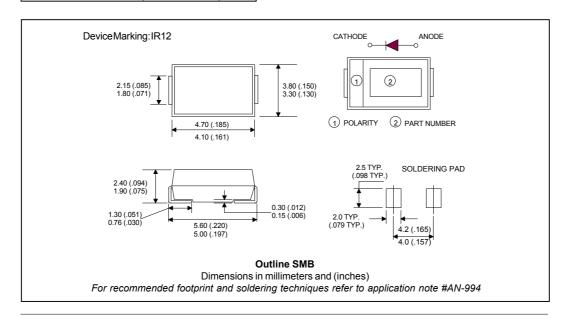

International Rectifier

MBRS120TR

SCHOTTKY RECTIFIER

1 Amp


Major Ratings and Characteristics

Characteri	stics	MBRS120TR	Units
I _{F(AV)} Rectangular waveform		1.0	Α
V _{RRM}		20	V
I _{FSM} @t _p =5	μs sine	310	А
V _F @1.0A _F	ok,T _J =125°C	0.35	V
T _J range		- 65 to 150	°C

Description/Features

The MBRS120TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

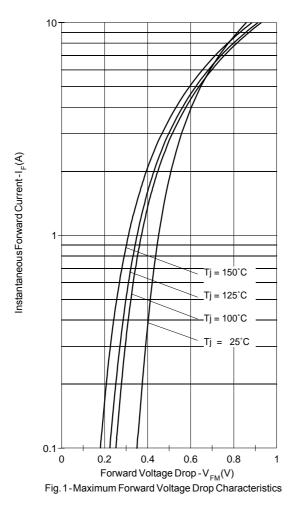
Part number	MBRS120TR		
V _R Max. DC Reverse Voltage (V)	20		
V _{RWM} Max. Working Peak Reverse Voltage (V)			

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50%duty cycle@T _L =138°C, rectangular waveform	
I _{FSM}	Max.PeakOneCycleNon-Repetitive	310		5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	SurgeCurrent	40		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	3	mJ	T _J =25°C,I _{AS} =1A,L=10mH	
I _{AR}	Repetitive Avalanche Current	0.8	Α		

Electrical Specifications

	Parameters	Тур.	Max.	Units	Condition	าร
V _{FM}	Max. Forward Voltage Drop (1)	0.42	0.45	V	@ 1A	T = 25 °C
		0.46	0.52	V	@ 2A	T _J = 25 °C
		0.33	0.37	V	@ 1A	T = 100 °C
		0.39	0.45	V	@ 2A	T _J = 100 °C
		0.30	0.35	V	@ 1A	T = 405 °C
		0.36	0.43	V	@ 2A	T _J = 125 °C
I _{RM}	Max. Reverse Leakage Current (1)	0.015	0.2	mA	T _J = 25 °C	
		2.0	6.0	mA	T _J = 100 °C	V _R = rated V _R
		7.0	20	mA	T _J = 125 °C	
C _T	Typical Junction Capacitance	110	-	pF	V _R = 5V _{DC} (test signal range 100kHz to	
					1Mhz), @ 25°C	
L _S	Typical Series Inductance	2.0	-	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)	


⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max.JunctionTemperatureRange (*)	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-65 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	30	°C/W	DCoperation
R _{thJA}	Max.ThermalResistanceJunction toAmbient		80	°C/W
Wt	ApproximateWeight	0.10(0.003)	gr(oz)	
	Case Style	SMB		Similar DO-214AA
	Device Marking	IR12		

 $[\]frac{f(t)}{dT_j} < \frac{1}{Rth(j-a)}$ thermal runaway condition for a diode on its own heatsink

^(**) Mounted 1 inch square PCB

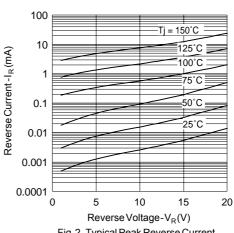


Fig. 2-Typical Peak Reverse Current Vs. Reverse Voltage

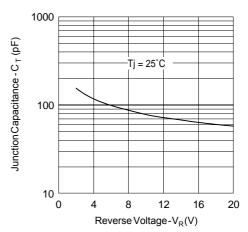


Fig.3-Typical Junction Capacitance Vs. Reverse Voltage

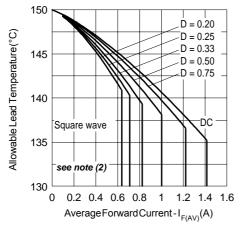


Fig.4-Maximum Average Forward Current Vs. Allowable Lead Temperature

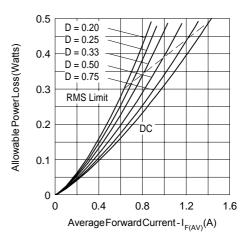


Fig. 5-Maximum Average Forward Dissipation Vs. Average Forward Current

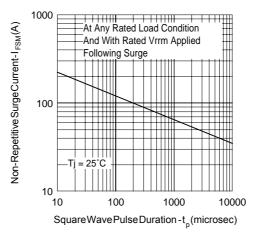
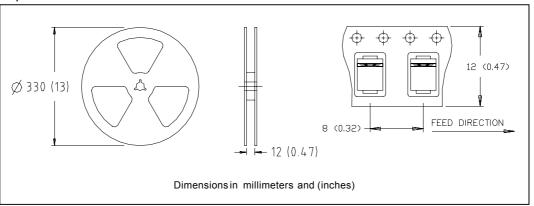



Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$

Bulletin PD-20644 rev. A 02/02

Tape & Reel Information

Marking & Identification

Each device has marking and identification on two rows.

- The first row designates the device as manufactured by International Rectifier as indicated by the letters "IR", then Current and Voltage.
- The second row shows the data code: Year and Week.

See below marking diagram.

FIRST ROW

IR 12

SECOND ROW

Date Code YY WW

Ordering Information

MBRS120TR - TAPE AND REEL

WHENORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS120TR - 6000 PIECES

Data and specifications subject to change without notice.
This product has been designed for Industrial Level.
Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 02/02