6811

PRELIMINARY INFORMATION (subject to change without notice) August 17, 1998

ABSOLUTE MAXIMUM RATINGS at T_Δ = 25°C

Logic Supply Voltage, V _{DD} 7.0 V
Driver Supply Voltage, V_{BB} 60 V
Continuous Output Current Range,
I _{OUT} 40 mA to +15 mA
Input Voltage Range,
V _{IN} 0.3 V to V _{DD} + 0.3 V
Package Power Dissipation,
P _D See Graph
Operating Temperature Range, T _A
(Suffix 'E-')40°C to +85°C
(Suffix 'K–')40°C to +125°C
(Suffix 'S–')20°C to +85°C
Storage Temperature Range,
T _S 55°C to +125°C
-

Caution: These CMOS devices have input static protection (Class 2) but are still susceptible to damage if exposed to extremely high static electrical charges.

DABiC-IV, 12-BIT SERIAL-INPUT, LATCHED SOURCE DRIVER

The A6811- devices combine a 12-bit CMOS shift register, accompanying data latches and control circuitry with bipolar sourcing outputs and pnp active pull downs. Designed primarily to drive vacuumfluorescent displays, the 60 V and -40 mA output ratings also allow these devices to be used in many other peripheral power driver applications. The A6811- features an increased data input rate (compared with the older UCN/UCQ5811A) and a controlled output slew rate.

The CMOS shift register and latches allow direct interfacing with microprocessor-based systems. With a 3.3 V or 5 V logic supply, typical serial-data input rates are up to 33 MHz.

A CMOS serial data output permits cascade connections in applications requiring additional drive lines. Similar devices are available as the A6809- and A6810- (10 bits), A6812- (20 bits), and A6818- (32 bits).

The A6811- output source drivers are npn Darlingtons, capable of sourcing up to 40 mA. The controlled output slew rate reduces electromagnetic noise, which is an important consideration in systems that include telecommunications and/or microprocessors and to meet government emissions regulations. For inter-digit blanking, all output drivers can be disabled and all sink drivers turned on with a BLANK-ING input high. The pnp active pull-downs will sink at least 2.5 mA.

Three temperature ranges are available for optimum performance in commercial (suffix S-), industrial (suffix E-), or automotive (suffix K-) applications. Package styles are provided for through-hole DIP (suffix -A) and surface-mount SOIC or PLCC (suffix -LW or -EP). Copper lead frames, low logic-power dissipation, and low output-saturation voltages allow all devices to source 25 mA from all outputs continuously at up to 83°C or 5 mA over the maximum operating temperature range.

FEATURES

- High-Speed Data Storage
- 60 V Minimum
- Output Breakdown High Data Input Rate
- PNP Active Pull-Downs
- Controlled Output Slew Rate Low Output-Saturation Voltages
 - Low-Power CMOS Logic and Latches
 - Improved Replacements for SN75512B, UCN5811-, and UCQ5811-

Complete part number includes a suffix to identify operating temperature range (E-, K-, or S-) and package type (-A, -EP, or -LW). Always order by complete part number, e.g., A6811SLW .

A6811xEP

TYPICAL INPUT CIRCUIT

Dwg. EP-010-5

TYPICAL OUTPUT DRIVER

A6811xLW

Dwg. PP-029-6

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 Copyright © 1998, Allegro MicroSystems, Inc.

Serial	Shift Register Contents			Serial		Latch Contents						Output Contents									
Data Input	Clock Input	I ₁	I ₂	I ₃	 I _{N-1}	I _N	Data Output	Strobe Input	I ₁	I ₂	I ₃		I _{N-1}	I _N	Blanking	I ₁	l ₂	I ₃		I _{N-1}	I _N
н	_	н	R_1	R_2	 R _{N-2}	R _{N-1}	R _{N-1}														
L	Г	L	R ₁	R_2	 R _{N-2}	R _{N-1}	R _{N-1}														
Х	l	R ₁	R_2	R_3	 R _{N-1}	R _N	R _N														
		х	Х	Х	 Х	Х	х	L	R ₁	R_2	R_3		R _{N-1}	R _N							
		Р ₁	P_2	P_3	 P _{N-1}	P_{N}	P _N	Н	P ₁	P_2	P ₃		P _{N-1}	P _N	L	Р ₁	Pź	₂ P ₃		P _{N-1}	P _N
									Х	Х	Х		Х	Х	Н	L	L	L		L	L

TRUTH TABLE

L = Low Logic Level H = High Logic Level X = Irrelevant P = Present State R = Previous State

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$ (A6811S-) or over operating temperature range (A6811E- and A6811K-), $V_{BB} = 60$ V unless otherwise noted.

			Limits	6 @ V _{DD}	= 3.3 V	Limit			
Characteristic	Symbol	Test Conditions	MIn.	Тур.	Max.	Min.	Тур.	Max.	Units
Output Leakage Current	ICEX	V _{OUT} = 0 V	-	<-0.1	-15	-	<-0.1	-15	μΑ
Output Voltage	V _{OUT(1)}	I _{OUT} = -25 mA	57.5	58.3	_	57.5	58.3	_	V
	V _{OUT(0)}	I _{OUT} = 1 mA	-	1.0	1.5	-	1.0	1.5	V
Output Pull-Down Current	I _{OUT(0)}	$V_{OUT} = 5 V \text{ to } V_{BB}$	2.5	5.0	_	2.5	5.0		mA
Input Voltage	V _{IN(1)}		2.2	—	—	3.3	—	—	V
	V _{IN(0)}		-		1.1	-		1.7	V
Input Current	I _{IN(1)}	$V_{IN} = V_{DD}$	-	<0.01	1.0	-	<0.01	1.0	μΑ
	I _{IN(0)}	V _{IN} = 0 V	-	<-0.01	-1.0	-	<-0.01	-1.0	μA
Input Clamp Voltage	V _{IK}	I _{IN} = -200 μA	-	-0.8	-1.5	-	-0.8	-1.5	V
Serial Data Output Voltage	V _{OUT(1)}	I _{OUT} = -200 μA	2.8	3.05	—	4.5	4.75	—	V
	V _{OUT(0)}	I _{OUT} = 200 μA	-	0.15	0.3	-	0.15	0.3	V
Maximum Clock Frequency	f _c		10	33	_	10	33	—	MHz
Logic Supply Current	I _{DD(1)}	All Outputs High		0.25	0.75	_	0.3	1.0	mA
	I _{DD(0)}	All Outputs Low	-	0.25	0.75	-	0.3	1.0	mA
Load Supply Current	I _{BB(1)}	All Outputs High, No Load	-	1.7	3.5	-	1.7	3.5	mA
	I _{BB(0)}	All Outputs Low	—	0.2	20	—	0.2	20	μΑ
Blanking-to-Output Delay	t _{dis(BQ)}	C _L = 30 pF, 50% to 50%	-	0.7	2.0	-	0.7	2.0	μs
	t _{en(BQ)}	C _L = 30 pF, 50% to 50%	-	1.8	3.0	-	1.8	3.0	μs
Strobe-to-Output Delay	t _{p(STH-QL)}	R_{L} = 2.3 k Ω , C_{L} \leq 30 pF	-	0.7	2.0	-	0.7	2.0	μs
	t _{p(STH-QH)}	R_{L} = 2.3 k Ω , C_{L} \leq 30 pF	_	1.8	3.0	_	1.8	3.0	μs
Output Fall Time	t _f	R_{L} = 2.3 k Ω , C_{L} \leq 30 pF	2.4	—	12	2.4		12	μs
Output Rise Time	t _r	R_{L} = 2.3 k Ω , C_{L} \leq 30 pF	2.4	—	12	2.4	—	12	μs
Output Slew Rate	dV/dt	$R_L = 2.3 \text{ k}\Omega, C_L \leq 30 \text{ pF}$	4.0		20	4.0	_	20	V/µs
Clock-to-Serial Data Out Delay	t _{p(CH-SQX)}	I _{OUT} = ±200 μA	_	50	—	_	50	_	ns

Negative current is defined as coming out of (sourcing) the specified device terminal.

Typical data is is for design information only and is at $T_A = +25$ °C.

TIMING REQUIREMENTS and SPECIFICATIONS

A. Data Active Time Before Clock Pulse

(Data Set-Up Time), t _{su(D)}	25 ns
B. Data Active Time After Clock Pulse	
(Data Hold Time), t _{h(D)}	25 ns
C. Clock Pulse Width, $t_{w(CH)}$	50 ns
D. Time Between Clock Activation and Strobe, $t_{\text{su}(C)} \dots \dots 1$	100 ns
E. Strobe Pulse Width, $t_{w(\text{STH})}$	50 ns
NOTE – Timing is representative of a 10 MHz clock. Signicantly higher speeds are attainable.	ifi-

Serial Data present at the input is transferred to the shift register on the logic "0" to logic "1" transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform. Information present at any register is transferred to the respective latch when the STROBE is high (serial-toparallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the BLANKING input be high during serial data entry.

When the BLANKING input is high, the output source drivers are disabled (OFF); the pnp active pull-down sink drivers are ON. The information stored in the latches is not affected by the BLANKING input. With the BLANK-ING input low, the outputs are controlled by the state of their respective latches.

A6811EA, A6811KA, & A6811SA

Dimensions in Inches (controlling dimensions)

Dimensions in Millimeters (for reference only)

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

- Lead spacing tolerance is non-cumulative.
 Lead thickness is measured at seating plane or below.

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000

A6811EEP, A6811KEP, & A6811SEP

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

2. Lead spacing tolerance is non-cumulative.

A6811ELW, A6811KLW, & A6811SLW

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

2. Lead spacing tolerance is non-cumulative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000