CLP0+1 

�� TUC0 Total User Cells, CLP0 

�� TSTP Timestamp 

Backward Reporting 
�� MCSN/BR Monitoring Cell Sequence Niumber, Backward Monitoring Cell 

�� TUC0+1 Total User Cells, CLP0+1  

�� TUC0 Total User Cells, CLP0 

�� TSTP Timestamp 

�� RMCSN-FM Reported Monitoring Cell Sequence Number, Forward Monitoring Cell 

�� SECBC Severely Errored Cell Block Count 
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�� TRCC0 Total Received Cell Count, CLP0 

�� BLER0+1 Block Error Result, CLP0+1 

�� TRCC0+1 Total Received Cell Count, CLP0+1 

The PM cells are sent at the source point, and terminated and processed at the sink points for 
segment and end-to-end flows on VPCs and VCCs.  The PM cells may also be monitored at 
intermediate nodes.  Unlike FM flows, there is no interaction between the F4 and F5 levels for 
PM flows.  Figure 19 below shows how the PM flow works.  The figure applies to F4 segment, 
F4 end-to-end, F5 segment, and F5 end-to-end flows. 

Figure 19 Example of PM Cell Flow 
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Every n user cells (where n is the block size, defined by I.610), a forward PM cell will be 
generated at the PM source point.  The end point for the PM flow (the “sink”) will terminate the 
PM cell, process the contents, and generate a backward PM cell in response. 

5.1.4 Activation/Deactivation Cells 

The Activation/Deactivation (A/D) process is use to activate and deactivate PM or CC flow 
sessions through the ATM network.  The advantage of the A/D process is that it uses the same 
network that carries user traffic.  At the same time, it may be a major disadvantage.  For instance, 
if a particular connection is not performing well, it may be difficult to reliably pass A/D cells to 
setup a PM session.  

The function specific fields of the A/D cell is shown in Figure 20 below.  
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Figure 20 A/D Cell Function Specific Fields 

A full description of each field is presented in I.610.  A brief summary is presented below. 

�� Message ID Specifies the function of the cell.  Refer to I.610 for the use of the message ID 
field.  

�� Direction of Action Identifies direction(s) of transmission. 

�� Correlation Tag A tag generated for each message, used by nodes to correlate commands 
with responses. 

�� PM Block Size A-B Specifies the A-B block size for forward monitoring. 

�� PM Block Size B-A Specifies the B-A block size required for backward reporting.  The PM 
block size is always 2N, where  7 � N � 15. 

5.2 Configuring the ATLAS for OAM processing 

The ATLAS is capable of supporting all the functions shown in section 5.1.  The sections that 
follow illustrate how to configure the ATLAS.  Where possible, specific examples are given.  No 
attempt is made to perform any type of interrupt processing, as interrupt handling is system 
specific. 

The ATLAS is capable of terminating F4 and F5, segment and end-to-end, OAM flows.  The 
hierarchical level of the cells terminated is determined by the connection type (VPC or VCC).  
The flow type is determined by the configuration of the connection.  This is configured by the bits 
in Table 7 below. 

Table 7 OAM Cell Termination Bits 

VC Table Record 
Field 

Bit Function 

Segment_Point Use this to terminate segment OAM cells  OAM Configuration 
(ingress) End-to-End_Point Use this to terminate end-to-end OAM cells 

Segment_Point Use this to terminate segment OAM cells  OAM Configuration 
(egress) End-to-End_Point Use this to terminate end-to-end OAM cells 
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5.2.1 Fault Management Cell Processing  

The ATLAS can generate segment or end-to-end, AIS, RDI, and CC cells on a per-connection 
basis.  The ATLAS also supports automatic generation of RDI in response to received AIS.  
Additionally, automatic extraction and insertion of defect location and type are supported.  The 
VC table record and normal mode register bits in below are used to configure the fault 
management functions.  AIS and CC cells generated at the ingress are sent to the ingress output 
cell interface, while RDI cells generated at the ingress are sent to the egress output cell interface.  
Conversely,  AIS and CC cells generated at the egress are sent to the egress output cell interface, 
while RDI cells generated at the egress are sent to the ingress output cell interface. 

Table 8 Fault Management Configuration for Ingress 

VC Table Record 
Field or Normal 
Mode Register 

Bit Function 

Send_AIS_segment 
Send_AIS_end-to-end 

Send_RDI_segment 

Send_RDI_end-to-end 

Set these bits to send segment or end-to-end 
AIS or RDI cells.  The cells will be sent once per 
second until the appropriate bit is turned off.  
Send_RDI is not necessary if the AUTORDI and 
CC_RDI functions are enabled.  Send_AIS 
would normally be used at non-end points to 
indicate failures downstream. 

CC_RDI Use this to automatically generate RDI 
upstream upon declaration of a continuity check 
alarm.  RDI cells are only generated at flow end 
points. 

CC_Activate_segment Activates segment continuity checking. 

OAM Configuration  

CC_Activate_end-to-end Activates end-to-end continuity checking. 

Configuration  Defect_Type[3:0] Selects of one of 16 defect types (see registers 
0x226 – 0x22D) 

PHYID[4:0] This should be set to reflect the PHYID of the 
connection. 

Miscellaneous  

Received end-to-end AIS 
defect Location[127:0] 
Received end-to-end AIS 
defect type[7:0] 
Received segment AIS 
defect Location[127:0] 
Received segment AIS 
defect type[7:0] 

When the ATLAS terminates an AIS cell, the 
defect location and type are extracted and 
placed in the VC table.  This information may be 
used to determine the location and nature of the 
fault.  Additionally, the information is used for 
the defect location and type in RDI cells 
generated by the ATLAS using the AUTORDI 
function. 

0x200 AUTORDI Set this bit to automatically generate RDI upon 
termination of an AIS cell. 

0x221 AISCCCP[15:0] AIS and CC cell pacing limits the effects of cell 
generation on the switch fabric.  The setting of 
this register is system specific. 
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VC Table Record 
Field or Normal 
Mode Register 

Bit Function 

0x222 – 0x225 AIS31 – AIS16 
AIS15 – AIS0 
RDI31 – RDI16 
RDI15 – RDI0 

AIS and RDI cells may be generated on a per-
PHY basis.  This would normally be done in the 
event of  a physical layer failure.  Rather than 
set Send_AIS_end-to-end or Send_RDI_end-to-
end for each affected connection, the ATLAS 
will automatically generate AIS or RDI cells on 
PHYx if AISx or RDIx is set. 

0x226 – 0x22D DT0[7:0] – DT15[7:0] The ATLAS can store up to 16 defect types that 
may be used for non-automatic (ie, not as a 
result of AUTORDI) cell generation.  The setting 
of these bits is system specific. 

0x22E – 0x235 DL[127:0] The defect location is inserted into non-
automatic (ie, not as a result of AUTORDI) cell 
generation.  The setting of these registers is 
system specific.  It is expected that this would 
be set to some unique value within the network. 

ForceCC This controls the mode of operation of continuity 
checking.  If CC cells are to be inserted only in 
periods of low user bandwidth, then ForceCC 
should be set to 0.  If CC cells are to be 
inserted regardless of user bandwidth, then this 
bit should be set to 1. 

0x238 

IAISCOPY This should be set if ingress SRAM at 
ISA[19:16]=1010 – 1110 is populated. 

0x23F MAX This should be set to the maximum depth of 
SRAM.  For instance, if 8K VCs are supported, 
this should be set to 0x1FFF. 

0x240 – 0x241 APS31 – APS0 The ATLAS can automatically propogate a 
segment AIS flow into an end-to-end AIS flow at 
a segment end point.  This is performed only if 
APSx=0, and if end-to-end AIS cells are not 
currently being generated.  

Table 9 Fault Management Configuration for Egress 

VC Table Record 
Field or Normal 
Mode Register 

Bit Function 

0x280 AUTORDI Set this bit to automatically generate RDI upon 
termination of an AIS cell. 

ForceCC This controls the mode of operation of continuity 
checking.  If CC cells are to be inserted only in 
periods of low user bandwidth, then ForceCC 
should be set to 0.  If CC cells are to be 
inserted regardless of user bandwidth, then this 
bit should be set to 1. 

0x283 

EAISCOPY This should be set if egress SRAM at 
ESA[19:16]=1xxx is populated. 
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VC Table Record 
Field or Normal 
Mode Register 

Bit Function 

0x286 BCP[15:0] Backward cell interface pacing limits the effects 
of cells from the egress backward cell interface 
on the switch fabric.  The setting of this register 
is system specific. 

0x287 HBTO[15:0] If a PHY at the egress output cell interface fails, 
OAM cells in the egress backward cell interface 
destined for that PHY may cause head of line 
blocking in that FIFO.  The timeout function 
allows those cells to be discarded after 
spending a certain amount of time in the FIFO. 

0x288 AISCCCP[15:0] AIS and CC cell pacing limits the effects of cell 
generation on the PHY.  The setting of this 
register is system specific. 

0x28A - 0x28D AIS15 – AIS0 
AIS31 – AIS16 
RDI15 – RDI0 
RDI31 – RDI16 

AIS and RDI cells may be generated on a per-
PHY basis.  This would normally be done in the 
event of  a physical layer failure.  Rather than 
set Send_AIS_end-to-end or Send_RDI_end-to-
end for each affected connection, the ATLAS 
will automatically generate AIS or RDI cells on 
PHYx if AISx or RDIx is set.  Note that since 
this is a symetric feature in the ATLAS, this 
could equivelently be done at the ingress side 
of an ATLAS on the other side of the switch 
fabric. 

0x28E – 0x28F APS15 – APS0 
APS31 – APS16 

The ATLAS can automatically propogate a 
segment AIS flow into an end-to-end AIS flow at 
a segment end point.  This is performed only if 
APSx=0, and if end-to-end AIS cells are not 
currently being generated. 

0x292 – 0x299 DT0 – DT15 The ATLAS can store up to 16 defect types that 
may be used for non-automatic (ie, not as a 
result of AUTORDI) cell generation.  The setting 
of these bits is system specific. 

0x29A - 0x2A1 DL[15:0] The defect location is inserted into non-
automatic (ie, not as a result of AUTORDI) cell 
generation.  The setting of these registers is 
system specific.  It is expected that this would 
be set to some unique value within the network. 

0x2AA MAX[15:0] This should be set to the maximum depth of 
SRAM.  For instance, if 8K VCs are supported, 
this should be set to 0x1FFF. 

Send_AIS_segment 

Send_AIS_end-to-end 

Send_RDI_segment 

OAM Configurattion  

Send_RDI_end-to-end 

Set these bits to send segment or end-to-end 
AIS or RDI cells.  The cells will be sent once per 
second until the appropriate bit is turned off.  
Send_RDI is not necessary if the AUTORDI 
function is enabled.  Send_AIS would normally 
be used at non-end points to indicate failures 
downstream. 
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VC Table Record 
Field or Normal 
Mode Register 

Bit Function 

CC_RDI Use this to automatically generate RDI 
upstream upon declaration of a continuity check 
alarm.  RDI cells are only generated at flow end 
points. 

CC_Activate_segment Activates segment continuity checking. 

 

CC_Activate_end-to-end Activates end-to-end continuity checking 

Configuration  Defect_Type[3:0] Selects of one of 16 defect types (see registers 
0x292 – 0x299) 

Miscellaneous  PHYID[4:0] This should be set to reflect the PHYID of the 
connection. 

Miscellaneous Received end-to-end AIS 
defect Location[127:0] 
Received end-to-end AIS 
defect type[7:0] 
Received segment AIS 
defect Location[127:0] 
Received segment AIS 
defect type[7:0] 

When the ATLAS terminates an AIS cell, the 
defect location and type are extracted and 
placed in the VC table.  This information may be 
used to determine the location and nature of the 
fault.  Additionally, the information is used for 
the defect location and type in RDI cells 
generated by the ATLAS using the AUTORDI 
function. 

 

When a VPC is terminated and broken into its constituent VCCs, the ATLAS can terminate the F4 
fault management flow and create an F5 flow for each of the VCCs..  Each VCC of the VPC must 
be setup as a separate connection in the Ingress VC Table.   An additional F4 connection must 
also be setup.  Each of the VCCs is configured to have its VPC Pointer[15:0] (in the ingress VC 
table record) point to the SRAM address of the parent VPC.  The parent VPC does not carry any 
user traffic, it only terminates and monitors the F4 OAM flow. below illustrates the process. 
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Figure 21 F4 to F5 Processing (Ingress only) 
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The VC Table Record bits related to the F4-to-F5 AIS cell process are shown in Table 10 below. 

Table 10 VC Table Fields for F4-toF5 Processing  

VC Table Record 
Field 

Bit Function 

F4toF5AIS Set this bit to enable the F4 to F5 process Miscellaneous 

VPC Ponter[15:0] For each connection associated with the VPC, 
the VPC Pointer should be set to the VCRA of 
the parent VPC.  If F4 to F5 processing is not 
required, then the VPC pointer should be set to 
the address of the VCC. 

Configuration (ingress) SegmentFlow This bit should be set if this point (where the 
VPC terminates) is between F5 segment end 
points for this VCC.  That is, the point where the 
VPC terminates is not the origin of the VCC.  
This is the case where the VCC extends beyond 
the end-to-end end points of the VPC. 

 

At the egress side of the ATLAS, the opposite process is performed.  Cells received on each of the 
child VCCs update the parent VPC so that continuity checking is correctly performed.  The F5 to 
F4 process is illustrated in Figure 22 below.  
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Figure 22 F5 to F4 Processing (Egress only) 
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The ATLAS does not automatically support loopback cell operations.  Loopback cells may be 
dropped to the microprocessor cell interface, processed externally, and inserted through the 
microprocessor interface. 

5.2.2 Performance Management Cell Processing 

Figure 19 showed an example of performance management flow between two points.  The flow 
provides coverage of the link between A and B using the forward monitoring flow, with feedback 
over the link from B to A using the backward reporting flow.  In practice, this type of flow is 
duplicated so that there is a forward flow from B to A with a backward reporting flow from A to 
B.  The ATLAS supports this type of operation.  Further, the ATLAS may support this type of 
operation upstream and downstream simultaneously.  That is, the ATLAS may simultaneously 
terminate forward monitoring and backward reporting PM cells at both the ingress and egress 
input cell interfaces, and generate forward monitoring and backward reporting PM cells toward 
both the ingress and egress output cell interfaces.  This can be performed on any 128 of the 
possible 64K connections that the ATLAS supports.  The parameters for each PM session are 
stored in on-chip SRAM. 
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PM RAM RAM Access 

PM RAM is accessed in much the same way as VC Table SRAM.  There are 2 banks of PM RAM 
at the ingress and 2 banks of PM RAM at the egress.  PM RAM access is provided indirectly 
through the microprocessor interface.  Table 11 below lists the registers that are relevant to PM 
RAM accesses in the ATLAS.  For a detailed description of these registers, refer to the S/UNI-
ATLAS Datasheet. 

Table 11 PM RAM Access Registers 

Address Register 
0x211 Ingress Performance Monitoring RAM Record Address 
0x212 Ingress Performance Monitoring RAM Word Select and Access Control 
0x213 - 217 Ingress Performance Monitoring RAM Data 
0x2CE Egress Performance Monitoring RAM Record Address 
0x2CF Egress Performance Monitoring RAM Row Select and Access Control 
0x2D0 Egress Performance Monitoring RAM Write Mask 
0x2D1 – 2D5 Egress Performance Monitoring RAM Data Word 

Unlike the VC Table SRAM, each row of the PM RAM must be accessed individually.  To 
perform a write, execute the following steps: 

1. Check that the BUSY bit in the PM RAM Access Control Register is deasserted.  Do not 
proceed if the BUSY bit is asserted. 

2. Write data to the PM RAM Data Registers for the fields required. 

3. Write the PM RAM address and bank to be accessed to the PM RAM Record Address 
Register. 

4. Perform a write to the PM RAM Access Control Register with the RWB bit set to 0 and PM 
Row[2:0] set to the appropriate value.  This will initiate the access and assert the BUSY bit.  
When the BUSY bit is deasserted, the SRAM access is complete. 

To perform a read, execute the following steps: 

1. Check that the BUSY bit in the PM RAM Access Control Register is deasserted.  Do not 
proceed if the BUSY bit is asserted. 

2. Write the PM RAM address and bank to be accessed to the PM RAM Address Register. 

3. Perform a write to the PM RAM Access Control Register with the RWB bit set to 1 and PM 
Row[2:0] set to the appropriate value.  This will initiate the access and assert the BUSY bit.  
When the BUSY bit is deasserted, the SRAM access is complete. 

4. Read the data from the External RAM Data Registers for the fields required. 
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PM Configuration 

Below VC Table fields and normal mode registers for configuration of PM functions. 

Table 12 PM Configuration 

VC Table Record 
Field or Normal 
Mode Register 

Bit Function 

PM Addr1[6:0] 

PM Addr2[6:0] 

These fields should be programmed with the PM 
RAM address(s) related to this connection.. 

PM Active 1 

Miscellaneous  

PM Active2 

These bits indicate whether the PM Addr1 and PM 
Addr2 are active for this connection.  These bits 
should not be set until all the parameters for the 
PM session are configured.  These fields apply 
equally to both ingress and egress VC Table 
records. 

MERROR[3:0] 0x218, 0x21A, 0x21C, 
0x21E 

MMISINS[11:0] 

0x219, 0x21B, 0x21C, 
0x21F 

MLOST[11:0] 

These registers contain the thresholds required to 
count the errors in PM RAM.  For instance, if 
MMISINS[11:0]=0x10A, then 266 misinserted cells 
would be required in a single PM block to 
increment the SECB Misinserted count by one.  
The setting of these registers is system specific. 

MERROR[3:0] 0x2A2, 0x2A4, 0x2A6, 
0x2A8 

MLOST[11:0] 

0x2A3, 0x2A5, 0x2A7, 
0x2A9 

MMISINS[11:0] 

These registers serve the same function as the 
ingress registers 0x218 – 0x21F. 

0x23E, 0x289 FWDPMP[15:0] As with generated FM cells, forward PM cells may 
also be paced to relieve the switch fabric and PHY 
of the effects of PM cell generation. 

0x23C, 0x23D, 0x284, 
0x285 

F4 and F5 PM Flow PTI 
and VCI Map 

These registers should be left at their default 
values 

 

The PM Configuration & Status Field in the PM RAM Table must be initialized the appropriate 
values.  Table 13 below describes the purpose of each bit in the PM Table configuration field.  
Prior to use, all the fields in the PM Table should be initialized to 0. 

Table 13 PM Table Configuration and Status Field 

Bit Function 
Source_FwdPM Bits 15:14 have the following mapping: 
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Bit Function 
Generate_BwdPM 00: Sink forward and backward PM cells 

01: Source backward PM cells upon receipt of forward PM cells. 
10: Source forward PM cells 
11: Reserved  

F4_F5B Set to 1 if this session is for a VPC.  Set to 0 otherwise. 

ETE_SegB Set to 1 if this is an end-to-end PM flow.  Set to 0 if this is a segment PM flow. 

Force_FwdPM This bit allows this PM session to ignore the forward PM cell pacing register 0x23E 
& 0x289. 

Threshold_Select There are four sets of threshold registers (A1/A2 – D1/D2).  The setting of these 
bits selects which of the four sets is applicable to this PM session.  

Blocksize This should be set to the desired PM block size, using the encoding provided in the 
datasheet.  For instance, this would be set to 0100 for a block size of 2048 cells.  
Small block sizes are not recommended for active connections, as the PM cells 
could then amount to a significant portion of the available user bandwidth.  

Reserved This should be set to 0 initially.  Thereafter, it should not be overwritten.  This can 
be done using the write mask function when performing writes to the PM RAM 

Bwd_PM_Pending 

Fwd_PM0 

Bwd_PM0 

These bits should be initially set to a logic 1.  Thereafter, they should not be 
overwritten.  This can be done using the write mask function when performing 
writes to the PM RAM 

 

5.2.2.1 Setting a PM Flow on an F4 Level to Monitor F5 Levels 

A separate PM flow must be set up for an F4. This PM flow must be pointed to by the F4 OAM 
connection, but in addition it needs to be pointed to by all constituent F5s as well. This means that 
if the constituent F5s are also set up to have PM sessions, the F5 PM sessions are going to need to 
all be in one bank and the F4 PM session in another.  

The following gives an illustration:  

Assume an F4 OAM connection, VCRA d, with three constituent F5s, VCRA a, b, c.  

Each F5 needs its own PM, and also a PM at the F4 level is needed (i.e., total four PM sessions.)  

Set up the F5 PM sessions: bank 1, address 0,1, and 2. Each has F4_F5b = 0.  

Set up the F4 PM session: bank 2, address 0. It has F4_F5b = 1.  

VCRA d, the F4, has PM1 inactive. PM 2 active, PM 2 address 0.  

VCRA a, an F5, has PM1 active, PM1 address 0, PM2 active, PM2 address 0.  

VCRA b, an F5, has PM1 active, PM1 address 1, PM2 active, PM2 address 0.  

VCRA c, an F5, has PM1 active, PM1 address 2, PM2 active, PM2 address 0.  
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5.2.3 System Management Cells 

System management cells are not directly supported by the ATLAS.  Rather, they may be dropped 
to the microprocessor cell interface and processed externally. 

5.2.4 Activate and Deactivate Cells 

Activate and Deactivate cells are not directly supported by the ATLAS.  Rather, they may be 
dropped to the microprocessor cell interface and processed externally. 
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6 Modifying and Running the Example Code 
The following files are packaged in atlas_software_a1.zip: 

Table 14 List of Source Files 

File Name Description 
devRegAccess.h Header file for devRegAccess.c, as described in section 4.4.1.  

devRegAccess.c is not provided. 
atlasRamAccess.h Header file for atlasRamAccess.c, as described in section 4.4.2. 
atlasRamAccess.c Routines for accessing ingress and egress SRAM, as described in section 

4.4.2. 
sramDiag.h Header file for sramDiag.c, as described in section 4.4.3. 
sramDiag.c Routines for performing diagnostics on ingress and egress SRAM, as 

described in section 4.4.3. 
searchModule.h Header file for searchModule.c, as described in section 4.4.4. 
searchModule.c Routines for adding and removing connections, as described in section 4.4.4. 

6.1 Modifications Required 

6.1.1 devRegAccess.h 

The type definitions in this file allow the system independence of the software.  The type 
definitions in this file should be modified to correspond to data types allowed in the system.  In 
addition, error code constants should be modified as desired. 

6.1.2 devRegAccess.c 

Routines will need to be written to allow microprocessor access to the ATLAS.  The routines 
should use the prototypes provided in devRegAccess.h. 

6.1.3 atlasRamAccess.h 

The following constants should be modified to match the particular target system: 

�� IVCRAM_NUM_BUSY_POLL This should be set to the ceiling of 1200ns / minimum uP 
read access time.  For instance, if the shortest microprocessor read access time is 160ns, this 
should be set to 8. 

�� IVCRAM_ROWMASK This should be set to reflect the populated SRAM rows in the 
ingress VC Table Record.  If all rows are populated, then this should be set to 0x7FFF. 

�� EVCRAM_NUM_BUSY_POLL Use the same value as IVCRAM_NUM_BUSY_POLL 

�� EVCRAM_ROWMASK This should be set to reflect the populated SRAM rows in the 
egress VC Table Record.  If all rows are populated, then this should be set to 0xFFFF. 

In addition, error code constants should be modified as desired. 
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6.1.4 sramDiag.h 

The following constants should be modified to match the target system: 

�� IVC_MAX_VC This should reflect the depth of the ingress SRAM.  For 64K VCs, this 
should be set to 0xFFFF. 

�� EVC_MAX_VC This should reflect the depth of the egress SRAM.  For 64K VCs, this 
should be set to 0xFFFF. 

In addition, error code constants should be modified as desired. 

6.1.5 searchModule.h 

The following constants should be modified to match the target system: 

�� IVC_NUM_PRIMARY The number of primary table locations.  This is equal to the 
number of VCs.  For 64K ingress VCs, this should be set to 65536. 

�� IVC_NUM_SECONDARY The number of secondary table locations.  This is equal to the 
number of VCs.  For 64K ingress VCs, this should be set to 65536. 

�� IVC_NUM_RECORDS The number of ingress VCs supported.  This should reflect the 
depth of physical SRAM.  For 64K VCs, this should be set to 65536. 

�� IVC_MAX_PRIMARY_ADDR The maximum primary table address.  For 64K ingress 
VCs, this should be set to 0xFFFF 

�� IVC_MAX_SECONDARY_ADDR The maximum secondary table address.  For 64K ingress 
VCs, this should be set to 0xFFFF 

�� IVC_MAX_RECORD_ADDR The maximum ingress VC table record address.  For 
64K VCs, this should be set to 0xFFFF 

�� EVC_NUM_RECORDS The maximum number of egress VCs supported.  For 64K VCs, 
this should be set to 0xFFFF 

�� EVC_MAX_RECORD_ADDR The maximum egress VC table record address. For 64K 
VCs, this should be set to 0xFFFF 

In addition, error code constants should be modified as desired. 

6.1.6 searchModule.c 

The following global variables should be configured to match the register configuration of the 
ATLAS: 

�� gIvcPrimaryTableUsed Set to 1 if the primary search table is used. 

�� gIvcFieldALength Set to LA, the length of field A for the primary search. 

�� gIvcFieldAMask Mask out unused field A bits.  For instance, if LA=8, then this should be 
set to 0xFF. 
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�� gIvcPhyIDMask Use this to mask out unused PHY ID bits in the primary key.  If LP=2, 
then this should be set to 0x03 

�� gIvcFieldBLength Set to LB, the length of field B for the secondary search. 

�� gIvcFieldBMask Mask out unused field B bits.   

�� gEvcFieldALength The length of field A for the egress lookup. 

�� gEvcFieldAMask Mask out unused field A bits. 

�� gEvcFieldBLength The length of field B for the egress lookup. 

�� gEvcFieldBMask Mask out unused field B bits. 

�� gEvcPhyIDMask Mask out unused PhyID bits for egress lookup. 

6.2 Using the Code 

The software is organized in a hierachical manner, as illustrated in below in Figure 23.  All higher 
layers may make calls to lower layers, but may not access higher layers. 

Figure 23 Software Organization 

User Application 
SRAM Diagnostics (sramDiag.x) Table Maintenance (searchModule.x) 
ivcSramDiag() evcSramDiag() ivcInitialize() 

ivcReadVC() 
ivcAddVC() 
ivcRemoveVC() 

evcInitialize() 
evctableReadRecord() 
evcAddVC() 
evcRemoveVC() 

ATLAS SRAM Access (atlasRamAccess.x) 
ivcramRead() 
ivcramWrite() 

evcramRead() 
evcramWrite() 

ATLAS register Access (devRegAccess.x) 
devRead() 
devWrite() 
devWriteMask() 

devBitHiPoll() 
devBitLowPoll() 

In a typical application, there will be several instances of the ATLAS.  There needs to be one 
instance of the table maintenance routines for each instance of the ATLAS, to be controlled by the 
User Application.  For instance, consider the system in Figure 24. 
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Figure 24 System Using Two ATLASES 

PM7324
S/UNI-ATLAS

#1

PM7324
S/UNI-ATLAS

#2

 

To provision a bidirectional connection through the system, ivcAddVC() and evcAddVC() will 
need to be used to provision the ingress and egress connections on each device.  In order for 
backward OAM cell insertion to work correctly, the ingress and egress VC table record addresses 
must be related as outlined in the ATLAS datasheet.  To accomadate this, the routine ivcAddVC() 
may, as an option, force the ingress VC table record to be located at a particular address.  Since 
the egress cell identification is a direct lookup, the egress VC table address will be fixed by the 
cell contents.  One way to relate the ingress and egress VC table addresses is to make them equal.  
Assuming the HEC and UDF bytes are used as the lookup address on each ATLAS, the following 
steps would be performed by the user application to provision the bidirectional system. 

1. Use ivcAddVC() to provision an ingress connection at address X on ATLAS #1.  Use header 
translation write Y to the HEC and UDF bytes on the outgoing cell. 

2. Use evcAddVC() to provision an egress connection at address Y on ATLAS #2.  Cells 
incoming will use address Y from the HEC and UDF bytes as the direct lookup. 

3. Use ivcAddVC() to provision an ingress connection at address Y on ATLAS #2.  Use header 
translation to write X to the HEC and UDF bytes on the outgoing cell. 

4. Use evcAddVC() to provision an egress connection at address X on ATLAS #1.  Cells 
incoming will use address X from the HEC and UDF bytes as the direct lookup. 
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7 Policing Configuration 

7.1 Setting I and L Parameters 

Example: Assume the following traffic descriptors are required for setting  I and L GCRA 
parameters of a VC table: 

PCR = 353207 cells/s, SCR = 235849 cells/s, MBS = 210 cells, CDVT = 35.390 us, �t = 20 ns  

GCRA1 (PCR):  

I1 = 1/(PCR * �t) = 1/(353207*20e-9) = 142  

Since the most significant 5 bits are exponent (e) and least significant 8 bits are mantissa (m), it needs to be 
mapped to the floating point fields.  

e1 = int[ln(I1)/ln(2)] = int[ln(142)/ln(2)] = 7 = 00111 B  

m1 = [(I1/2^e)-1]*512 = [(142/2^7)-1]*512 = 56 = 000111000 B  

 

L1 = CDVT/(�t) = 35.390e-9/20e-9 = 1770  

e1 = int[ln(L1)/ln(2)] = int[ln(1770)/ln(2)] = 10 = 01010 B  

m1 = [(L1/2^e)-1]*512 = [(1770/2^10)-1]*512 = 373 = 101110101 B 

GCRA 2 (SCR):  

I2 = 1/(SCR * �t) = 1/(235849*20e-9) = 212  

Since the most significant 5 bits are exponent (e) and least significant 8 bits are mantissa (m), it needs to be 
mapped to the floating point fields.  

e2 = int[ln(I2)/ln(2)] = int[ln(212)/ln(2)] = 7 = 00111 B  

m2 = [(I2/2^e)-1]*512 = [(212/2^7)-1]*512 = 336 = 101010000 B  

 

L2 = [(MBS - 1)(1/SCR - 1/PCR)]/( �t) = [(210 - 1)(1/235849 - 1/353207)]/(20e-9) = 14722  

e2 = int[ln(L2)/ln(2)] = int[ln(14722)/ln(2)] = 13 = 01101 B  

m2 = [(L2/2^e)-1]*512 = [(14722/2^13)-1]*512 = 408 = 110011000 B   

In summary: 
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I1 = 00111000111000 Binary = E38 Hex  

L1 = 01010101110101 Binary = 1575 Hex  

I2 = 00111101010000 Binary = F50 Hex  

L2 = 1101110011000 Binary = 1B98 Hex 
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Notes 


