

Functional Block Diagram

HIGH-SPEED 3.3V 32K x 8 SYNCHRONOUS PIPELINED DUAL-PORT STATIC RAM

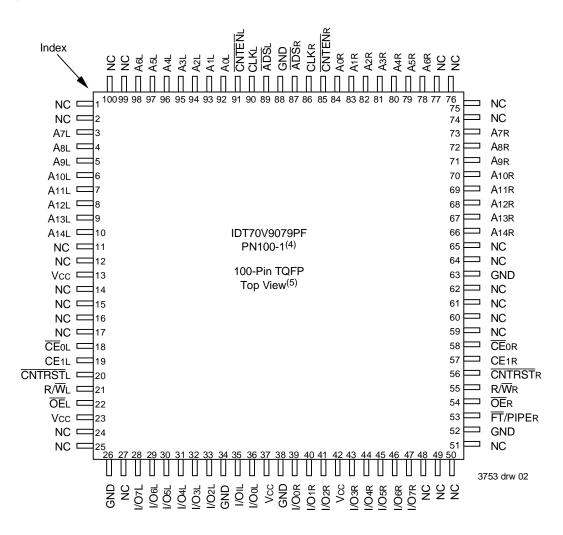
Features:

 True Dual-Ported memory cells which allow simultaneous additional logic access of the same memory location ٠ Full synchronous operation on both ports High-speed clock to data access 4ns setup to clock and 1ns hold on all control, data, and - Commercial: 9/12/15ns (max.) address inputs Low-power operation - Data input, address, and control registers - IDT70V9079S Fast 9ns clock to data out in the Pipelined output mode _ - Self-timed write allows fast cycle time Active: 429mW (typ.) - 15ns cycle time, 66MHz operation in the Pipelined output mode Standby: 3.3mW (typ.) - IDT70V9079L Separate upper-byte and lower-byte controls for Active: 429mW (typ.) multiplexed bus and bus matching compatibility Standby: 1.32mW (typ.) LVTTL- compatible, single 3.3V (±0.3V) power supply * Flow-Through or Pipelined output mode on Right Port via ٠ Industrial temperature range (-40°C to +85°C) is the FT/PIPER pin available for selected speeds Counter enable and reset features ٠ Available in a 100 pin Thin Quad Flatpack (TQFP) Dual chip enables allow for depth expansion without

3753 drw 01

JUNE 1999

©1999 Integrated Device Technology, Inc.


DSC 3753/4

High Speed 3.3V 32K x 8 Synchronous Pipelined Dual-Port Static RAM

Description:

The IDT70V9079 is a high-speed 32K x 8 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V9079 has been optimized for applications having unidirectional or bidirectional data flow in bursts. An automatic power down feature, controlled by CE0 and CE1, permits the on-chip circuitry of each port to enter a very LOW standby power mode. Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 429mW of power.

Pin Configurations^(1,2,3)

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply.
- 3. Package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Pin Names

Left Port	Right Port	Names
\overline{CE} 0L, CE1L	\overline{CE} OR, CE1R	Chip Enables
R/WL	R/WR	Read/Write Enable
ŌĒL	ŌĒR	Output Enable
Aol - A14L	A0R - A14R	Address
1/O0L - 1/O7L	1/00r - 1/07r	Data Input/Output
CLKL	CLKR	Clock
AD SL	ADSR	Address Strobe
	CNTEN R	Counter Enable
	CNTRST R	Counter Reset
	FT/PIPER	Flow-Through/Pipeline
V	CC	Power
G	ND	Ground

3753 tbl 01

Truth Table I—Read/Write and Enable Control $^{(1,2,3)}$

ŌĒ	CLK	CE ₀	CE1	R/₩	I/O0-7	Mode
Х	←	Н	Х	Х	High-Z	Deselected
Х	\uparrow	Х	L	Х	High-Z	Deselected
Х	Ŷ	L	Н	L	DATAIN	Write
L	Ŷ	L	Н	Н	DATAOUT	Read
Н	Х	L	Н	Х	High-Z	Outputs Disabled
						3753 tbl 02

NOTES:

1. "H" = VIH, "L" = VIL, "X" = Don't Care.

2. \overline{ADS} , \overline{CNTEN} , $\overline{CNTRST} = X$.

3. $\overline{\text{OE}}$ is an asynchronous input signal.

Truth Table II—Address Counter Control^(1,2)

Address	Previous Address	CLK	ADS	CNTEN	CNTRST	I/O ⁽³⁾	Mode
Х	Х	\uparrow	Н	Н	L	DATA <i>i</i> /O(0)	Counter Reset to Address 0
An	Х	\uparrow	L ⁽⁴⁾	Н	Н	DATA⊮o(n)	External Address Utilized
Х	An	Ŷ	Н	Н	Н	DATA//O(n)	External Address Blocked—Counter Disabled
Х	An	\uparrow	Н	L ⁽⁵⁾	Н	DATA∛O(n+1)	Counter Enable—Internal Address Generation

NOTES:

1. "H" = VIH, "L" = VIL, "X" = Don't Care.

2. \overline{CE}_0 and \overline{OE} = VIL; CE1 and R/W = VIH.

3. Outputs configured in Flow-Through Output mode; if outputs are in Pipelined mode the data out will be delayed by one cycle.

4. $\overline{\text{ADS}}$ is independent of all other signals including $\overline{\text{CE}}_0$ and CE1.

5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other signals including CE0 and CE1.

Recommended Operating Temperature and Supply Voltage^(1,2)

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	0V	3.3V <u>+</u> 0.3V
Industrial	-40°C to +85°C	0V	3.3V <u>+</u> 0.3V

NOTES:

1. This is the parameter TA.

Industrial temperature: for specific speeds, packages and powers contact your sales office.

Recommend DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
GND	Ground	0	0	0	V
V⊪	Input High Voltage	2.2		Vcc + 0.3V ⁽²⁾	V
Vil	Input Low Voltage	-0.3(2)		0.8	V

NOTES:

3753 tbl 04

3753 tbl 06

1. VTERM must not exceed Vcc +0.3V.

2. VIL \geq -1.5V for pulse width less than 10ns.

Absolute Maximum Ratings⁽¹⁾

Symbol	Rating	Commercial & Industrial	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Ιουτ	DC Output Current	50	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc +0.3V for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 0.3V.

Capacitance (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions ⁽²⁾	Max.	Unit	
Cin	Input Capacitance	Vin = 3dV	9	pF	
Cout ⁽³⁾	Output Capacitance	Vout = 3dV	10	pF	
3753 tbl 0					

NOTES:

1. These parameters are determined by device characterization, but are not production tested.

2. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V.

3. COUT also references CI/O.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 3.3V ± 0.3V)

			70V9079S		70V9		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current ⁽¹⁾	Vcc = 3.3V, VIN = 0V to Vcc	_	10		5	μA
llo	Output Leakage Current	\overline{CE} 0 = VIH or CE1 = VIL, VOUT = 0V to VCC	_	10	-	5	μA
Vol	Output Low Voltage	lol = +4mA	_	0.4	-	0.4	V
Vон	Output High Voltage	юн = -4mA	2.4	_	2.4		V

NOTE:

1. At Vcc \leq 2.0V input leakages are undefined.

3753 tbl 08

3753 tbl 09

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(6,7)}$ (Vcc = 3.3V ± 0.3V)

						79X9 Only	70V90 Com'l		70V90 Com'l		
Symbol	Parameter	Test Condition	Versi	on	Typ. ⁽⁴⁾	Max.	Тур. ⁽⁴⁾	Max.	Тур. ⁽⁴⁾	Max.	Unit
lcc	Dynamic Operating Current (Both Ports Active)	CEL and CER = VIL Outputs Open f = fMAX ⁽¹⁾	COM'L	S L	180 180	260 225	150 150	240 205	130 130	220 185	mA
			IND	S L							
ISB1	Standby Current (Both Ports - TTL Level Inputs)	CEL and CER = V⊪ f = fMAX ¹⁾	COM'L	S L	50 50	75 65	40 40	65 50	30 30	55 35	mA
	Level inputs)		IND	S L							
ISB2	Standby Current (One Port - TTL Level Inputs)	$\label{eq:constraint} \begin{array}{l} \overline{C}\overline{E}^{r_A*} = \text{ViL and} \\ \overline{C}\overline{E}^{r_B*} = \mathcal{V}_{ H ^{(3)}} \\ \text{Active Port Outputs Open,} \\ f=f_{MA} X^{(1)} \end{array}$	COM'L	S L	110 110	170 150	100 100	160 140	90 90	150 130	mA
	Level inputs)		IND	S L							
ISB3	Full Standby Current (Both Ports - CMOS Level Inputs)	Both Ports CER and CEL ≥ Vcc - 0.2V	COM'L	S L	1.0 0.4	5 3	1.0 0.4	5 3	1.0 0.4	5 3	mA
		$V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or}$ $V_{\text{IN}} \le 0.2V, \text{ f} = 0^{(2)}$	IND	S L							
ISB4	Full Standby Current (One Port - CMOS Lovel Inputs)	$\overline{CE}^{"A"} \leq 0.2V$ and $\overline{CE}^{"B"} \geq Vcc - 0.2V^{(5)}$	COM'L	S L	100 100	160 140	90 90	150 130	80 80	140 120	mA
	CMOS Level Inputs)	V⊪ ≥ Vcc - 0.2V or V⊪ ≤ 0.2V, Active Port Outputs Open, f = fмax ⁽¹⁾	IND	S L							

NOTES:

1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tcvc, using "AC TEST CONDITIONS" at input levels of GND to 3V.

- 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.
- 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 4. Vcc = 3.3V, TA = 25°C for Typ, and are not production tested. lcc bc(f=0) = 90mA (Typ).
- 5. $\overline{CE}x = VIL$ means $\overline{CE}0x = VIL$ and CE1x = VIH
- $\overline{CE}x = VIH$ means $\overline{CE}0x = VIH$ or CE1x = VIL
- $\overline{CEx} \le 0.2V$ means $\overline{CEox} \le 0.2V$ and $CE1x \ge Vcc 0.2V$
- $\overline{CEx} \ge Vcc 0.2V$ means $\overline{CE}ox \ge Vcc 0.2V$ or $CE1x \le 0.2V$ 'X' represents "L" for left port or "R" for right port.
- X' in part number indicates power rating (S or L).
- 7. Industrial temperature: for specific speeds, packages and powers contact your sales office.

High Speed 3.3V 32K x 8 Synchronous Pipelined Dual-Port Static RAM

Preliminary Industrial and Commercial Temperature Ranges

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns Max.
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1,2 and 3

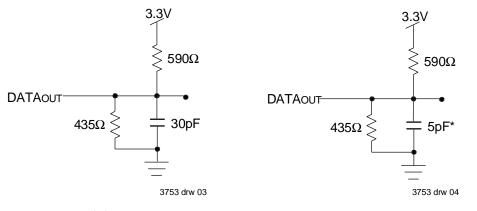
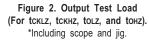



Figure 1. AC Output Test load.

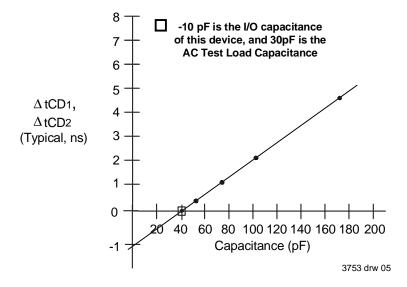


Figure 3. Typical Output Derating (Lumped Capacitive Load).

AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing) $(^{3,4,5)}$ (Vcc = 3.3V ± 0.3, TA = 0°C to +70°C)

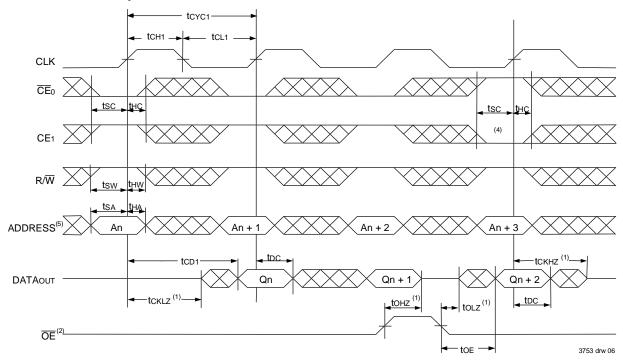
		70V9 Com'	70V9079X9 Com'l Only			70V9079X15 Com'l Only		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Мах.	Unit
tCYC1	Clock Cycle Time (Flow-Through) ⁽²⁾	25		30		35		ns
tCYC2	Clock Cycle Time (Pipelined)(2)	15	-	20		25		ns
tCH1	Clock High Time (Flow-Through) ⁽²⁾	12	-	12		12		ns
taL1	Clock Low Time (Flow-Through) ⁽²⁾	12	-	12		12	-	ns
tCH2	Clock High Time (Pipelined) ⁽²⁾	6		8		10		ns
tCL2	Clock Low Time (Pipelined) ⁽²⁾	6		8		10		ns
tR	Clock Rise Time		3		3		3	ns
tF	Clock Fall Time		3		3		3	ns
tsa	Address Setup Time	4		4		4		ns
tHA	Address Hold Time	1		1		1		ns
tsc	Chip Enable Setup Time	4		4		4		ns
tHC	Chip Enable Hold Time	1	-	1		1		ns
tsw	R/W Setup Time	4	-	4		4		ns
tHW	R/W Hold Time	1	-	1		1		ns
tSD	Input Data Setup Time	4	-	4		4	-	ns
thd	Input Data Hold Time	1	-	1		1	-	ns
tSAD	ADS Setup Time	4	-	4		4	-	ns
thad	ADS Hold Time	1		1		1		ns
tSCN	CNTEN Setup Time	4		4		4		ns
tHCN	CNTEN Hold Time	1		1		1		ns
tSRST	CNTRST Setup Time	4		4		4		ns
tHRST	CNTRST Hold Time	1		1		1		ns
tOE	Output Enable to Data Valid		12		12		15	ns
toLZ	Output Enable to Output Low-Z ⁽¹⁾	2		2		2		ns
tонz	Output Enable to Output High-Z ⁽¹⁾	1	7	1	7	1	7	ns
tCD1	Clock to Data Valid (Flow-Through) ⁽²⁾		20		25		30	ns
tCD2	Clock to Data Valid (Pipelined) ⁽²⁾		9		12		15	ns
tDC	Data Output Hold After Clock High	2		2		2		ns
tскнz	Clock High to Output High-Z ⁽¹⁾	2	9	2	9	2	9	ns
tCKLZ	Clock High to Output Low-Z ⁽¹⁾	2		2		2		ns
Port-to-Port I	Delay	•	-	-	-	-	-	<u>e</u>
tCWDD	Write Port Clock High to Read Data Delay		35		40		50	ns
tccs	Clock-to-Clock Setup Time		15		15		20	ns

NOTES:

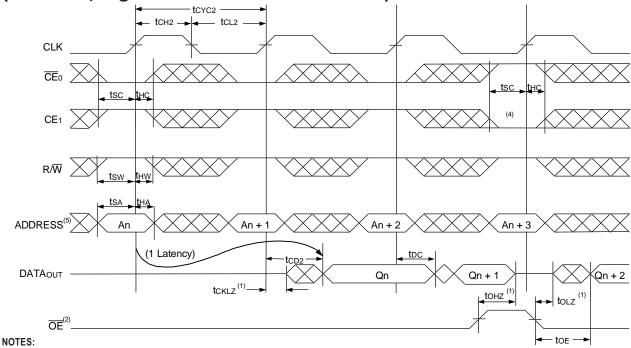
 Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2). This parameter is guaranteed by device characterization, but is not production tested.

2. The Pipelined output parameters (tcyc2, tcp2) always apply to the Left Port. The Right Port uses the Pipelined tcyc2 and

tcD2 when FT/PIPER = VIH and the Flow-Through parameters (tcyc1, tcD1) when FT/PIPER = VIL.

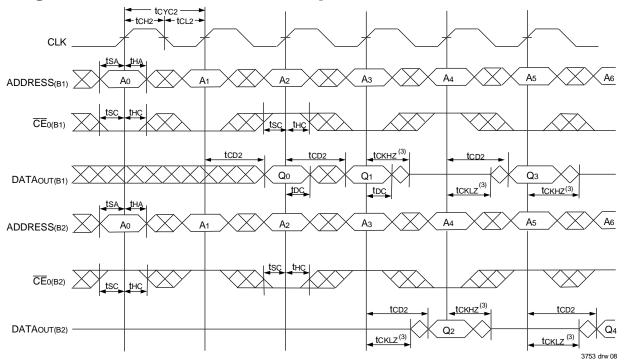

3. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPER. FT/PIPER should be treated as a DC signal, i.e. steady state during operation.

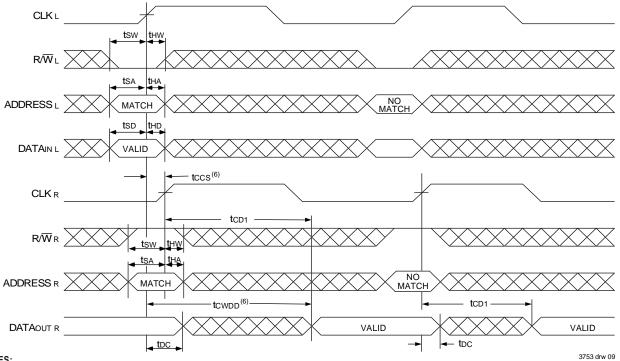
4. 'X' in part number indicates power rating (S or L).


5. Industrial temperature: for specific speeds, packages and powers contact your sales office.

3753 drw 07

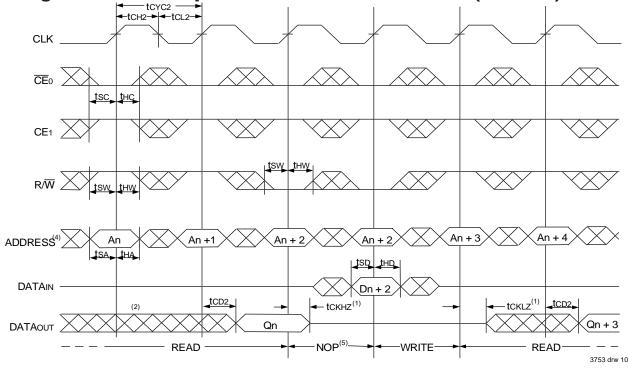
Timing Waveform Read Cycle for Flow-Through Output on Right Port $(\overline{FT}/PIPE_R = VIL)^{(3)}$


Timing Waveform of Read Cycle for Pipeline Operation (Left Port; Right Port when $\overline{FT}/PIPE_R = VIH)^{(3)}$

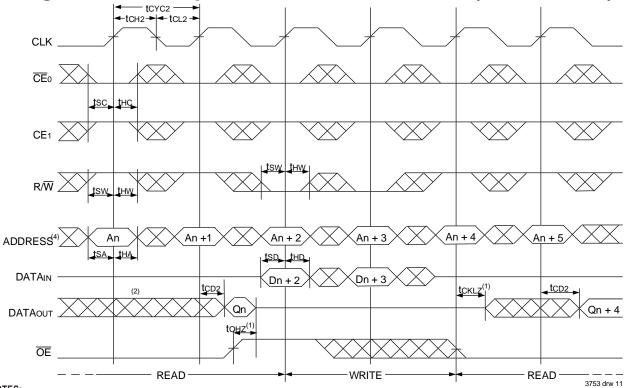

1. Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).

- 2. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge.
- 3. $\overline{\text{ADS}} = \text{Vil}, \overline{\text{CNTEN}} \text{ and } \overline{\text{CNTRST}} = \text{ViH}.$
- 4. The output is disabled (HIGH-impedance state) by \overline{CE}_0 = ViH or CE1 = ViL following the next rising edge of clock. Refer to Truth Table 1.
- 5. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.

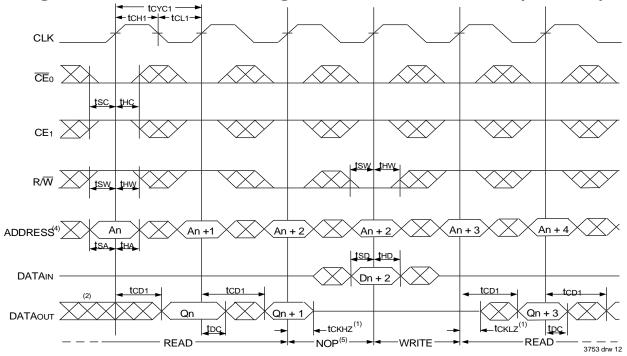
Timing Waveform of a Bank Select Pipelined Read^(1,2)



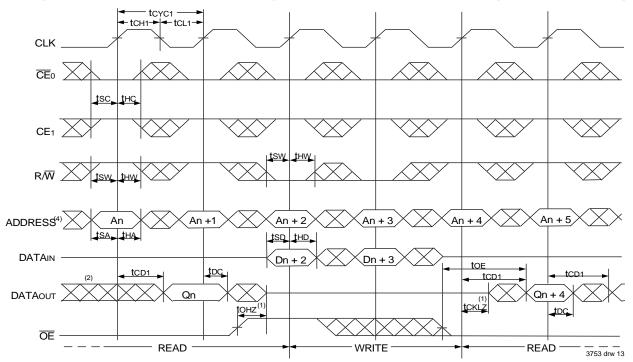
Timing Waveform of a Left Port Write of Flow-Through Right Port Read^(4,5)



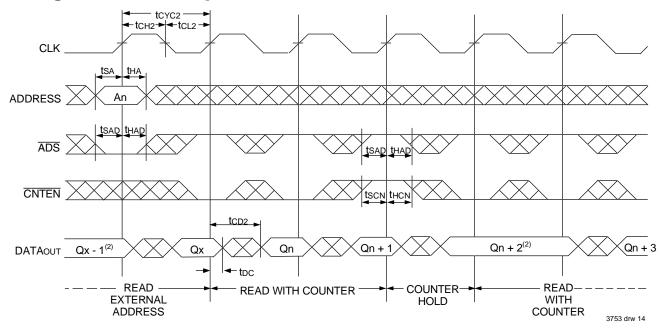
- B1 Represents Bank #1; B2 Represents Bank #2. Each Bank consists of one IDT70V9079 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.
- 2. $\overline{\text{OE}}$ and $\overline{\text{ADS}}$ = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and CNTRST = VIH.
- 3. Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 4. CEo and ADS = VIL; CE1, CNTEN, and CNTRST = VIH.
- 5. $\overline{OE} = V_{IL}$ for the Right Port, which is being read from. $\overline{OE} = V_{IH}$ for the Left Port, which is being written to.
- 6. If tccs \leq maximum specified, then data from right port READ is not valid until the maximum specified for tcwdd.
- If tccs > maximum specified, then data from right port READ is not valid until tccs + tcc1. tcwbb does not apply in this case.



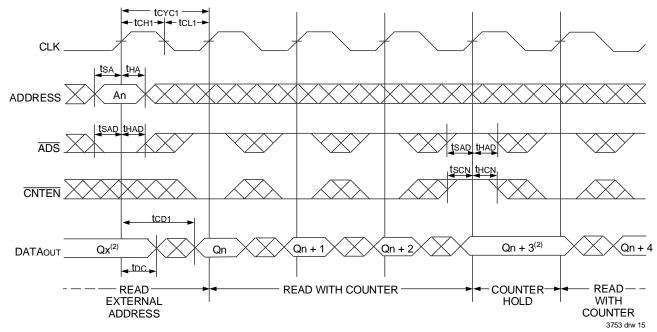
Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)⁽³⁾



- 1. Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. CEo and ADS = VIL; CE1, CNTEN, and CNTRST = VIH.
- 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

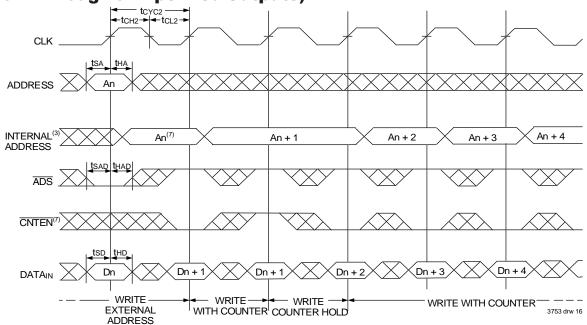


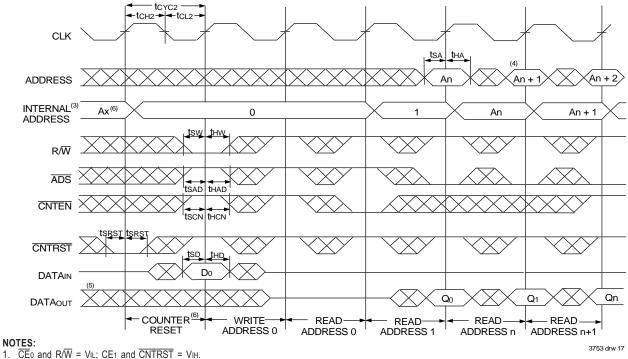
Timing Waveform of Flow-Through Read-to-Write-to-Read (\overline{OE} Controlled)⁽³⁾



- 1. Transition is measured ±200mV from Low or High-impedance voltage with the Output Test Load (Figure 2).
- 2. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 3. TEo and ADS = VIL; CE1, TONTEN, and TONTRST = VIH.
- 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.

Timing Waveform of Pipelined Read with Address Counter Advance⁽¹⁾




^{1.} \overline{CE}_0 and \overline{OE} = VIL; CE1, R/W, and \overline{CNTRST} = VIH.

^{2.} If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then the data output remains constant for subsequent clocks.

Timing Waveform of Write with Address Counter Advance (Flow-Through or Pipelined Outputs)⁽¹⁾

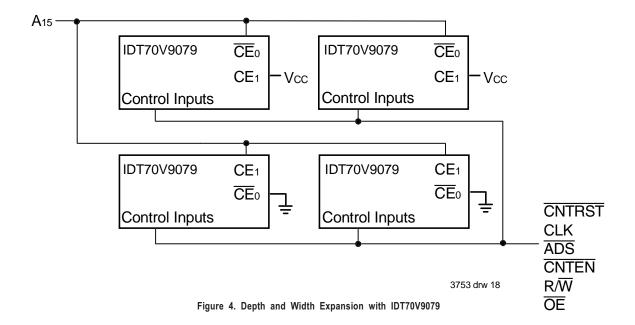
Timing Waveform of Counter Reset (Pipelined Outputs)⁽²⁾

- 2. $\overline{CE}_0 = V_{IL}$; $CE_1 = V_{IH}$.
- 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.
- 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only.
- 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.
- 6. No dead cycle exists during counter reset. A READ or WRITE cycle may be coincidental with the counter reset. ADDRo will be accessed. Extra cycles are shown here simply for clarification.
- CNTEN = VIL advances Internal Address from 'An' to 'An +1'. The transition shown indicates the time required for the counter to advance. 7. The 'An +1'Address is written to during this cycle.

High Speed 3.3V 32K x 8 Synchronous Pipelined Dual-Port Static RAM

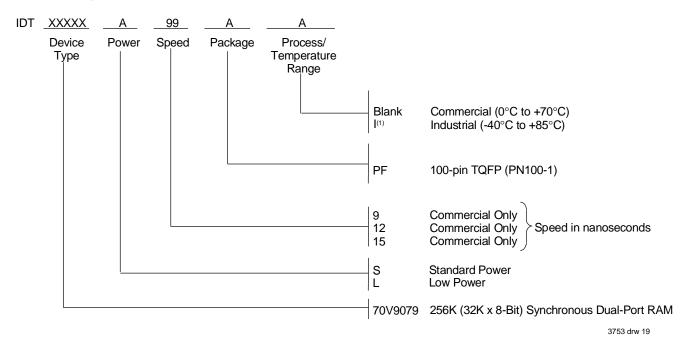
Functional Description

The IDT70V9079 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal.


An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the counter registers for fast interleaved memory applications.

A HIGH on \overline{CE}_0 or a LOW on CE1 for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70V9079's for depth expansion configurations. When the Pipelined output mode is enabled, two cycles are required with \overline{CE}_0 LOW and CE1 HIGH to re-activate the outputs.

Depth and Width Expansion


The IDT70V9079 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth.

The 70V9079 can also be used in applications requiring expanded width, as indicated in Figure 4. Since the banks are allocated at the discretion of the user, the external controller can be set up to drive the input signals for the various devices as required to allow for 16-bit or wider applications.

High Speed 3.3V 32K x 8 Synchronous Pipelined Dual-Port Static RAM

Ordering Information

NOTE:

For specific speeds, packages and powers contact your sales office.

Preliminary Datasheet: Definition

"PRELIMINARY" datasheets contain descriptions for products that are in early release.

Datasheet Document History

 1/12/99:
 Initiated datasheet document history

 Converted to new format
 Cosmetic and typographical corrections

 Added additional notes to pin configurations
 Page 14 Added Depth and Width Expansion section

 6/11/99:
 Page 3 Deleted note 6 for Table II

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: 831-754-4613 DualPortHelp@idt.com

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

^{1.} Industrial temperature range is available.