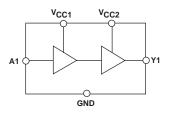


Low Voltage Single Channel Level Translator

Preliminary Technical Data

FEATURES


Operates from 1.65 V to 3.6 V Supply Rails Uni-Direction Signal path Bi-Directional Level Translation Tiny 6 Lead SOT23 Package Short Circuit Protection* LVTTL/CMOS-Compatible Inputs

APPLICATIONS

Level Translation Low Voltage ASIC translation Serial interface Translation

FUNCTIONAL BLOCK DIAGRAM

ADG3231*

GENERAL DESCRIPTION

The ADG3231 is a Level Translator designed on a sub micron process which operates from supplies as low as 1.65 V. The device is guaranteed for operation over the supply range 1.65 V to 3.6 V. It operates from two supply voltages allowing bi-directional level translation, i.e. it translates low voltages to higher voltages and vice versa. The signal path is uni-directional, data may only flow from A1 to Y1.

This type of device may be used in applications requiring communication between devices operating from different supply levels.

The level translator is packaged in one of the smallest footprints available for its pin count. The 6 lead SOT23 package requires only 5.28mm² max board space.

PRODUCT HIGHLIGHTS

- 1. Uni-Directional (Up/Down) Level Translation.
- The device offers high performance and is fully guaranteed over a wide supply range; 1.65 V to 3.6 V.
- 3. Short Circuit Protection*
- 3. Tiny SOT23 package.

***Patent Pending**

REV. PrC Nov 2002

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

 One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

 Tel:
 781/329-4700
 www.analog.com

 Fax:
 781/326-8703
 Analog Devices, Inc., 2002

ADG3231-SPECIFICATIONS¹

($V_{CC1} = V_{CC2} = +1.65$ V to 3.6 V, GND = 0 V, All specifications T_{MIN} to T_{MAX} unless otherwise noted)

Parameter	Symbol	Conditions	Min	Typ ²	Max	Units
LOGIC INPUTS/OUTPUTS ³						
Input High Voltage	VIH	$V_{CC1} = 3.0 \text{ V}$ to 3.6 V	1.35			V
1 0 0	V _{IH}	$V_{CC1} = 2.3 \text{ V to } 2.7 \text{ V}$	1.35			V
	V _{IH}	$V_{CC1} = 1.65$ V to 1.95 V	0.65V	CC		V
Input Low Voltage	VIL	$V_{CC1} = 3.0 \text{ V}$ to 3.6 V	-0.5		0.8	V
	VIL	$V_{CC1} = 2.3 \text{ V to } 2.7 \text{ V}$	-0.5		0.7	V
Input Low Voltage	V _{IL}	$V_{CC1} = 1.65 \text{ V}$ to 1.95 V	-0.5		$0.35V_{\rm CC}$	V
Output High Voltage	V _{OH}	I_{OH} = -100 µA, V_{CC2} = 3.0 V to 3.6 V	2.4			V
		$V_{CC2} = 2.3 \text{ V to } 2.7 \text{ V}$	2.0			V
		$V_{CC2} = 1.65 \text{ V to } 1.95$	V V _{CC} -	0.45		V
		$I_{OH} = -4 \text{ mA}, V_{CC2} = 2.3 \text{ V to } 2.7 \text{ V}$	2.0			V
		$V_{CC2} = 1.65 \text{ V to } 1.95$	V V _{CC} -	0.45		V
		$I_{OH} = -8 \text{ mA}, V_{CC2} = 3.0 \text{ V to } 3.6 \text{ V}$	2.4			V
Output Low Voltage	VOL	$I_{OH} = 100 \ \mu A$, $V_{CC2} = 3.0 \ V \ to \ 3.6 \ V$	-0.5		0.4	V
		$V_{CC2} = 2.3 \text{ V to } 2.7 \text{ V}$	-0.5		0.4	V
		$V_{CC2} = 1.65 \text{ V to } 1.95$			0.45	V
		$I_{OH} = 4 \text{ mA}, \qquad V_{CC2} = 2.3 \text{ V to } 2.7 \text{ V}$	-0.5		0.4	V
		$V_{CC2} = 1.65$ V to 1.95	V -0.5		0.45	V
		$I_{OH} = 8 \text{ mA}, \qquad V_{CC2} = 3.0 \text{ V to } 3.6 \text{ V}$	-0.5		0.4	V
SWITCHINGS CHARACTERISTICS ^{4,5}						
Propagation Delay, t_{PD} A1 to Y1	t _{PHL} , t _{PLH}	$3.3 \text{ V} \pm 0.3 \text{ V}, \text{ C}_{L} = 30 \text{ pF}, \text{ V}_{T} = \text{V}_{CC}/2$			5	ns
Propagation Delay, t_{PD} A1 to Y1	t _{PHL} , t _{PLH}	$2.5 \text{ V} \pm 0.2 \text{ V}, \text{ C}_{\text{L}} = 30 \text{ pF}, \text{ V}_{\text{T}} = \text{V}_{\text{CC}}/2$			6	ns
Propagation Delay, t_{PD} A1 to Y1	t _{PHL} , t _{PLH}	$1.8 \text{ V} \pm 0.15 \text{ V}, \text{ C}_{\text{L}} = 30 \text{ pF}, \text{ V}_{\text{T}} = \text{V}_{\text{CC}}/2$			10	ns
		• • • •				
Input Leakage Current	II	$0 \le V_{IN} \le 3.6 V$			±1	μA
Output Leakage Current	Io	$0 \le V_{\rm IN} \le 3.6 \text{V}$		~	±1	μA
Input Capacitance ⁴	CIN	$f = 1$ MHz, $V_{IN} = V_{CC}$ or GND		5		pF
Output Capacitance ⁴	Co	$f = 1 \text{ MHz}, V_{IN} = V_{CC} \text{ or GND}$		5	N (1	pF
Max Data Rate			TBD		Mbps	
Jitter			TBD		ps	
POWER REQUIREMENTS						
Power Supply Voltages	V _{CC1}		1.65		3.6	V
	V _{CC2}		1.65		3.6	V
Quiescent Power Supply Current	I _{CC1}	Digital Inputs = $0 \text{ V or } V_{CC}$			5	μA
•••	I _{CC2}	Digital Inputs = $0 \text{ V or } V_{CC}$			5	μΑ

NOTES

¹Temperature range is as follows: B Version: -40°C to +85°C.

¹ Temperature range is as follows: B version: -40 C to +65 C. ² All typical vlaues are at $V_{CC1} = V_{CC2}$, $T_A = +25^{\circ}C$ unless otherwise stated. ³ V_{IL} and V_{IH} levels are specified with respect to V_{CC1} , while V_{OH} and V_{OL} levels are with respect to V_{CC2} . ⁴ Guaranteed by design, not subject to production test.

⁵ See Test Circuits and Waveforms.

Specifications subject to change without notice.

ADG3231


ABSOLUTE MAXIMUM RATINGS¹

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
V_{CC} to GND \ldots -0.5 V to +4.6 V
DC Input Voltage
DC Output Current 50mA
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature 150°C
8 Lead SOT23,
θ_{JA} Thermal Impedance 211°C/W
Lead Temperature, Soldering (10seconds) 300°C
IR Reflow, Peak Temperature (<20 seconds) +235°C
NOTES
¹ Stresses above those listed under Absolute Maximum Ratings may

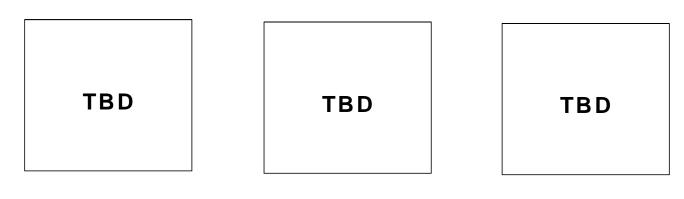
cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this speci•cation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

PIN CONFIGURATIONS

6 Lead SOT23 Package (RJ-6)

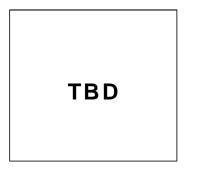
ORDERING GUIDE

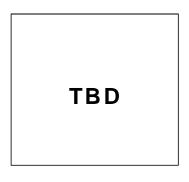
Model	Temperature Range	Package Description	Branding	Package Option
ADG3231BRJ	-40°C to +85°C	SOT23	W2B	RJ-6


CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG3231 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ADG3231


TYPICAL PERFORMANCE CHARACTERISTICS


TPC 1. I_{CC} vs. Input Signal Frequency.

TPC 2. V_{CC} Supply vs temperature

TPC 3. Rise/Fall time vs capacitive load

TPC 4. Propagation Delay vs Temperature

TPC 5. Propagation Delay vs Split Supply. TPC 6. Propagation delay vs capacitive load

ADG3231

TEST CIRCUITS

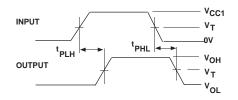


Figure 1. Propagation Delay

DESCRIPTION

The ADG3231 is a level translating device designed on a sub micron process which operates from supplies as low as 1.65 V. The device is guaranteed for operation over the supply range 1.65 V to 3.6 V. It operates from two supply voltages allowing uni-directional level translation. The ADG3231 can translate low voltages to higher voltages and vice versa.

A1 Input

The input A1 is capable of accepting inputs outside the V_{CC1} supply range. For example, the V_{CC1} supply applied to the device could be 1.8V while the preceding device could be supplied from a 2.5V or 3.3V supply rail, there are no internal diodes to the supply rails, so the ADG3231 can handle inputs above the supply, but inside the absolute maximum ratings stated.

Normal Operation

The signal path is from A1 to Y1, the device will level translate the signal applied to A1 to a $V_{\rm CC1}$ logic level (this level translation can be either to a higher or lower supply) and route the signal to the Y1 output, which will have standard $V_{\rm OL}/V_{\rm OH}$ levels for $V_{\rm CC2}$ supplies.

The three supplies in Figures 4 & 5 may be any combination of supplies, i.e. $V_{\rm CC0}, ~V_{\rm CC1}$ and $V_{\rm CC2}$ may be any combination of supplies, for example: 1.8, 2.5, 3.3V.

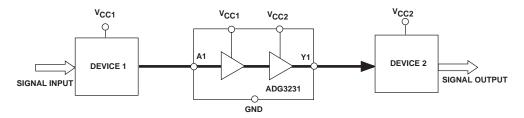
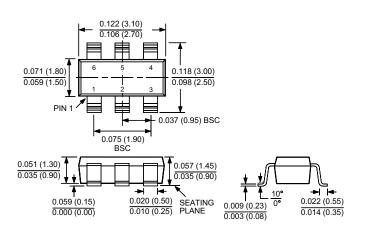


Figure 2. Typical Operation of the ADG3231 level translating switch


PRELIMINARY TECHNICAL DATA

ADG3231

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

6 Lead SOT23 (RJ-6)

