

Features

- Operating voltage: 2V~12V
- Low power consumption
- Built-in oscillator needs only 5% resistor
- 0/2/4/8 data selectable
- 2²⁴ maximum address and data codes
- Easy interface with an RF or IR medium
- One time programmable process
- Data active: D0~D7
- Minimal external components
- HT6P20A/B: 8-pin DIP/SOP package HT6P20D: 16-pin DIP/NSOP package

- Applications
- Burglar alarm system
- · Smoke and fire alarm system
- Garage door controllers
- Car door controllers

- · Security system
- · Cordless telephones
- Other remote control systems

General Description

The HT6P20X is a CMOS LSI encoder designed for remote control system applications. It encodes 24 bits of information and then serially transmits it via the DOUT pin upon receipt of transmission enable (DATA pins: D0~D7) signals. The combination of address and data bits of the HT6P20X is designed using one time programmable process. In addition, the chip offers various packaging for flexible combination of programmable address/data so as to meet various applications. Its programmable address/data is transmitted together with the anti-code bits via RF or infrared transmission medium upon receipt of a trigger signal.

Block Diagram

Note: Address/Data numbers are available in various combinations, refer to the functional description.

Pin Assignment

Pin Description

HT6P20D Internal Pin No. Pin Name I/O Description Connection CMOS IN 16 Data input and transmission enable (active low) D0~D3 L 1~3 Pull-high They can be externally set to VSS or left open. 4 VSS Negative power supply, ground ____ ____ 5~8 NC No connection _ ____ OSC2 0 9 OSCILLATOR Oscillator output pin 10 OSC1 L OSCILLATOR Oscillator input pin 11 DOUT 0 CMOS OUT Data serial transmission output 12 VDD Positive power supply VPP 13 T ____ Programming power supply, V_{DD} for normal operation CMOS Programming address/control code input and mode code output for I/O 14 SIO IN/OUT mode verification CMOS IN PGM 15 I Program mode control pin, active low Pull-high

Approximate internal connection circuits

Ta=25°C

Absolute Maximum Ratings

Supply Voltage	V _{SS} –0.3V to V _{SS} +12V	Storage Temperature	–50°C to 125°C
Input Voltage	.V _{SS} –0.3V to V _{DD} +0.3V	Operating Temperature	.–20°C to 75°C

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

Symbol Parameter		Test Conditions		Min	T	Marr	11 14	
		V _{DD}	Conditions		тур.	wax.	Unit	
V _{DD}	Operating Voltage			_	2		12	V
I _{STB}	Standby Current		12V	Oscillator stops	_	1	2	μA
I _{DD}	Operating Curren	ıt	12V	No load, f _{OSC} =3kHz	_	200	400	μA
VIH	"H" Input Voltage	•	_	_	0.8V _{DD}	_	V _{DD}	V
VIL	"L" Input Voltage		_	—	0	_	$0.2V_{DD}$	V
R _{PH}	R _{PH} D0~D7 Pull-high Resistance		12V		_	150	300	kΩ
			5V	0.9V _{DD}	-2	-5	_	mA
	IDOUT Output Current Sink	Source	12V	0.9V _{DD}	-6.5	-15		mA
IDOUT		0.1	5V	0.1V _{DD}	2	5	_	mA
		SINK	12V	0.1V _{DD}	6	15		mA
fosc	SC Oscillator Frequency		12V	R _{OSC} =1.4MΩ	_	3	_	kHz

Functional Description

Normal Operation

The HT6P20X encodes and transmits address/data to a decoder upon receipt of a trigger signal. The address codes of the HT6P20A are always transmitted as long as power (VDD) is supplied. The transmission function of the HT6P20B/D is enabled by the D0~D7 pins (active low). The following is the transmission timing of the HT6P20X:

A complete code word of the HT6P20D consists of 3 periods as shown below.

The HT6P20A/B/D detects the logic state of the internal programmed address and the external data pins, and then transmits the detected information during the code period. Each address/data bit can be set to one of the following two logic states:

Flowchart

Application Circuits

Note: In order to prevent the IC from getting damaged due to the latch up, the 100Ω resistor or the LED which can also be a transmission indicator is indispensible when V_{DD}=9V~12V.

Package Information

8-pin DIP (300mil) Outline Dimensions

Symbol	Dimensions in mil			
Symbol	Min.	Nom.	Max.	
A	355		375	
В	240	_	260	
С	125	_	135	
D	125		145	
E	16	_	20	
F	50	_	70	
G	_	100	_	
н	295		315	
I	335	—	375	
α	0°		15°	

16-pin DIP (300mil) Outline Dimensions

Symbol	Dimensions in mil			
	Min.	Nom.	Max.	
A	745	_	775	
В	240	_	260	
С	125	_	135	
D	125		145	
E	16	_	20	
F	50		70	
G	_	100	_	
Н	295	_	315	
I	335		375	
α	0°		15°	

8-pin SOP (150mil) Outline Dimensions

Symbol	Dimensions in mil			
	Min.	Nom.	Max.	
A	228		244	
В	149	_	157	
С	14	_	20	
C′	189		197	
D	53	_	69	
E	_	50	—	
F	4	_	10	
G	22		28	
Н	4	_	12	
α	0°		10°	

16-pin NSOP (150mil) Outline Dimensions

Symbol	Dimensions in mil			
	Min.	Nom.	Max.	
A	228		244	
В	149	_	157	
С	14	_	20	
C'	386		394	
D	53	_	69	
E		50	_	
F	4		10	
G	22	_	28	
Н	4	—	12	
α	0°		10°	

Product Tape and Reel Specifications

Reel Dimensions

SOP 8N

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
с	Spindle Hole Diameter	13.0+0.5 _0.2
D	Key Slit Width	2.0±0.15
T1	Space Between Flange	12.8+0.3 0.2
T2	Reel Thickness	18.2±0.2

SOP 16N (150mil)

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
с	Spindle Hole Diameter	13.0+0.5 _0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	16.8+0.3 0.2
T2	Reel Thickness	22.2±0.2

Carrier Tape Dimensions

P 8N				
Symbol	Description	Dimensions in mm		
W	Carrier Tape Width	12.0+0.3 _0.1		
Р	Cavity Pitch	8.0±0.1		
Е	Perforation Position	1.75±0.1		
F	Cavity to Perforation (Width Direction)	5.5±0.1		
D	Perforation Diameter	1.55±0.1		
D1	Cavity Hole Diameter	1.5+0.25		
P0	Perforation Pitch	4.0±0.1		
P1	Cavity to Perforation (Length Direction)	2.0±0.1		
A0	Cavity Length	6.4±0.1		
B0	Cavity Width	5.20±0.1		
K0	Cavity Depth	2.1±0.1		
t	Carrier Tape Thickness	0.3±0.05		
С	Cover Tape Width	9.3		

NSOP 16N

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	16.0±0.3
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	7.5±0.1
D	Perforation Diameter	1.55+0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.5±0.1
B0	Cavity Width	10.3±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.3±0.05
С	Cover Tape Width	13.3

Holtek Semiconductor Inc. (Headquarters)

No.3, Creation Rd. II, Science-based Industrial Park, Hsinchu, Taiwan Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Sales Office)

11F, No.576, Sec.7 Chung Hsiao E. Rd., Taipei, Taiwan Tel: 886-2-2782-9635 Fax: 886-2-2782-9636 Fax: 886-2-2782-7128 (International sales hotline)

Holtek Semiconductor (Shanghai) Inc. 7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor (Hong Kong) Ltd.

Block A, 3/F, Tin On Industrial Building, 777-779 Cheung Sha Wan Rd., Kowloon, Hong Kong Tel: 852-2-745-8288 Fax: 852-2-742-8657

Holmate Semiconductor, Inc. 46712 Fremont Blvd., Fremont, CA 94538 Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2003 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.