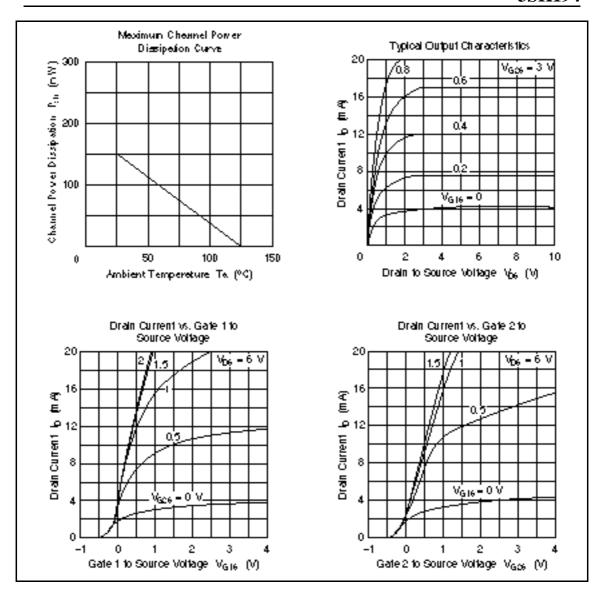

Silicon N-Channel Dual Gate MOS FET

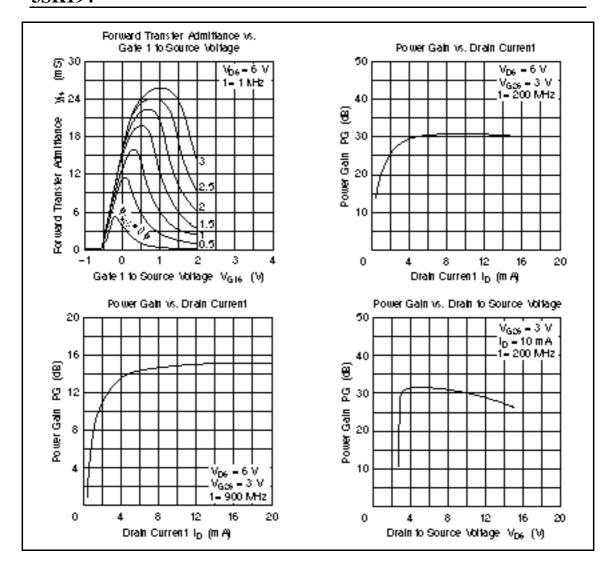
HITACHI

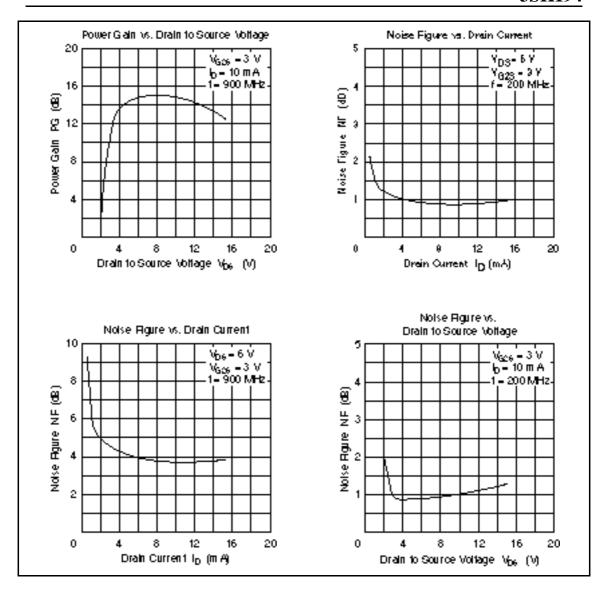
Application

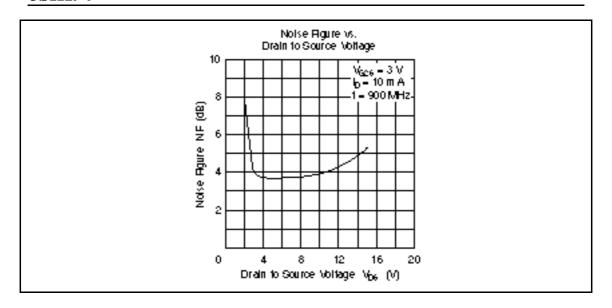
VHF/UHF TV tuner RF amplifier

Outline


Absolute Maximum Ratings ($Ta = 25^{\circ}C$)


Item	Symbol	Ratings	Unit
Drain to source voltage	V _{DS}	15	V
Gate 1 to source voltage	V _{G1S}	±10	V
Gate 2 to source voltage	$V_{\rm G2S}$	±10	V
Drain current	I _D	35	mA
Channel power dissipation	Pch	150	mW
Channel temperature	Tch	125	°C
Storage temperature	Tstg	-55 to +125	°C


Electrical Characteristics ($Ta = 25^{\circ}C$)


$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Item	Symbol	Min	Тур	Max	Unit	Test conditions
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$V_{(BR)DSX}$	15	_	_	V	
		$V_{(BR)G1SS}$	±10	_	_	V	$I_{G1} = \pm 10 \ \mu A, \ V_{G2S} = V_{DS} = 0$
		$V_{(BR)G2SS}$	±10	_	_	V	$I_{G2} = \pm 10 \ \mu A, \ V_{G1S} = V_{DS} = 0$
	Gate 1 cutoff current	I _{G1SS}	_	_	±100	nA	$V_{G1S} = \pm 8 \text{ V}, V_{G2S} = V_{DS} = 0$
	Gate 2 cutoff current	I _{G2SS}	_	_	±100	nA	$V_{G2S} = \pm 8 \text{ V}, V_{G1S} = V_{DS} = 0$
Drain current I D = 100 μA Poward transfer admittance I D = 10 mA I D = 10 mA <td>Gate 1 to source cutoff voltage</td> <td>$V_{\text{G1S(off)}}$</td> <td>_</td> <td>_</td> <td>-1.0</td> <td>V</td> <td>020</td>	Gate 1 to source cutoff voltage	$V_{\text{G1S(off)}}$	_	_	-1.0	V	020
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate 2 to source cutoff voltage	$V_{\text{G2S(off)}}$	_	_	-1.5	V	20
	Drain current	I _{DSS}	0	_	10	mA	$V_{DS} = 6 \text{ V}, V_{G1S} = 0, V_{G2S} = 3 \text{ V}$
	Forward transfer admittance	y _{fs}	17	_	_	mS	
	Input capacitance	Ciss	_	2.8	3.5	pF	50 . 020
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output capacitance	Coss	_	1.8	2.5	pF	
Noise figure NF — 3.0 4.5 dB Noise figure NF — 3.0 4.0 dB $V_{DD} = 12 \text{ V}, V_{AGC} = 10.5 \text{ V}, f = 60 \text{ MHz}$ Power gain PG 27 30 — dB $V_{DS} = 6 \text{ V}, V_{G2S} = 3 \text{ V}, I_{D} = 10 \text{ mA}, f = 200 \text{ MHz}$	Reverse transfer capacitance	Crss	_	0.02	_	pF	
Noise figure NF — 3.0 4.0 dB $V_{DD} = 12 \text{ V}, V_{AGC} = 10.5 \text{ V}, f = 60 \text{ MHz}$ Power gain PG 27 30 — dB $V_{DS} = 6 \text{ V}, V_{G2S} = 3 \text{ V}, I_{D} = 10 \text{ mA}, f = 200 \text{ MHz}$	Power gain	PG	12	15	_	dB	020
Power gain PG 27 30 — dB $V_{DS} = 6 \text{ V}, V_{G2S} = 3 \text{ V}, I_{D} = 10 \text{ mA}, f = 200 \text{ MHz}$	Noise figure	NF	_	3.0	4.5	dB	_
$I_D = 10 \text{ mA}, f = 200 \text{ MHz}$	Noise figure	NF	_	3.0	4.0	dB	7.00
Noise figure NF — 1.0 2.5 dB	Power gain	PG	27	30	_	dB	
	Noise figure	NF	_	1.0	2.5	dB	-

Note: Marking is "IY-".

When using this document, keep the following in mind:

- 1. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

HITACHI

Hitachi, Ltd.
Semiconductor & IC Div.
Neppon Bidg., 2-5-2, Ohte-medii, Chiyode-ku, Tokyo 100, Jepen Tet Tokyo (03, 3270-2111
Fex. (03, 3270-5109

For further in formation write to: Histori America, Utd. Semiconductor & IC Dv. 2000 Sierre Point Perkway Briebene, CA. 94005-1835 U.S.A. Tet 445-589-8300

Fax: 415-583-4207

Hitechi Burope GmbH
Bedronic Componente Group
Continentel Burope
Dornecher Streife 3
D-85622 Feldkirchen
München
Tet 089-9 94 80-0
Fex: 089-9 29 30 00

Hitachi Burope Ltd.
Bedronie Componenta Div.
Northern Burope Headquerters
Whitebrook Ferk
Lower Cook ham Road
Maidenhead
Berkehire SL68YA
United Kingdom
Tet 0628-855000
Fex 0628-778322

Hitachi Asia Pta, Ltd 45 Collyer Quay \$20-00 Hitachi Tower Snappore 0404 Tet 535-2400 Fex: 535-4533

Hitachi Asia (Hong Kong) Ltd. Unit 705, North Towar, World Finance Centre, Harbour City, Centon Road Taim She Talui, Kowloon Hong Kong Tet 27350218 Fax: 27306074