

Functional Description

The 74FR573 contains eight D-type latches with 3-STATE output buffers. When the latch enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable ($\overline{\mathrm{OE}})$ input. When $\overline{\mathrm{OE}}$ is LOW, the buffers are in the bi-state mode. When $\overline{\text { OE }}$ is HIGH the buffers are in the high impedance mode, but this does not interfere with entering new data into the latches.

Function Table

Inputs			Output
$\overline{\mathbf{O E}}$	LE	$\mathrm{D}_{\mathbf{n}}$	$\mathrm{O}_{\mathbf{n}}$
L	H	H	H
L	H	L	L
L	L	X	$\mathrm{O}_{\mathrm{n}-1}$
H	X	X	High Z State

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Logic Diagram

Absolute Maximum Ratings(Note 1)		Recommended Operating
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Conditions
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	Free Air Ambient Temperature $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature under Bias	-55° to $+150^{\circ} \mathrm{C}$	Supply Voltage $\quad+4.5 \mathrm{~V}$ to 5.5 V
$\mathrm{V}_{C C}$ Pin Potential to Ground Pin	-0.5 V to +7.0 V	
Input Voltage (Note 2)	-0.5 V to +7.0 V	
Input Current (Note 2)	-30 mA to +5.0 mA	
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)		
Standard Output	-0.5 V to V_{CC}	Note 1: Absolute maximum ratings are values beyond which the device
3-STATE Output	-0.5 to +5.5 V	may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Current Applied to Output in LOW State (Max)	twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$	Note 2: Either voltage limit or current limit is sufficient to protect inputs.
ESD Last Passing Voltage (Min)	4000V	

DC Electrical Characteristics

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation Delay LE to O_{n}	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 4.3 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & \hline t_{P Z H} \\ & t_{P Z L} \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.4 \\ & 7.4 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & 7.4 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 6.3 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	1.0	-0.4		1.0		ns
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	D_{n} to LE	1.0	-0.7		1.0		ns
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	2.5	0.9		2.5		
$t_{H}(\mathrm{~L})$	D_{n} to LE	2.5	0.6		2.5		S
$\mathrm{t}_{\mathrm{W}}(\mathrm{H})$	LE Pulse Width HIGH	5.0	2.7		5.0		ns

Extended AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ Eight Outputs Switching (Note 3)		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 4) } \end{gathered}$		Units
		Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $D_{n} \text { to } O_{n}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 8.1 \end{aligned}$	ns
$\mathrm{t}_{\text {PLH }}$ $t_{\text {PHL }}$	Propagation Delay LE to O_{n}	$\begin{aligned} & \hline 2.6 \\ & 2.6 \end{aligned}$	$\begin{aligned} & \hline 9.8 \\ & 9.8 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 12.3 \\ & 12.3 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 9.6 \\ & 9.6 \end{aligned}$			ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 2.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & \hline 7.3 \\ & 7.3 \end{aligned}$			ns
$\mathrm{t}_{\mathrm{OSHL}}$ (Note 5)	Pin-to-Pin Skew for HL Transitions		1.3			ns
t_{OSLH} (Note 5)	Pin-to-Pin Skew for LH Transitions		1.3			ns
tost (Note 5)	Pin-to-Pin Skew for HL/LH Transitions		3.0			ns

i.e. all LOW-to-HIGH, HIGH-to-LOW, 3-STATE-to-HIGH, etc

Note 4: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.
Note 5: Skew is defined as the absolute value of the difference between the actual propagation delays for any two outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW, ($\mathrm{t}_{\mathrm{OSHL}}$), LOW-to-HIGH, ($\mathrm{t}_{\mathrm{OSLH}}$) or any combination of HIGH-to-LOW and/or LOW-to-HIGH, ($\mathrm{t}_{\mathrm{OST}}$) Specifications guaranteed with all outputs switching in phase
Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
