Read / Write amplifier for FDD BH6627FS

The BH6627FS is a 4-mode read / zwrite IC designed for floppy disk drives. This IC has an internal active filter that can be set to any of multiple settings according to transfer rate, and internal switches for density and inner track/outer track. Write current can be set to any of multiple settings.

Applications

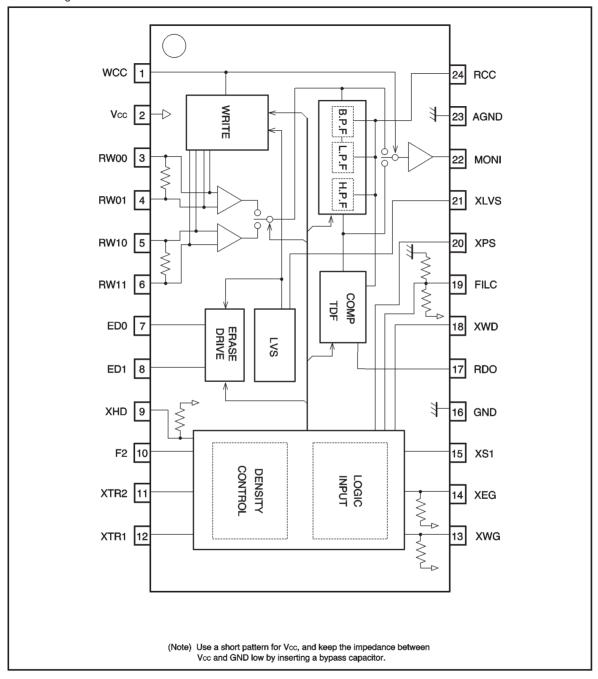
Floppy disk drives (1MB, 1.6MB and 2MB drives)

Features

- Internal active filter with four settings that can be selected for multiple Q and fo.
- Time domain filter with internal switch set according to transfer rate.
- Any of multiple write current settings can be selected, and inner track/outer track switching is done internally.

● Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	+7	V
Operating temperature	Topr	0~+70	°C
Storage temperature	Tstg	−55∼+125	°C
Digital input voltage	VI	-0.5∼Vcc+0.3	٧
RW pin voltage	VRW	+15	٧
LVS output voltage	VLVS	Vcc+0.3	V
ED pin voltage	VER	Vcc+0.3	V
Power dissipation	Pd	650*	mW


[★] Reduced by 6.5mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	4.5	5.0	5.5	٧

Block diagram

●Pin descriptions

Pin No.	Pin name	Equivalent circuit	Function
1	wcc	Vcc The state of t	For connecting the write current adjustment resistor Connect the write current adjustment resistor between this pin and Vcc Setting this pin to the low level during reading switches MONI to differentiator output
2	Vcc		Power supply pin
3	RW00	4 6 3 5	Active when SIDE0 and the read/write head connecting pin (pin 15, XS1) is at the high level (side 0)
4	RW01		Starts at RW00 during the start of writing (from reading to writing)
5	RW10		Active when the read / write head connecting pin (pin 15, XS1) is at the low level (side 1)
6	RW11		Starts at RW10 during the start of writing (from reading to writing)
7	ED0	Vcc 7	Side 0 erase current sink
8	ED1	8	Side 1 erase current sink

Pin No.	Pin name	Equivalent circuit	Function
9	XHD	9 → 30k → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1 →	1 MB/2 MB selector High = 1 MB Low = 2 MB
10	F2	Voc	1.6 MB drive selector Selector signal high level = active High = 1.6 MB drive, low = 2 MB drive
11	XTR2	10 11 12	Inner track / outer track position setting Controls the write current
12	XTR1 (XSWF)		Inner track/outer track position setting Controls the filter and write current
13	XWG	Vcc	Write enable gate (Schmidt input) Low = active
14	XEG	Vcc 30k 30k	Erase enable gate (Schmidt input) Low = active
15	XS1	30k	Head / side switching signal Low = active (Schmidt input) High = side 0, low = side 1

Pin No.	Pin name	Equivalent circuit	Function
16	DGND		Digital ground
17	RDO	Vcc	Read data output TTL high level = active
18	XWD	Vcc	Write data input Operates at falling edge (Schmidt input)
19	FILC	100k Voc	Filter control (f0, Q) Used to switch filter cutoff frequency (tri-state input)
20	XPS	20 30k	Power save selector Low = active

Pin No.	Pin name	Equivalent circuit	Function
21	XLVS	21	External low level - voltage detection pin Open collector output when low level voltage is detected Switches to low level when Vcc drops below the specified voltage
22	MONI	Vec 250 \$ 220	Preamplifier output and differentiator output monitoring Monitor is switched with pin 1 (WCC)
23	AGND		Analog ground
24	RCC	V _{cc} 24	Filter (LPF, BPF) cutoff frequency and TDF 1st M/M pulse width setting resistor connection

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V)

Supply current

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Current dissipation,Standby	ICCST	_	165	400	μΑ	*1
Current dissipation,Read	ICCR	_	28	42	mA	*1
Current dissipation,Write	ICCW	_	8.5	15	mA	*2

^{*1} RRCC=2.0 [kΩ] (XHD=H)

Low level voltage detection circuit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Threshold voltage	VTH+	_	3.95	4.2	٧	When power supply voltage rises
	VTH-	3.5	3.75	4.0	V	When power supply voltage falls
Hysteresis voltage	VH	50	_	_	mV	
Output low level voltage	VOL	_	_	0.40	٧	Vcc=2.5[V] IOL=0.2[mA]
Output leakage current	IOH	_	_	10	μΑ	

Recovery time

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
POWER · SAVE → READ	TR2	_	_	500	μS	by XPS
READ→ERASE	TR3	_	_	6	μS	by XEG
READ→WRITE	TR4	_	_	4	μS	by XWG
WRITE→READ	TR5E	_	_	20	μS	by XEG
WHITETHEAD	TR5W	_	_	160	μs	by XWG
SIDE0↔SIDE1	TR6	_	_	40	μS	by XS1
1MB↔2MB	TR7	_	_	40	μS	by XHD
1.6 MB ↔2 MB	TR8	_	_	40	μS	by F2
Inner⇔outer track	TR9	_	_	40	μs	by XTR1
Write current switch	TR10	1	_	40	μs	by XTR2

^{*2} RWCC=2.4 [k Ω] (2 MB inner track, XTR2=H time, except IWR and IER)

Preamplifier

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Voltage gain (1)	GVD1	43	46	49	dB	f=125[kHz], VIN=2.5[mV _{P-P}] (XTR1=L) (differential)
Voltage gain (2)	GVD2	46	49	52	dB	f=125[kHz], VIN=2.5[mV _{P-P}] (XTR1=H) (differential)
SIDE0 ↔ SIDE1 cross talk	GCTLK	50	_	_	dB	f=125[kHz], VIN=100[mV _{P-P}] (differential)*3
Differential input resistance	RID	-	8	_	kΩ	
Input conversion noise voltage	VN	_	2.5	3.7	μ Vrms	f=500[Hz]~1[MHz]
Input sink current	ISINK	_	180	_	μΑ	
Differential input voltage amplitude (1)	VIN1	_	_	5.0	mV _{P-P}	Distortion factor 5% (with sine wave input) (XTR1=L)
Differential input voltage amplitude (2)	VIN2	_	_	3.5	mV _{P-P}	Distortion factor 5% (with sine wave input) (XTR1=H)
Common mode rejection ratio	CMRR	50	_	_	dB	f=125[kHz], VIN=100[mV _{P-P}] *3
Power supply rejection ratio	PSRR	40	_	_	dB	f=250[kHz], VIN=100[mV _{P-P}] *3

Preamplifier- L.P.F. - differentiator (B.P.F.)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Filter - time constant accuracy	EFIL	-10	_	+10	%	*3
Preamplifier - L.P.F. - Differentiator total gain (1)	GVDD1	40.5	44.5	48.5	dB	f=250[kHz], VIN=2.5[mV _{P-P}] (differential) (2MB setting XTR1 = L, FILC = H)
Preamplifier - L.P.F. - Differentiator total gain (2)	GVDD2	43.5	47.5	51.5	dB	f=250[kHz], VIN=2.5[mV _{P-P}] (differential) (2MB setting XTR1 = H, FILC = H)
Differentiator output peaking Frequency setting range	fo	0.1	_	0.5	MHz	Defined by set-up Typ. value

*3 RRCC=2.0 [k Ω] (XHD=L, XTR1=H, F2=L, FILC=H)

Comparator and waveform shaping

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
TDF M/M pulse width accuracy(1)	TDF1	-10	_	+10	%	XHD=H, F2=L (Typ.: 2120[ns]) f=62.5[kHz]~125[kHz] *4
TDF M/M pulse width accuracy(2)	TDF2	-10	_	+10	%	XHD=H, F2=H (Typ.: 1800[ns]) f=62.5[kHz]~125[kHz] *4
TDF M/M pulse width accuracy(3)	TDF3	-10	_	+10	%	XHD=L, F2=H/L (Typ.: 1140[ns]) f=125 [kHz]~250 [kHz] *4
RD pulse width	TRD	270	400	530	ns	Judgment level 1.5[V]
Rise time	TTLH	_	_	70	ns	Rise time for 0.4 [V] - 2.0 [V]
Fall time	TTHL	_	_	70	ns	Fall time for 2.0 [V] - 0.4 [V]
Peak shift	P. S.	_	_	1.0	%	f=250[kHz] , VIN=1[mV _{P-P}] (differential)
Output low level voltage	VOL	_	_	0.4	٧	IOL=0.2[mA]
Output high level voltage	VOH	2.7	_	_	V	IOH=-15[μA] *5

^{*4} RRCC=2.0 [kΩ]

^{*5} Rise level from 0.4 [V] to 70 [ns]

Write circuit

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Write current adjustment range	IWR	2.0	_	20	mA0-P	
Write current accuracy	ACIW	-7.0	_	+7.0	%	*6
Write current pairability	△IWR	-1.0	_	+1.0	%	RWCC=2.4 [kΩ]
Write current supply voltage depedency	PSIW	-4.0	-0.8	+3.0	%/V	RWCC=2.4 [kΩ]
Output saturation voltage	VSATRW	_	0.4	1.0	٧	IWR=12[mA]
Off state legicans arrayant	ILKRW1	_	_	20	μΑ	Unselected side
Off-state leakage current	ILKRW2	_	_	50	μΑ	Selected side
Minimum write date pulse width	TWD	70	-	_	ns	
Write current inner / outer track ratio accuracy	ratio accuracy ACIWTR ±10 x (1-setting r		ng ratio)	%	*7	

^{*6} RWCC=1.2 [k Ω], each of XTR1, XTR2 can be set by the user.

Erase output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Erase current setting range	IER	_	_	40	mA	
Output saturation voltage	VSATER	_	0.2	0.6	V	IER=40[mA]
Output leakage current	IOH	_	_	10	μΑ	Off time, ED0=ED1=Vcc

Logic input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Input high level voltage	VIH	2.0	_	_	V	Except for FILC
Input low level voltage	VIL	_	_	0.8	V	Except for FILC
Input voltage hysteresis	VH	0.15	_	_	V	Applicable to XWD, XWG, XEG and XS1
Input low level current	IIL1	_	50	100	μΑ	Vcc=5[V] VIL=GND Applicable to XWG, XEG, XHD, FILC
Input high level voltage 2	VIH2	4.2	_	_	V	Applicable to FILC
Input low level voltage 2	VIL2	_	_	0.8	V	Applicable to FILC

^{*7} Setting ratio errors based on XTR1=L, XTR2=L

Read characteristics

Density					11	ИB		1.6MB		2MB	
Transfer rate			FILC	250[kbps]		300[kbps]		500[kbps]		500[kbps]	
	Mode	XHD NO CA		HIGH		HIGH		LOW		LOW	
Input	INIOGE	F2	NO CARE	LC	W	HIGH		HIGH		LOW	
	Track	XTR1 (XSWF)	NO CARE	Outer track LOW	Inner track HIGH						
	Filter	fo [kHz]	HIGH	150	158	178	185	323	404	366	358(C)
		(Characteristics) *1	LOW	1	†	1	†	300	366	338	361 (B)
	TDF	[nSEC]	NO CARE	21	20	1800		1140		1140	

^{*1 (}B) Chebyshev's characteristics

(However, RRCC=2.0 [kΩ]

Total filter peak frequency setting

$$f_0 = a / (RRCC [k\Omega] + 0.09) [kHz]$$

TDF time constant setting

250 [kbps] : T = 758 \times RRCC [kΩ] +604 [ns] 500 [kbps] : T = 683 \times RRCC [kΩ] +434 [ns] 500 [kbps] : T = 333 \times RRCC [kΩ] +388 [ns]

Write current switching ratio

	Track	Outer track ←			──> Inner track		
	XTR1	ı	_	Н			
	XTR2	L	Н	L	Н		
	2MB	0.383	0.350	0.333	0.300		
sity	1.6MB	0.450	0.417	0.383	0.350		
Density	1MB (250kbps)	0.933	0.900	0.800	0.733		
_	1MB (300kbps)	0.933	0.900	0.800	0.733		

Write current setting

$$Iwr = \frac{24.0}{RWCC [k\Omega]} [mA]$$

⁽C) Except for the high ripple Chebyshev's characteristics, 2MB inner track, all are Butterworth characteristics. Refer to filter characteristics.

●Filter characteristic

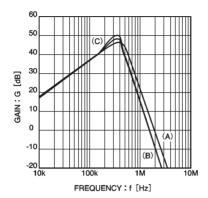
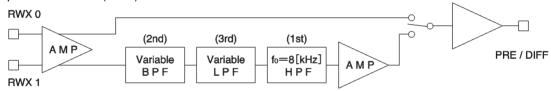
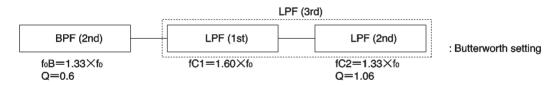
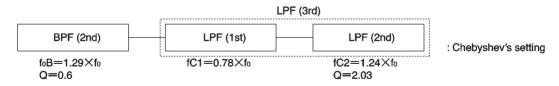
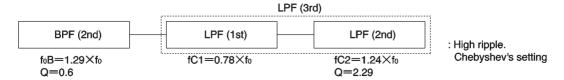




Fig. 1 PRE IN vs. DIFF OUT characteristics


Preamplifier - differentiator (B.P.F.) - L.P.F.


(A) [1M/1.6M/2M outer track] total characteristics peak frequency fo

(B) FILC = "L" time [2M inner track] total characteristics peak frequency fo

(C) FILC = "H" time [2M inner track] total characteristics peak frequency fo

Measurement circuit

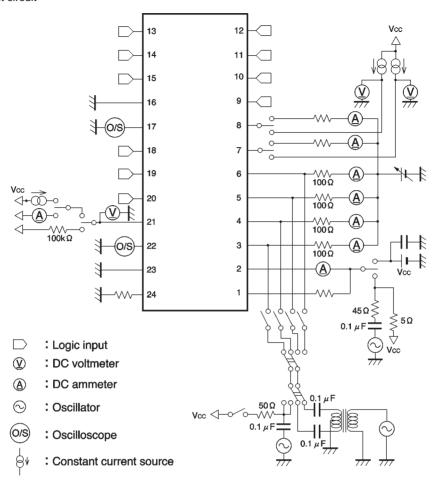


Fig. 2

Circuit operation

(1) Read

The input signal from the head coils from each side of the disc is amplified by the preamplifier and then differentiated. The filter time constant can be set externally. After differentiation, the differential output is input to the comparator. The time domain filter detects zero cross, and the output is converted to read data. The monostable multivibrator width can be set externally, while the read data pulse width is a constant 400ns.

(2) Write

Input write data are converted to toggle movements by

the internal flip-flops, operating the write driver. The write driver current is supplied by the write current generator, but the externally set current can be controlled according to density and by selecting inner track/outer track.

(3) Erase

An open collector output pin is used, and the erase current is set with a resistor between it and the head.

(4) Power supply

When the low level voltage detector detects a drop in the supply voltage, writing and erasing are prohibited.

Operation notes

- (1) Use a short pattern for Vcc, and a sufficiently wide AGND and DGND. Keep the impedance between Vcc and GND low by inserting a bypass capacitor.
- (2) Use a pattern that will minimize interference between digital signals and the head.

Electrical characteristic curves

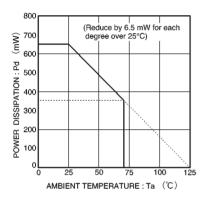


Fig. 3 Thermal derating characteristics

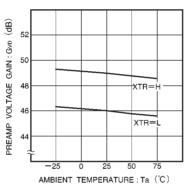


Fig. 4 Preamp voltage gain vs. ambient temperature

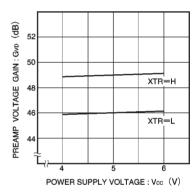


Fig. 5 Preamp voltage gain vs. power supply voltage

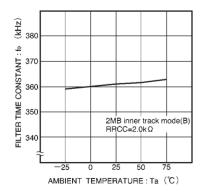


Fig. 6 Filter time constant (fo) vs. ambient temperature

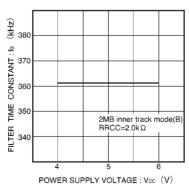


Fig. 7 Filter time constant (fo) vs. power supply voltage

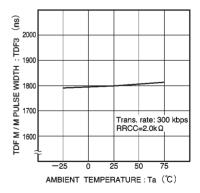


Fig. 8 TDF time constant vs. ambient temperature

Communication ICs BH6627FS

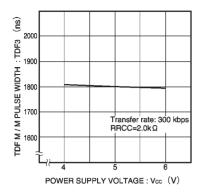


Fig. 9 TDF time constant vs. power supply voltage

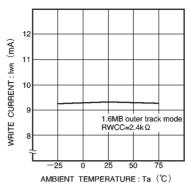


Fig. 10 Write current vs. ambient temperature

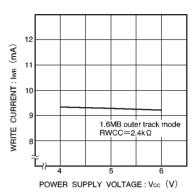


Fig. 11 Write current vs. power supply voltage

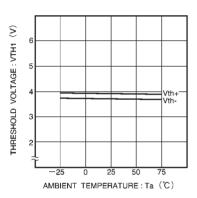


Fig. 12 Low level detection voltage vs. ambient temperature

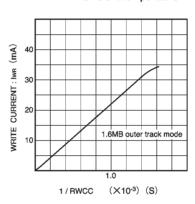
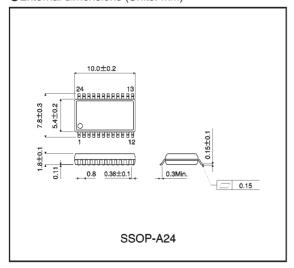



Fig. 13 Write current vs. write current adjustment resistance

External dimensions (Units: mm)

