
Copyright  Cirrus Logic, Inc. 200
(All Rights Reserved)

P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.cirrus.com
AN177
Application Note
USING JTAG FOR DEBUGGING EP72XX
MICROCONTROLLERS
1

0 JUL ‘00
AN177REV2

AN177
TABLE OF CONTENTS
1. INTRODUCTION ... 3

1.1 Organization of this Application Note ... 3
2. DEVELOPMENT BOARD HARDWARE SETUP ... 3
3. SOFTWARE SETUP ... 3

3.1 Using JEENI ... 3
3.2 Using ARM Tools ... 3

4. DEBUGGING WITH ICE_BOOT ... 4
5. RUNNING ICE WITH ANGEL INSTALLED .. 6
6. RUNNING MULTI-ICE WITH THE PLAYER DEMO. .. 7
7. ALTERNATIVE DEBUGGING METHOD ... 7
8. GENERAL HINTS ... 8

LIST OF TABLES
Table 1. BOOT_ICE Memory Map .. 5

Table 2. Angel Memory Map ... 6

Table 3. MP3 Demo Memory Map .. 7

Contacting Cirrus Logic Support
For a complete listing of Direct Sales, Distributor, and Sales Representative contacts, visit the Cirrus Logic web site at:
http://www.cirrus.com/corporate/contacts/

Preliminary product information describes products which are in production, but for which full characterization data is not yet available. Advance product infor-
mation describes products which are in development and subject to development changes. Cirrus Logic, Inc. has made best efforts to ensure that the information
contained in this document is accurate and reliable. However, the information is subject to change without notice and is provided “AS IS” without warranty of any
kind (express or implied). No responsibility is assumed by Cirrus Logic, Inc. for the use of this information, nor for infringements of patents or other rights of third
parties. This document is the property of Cirrus Logic, Inc. and implies no license under patents, copyrights, trademarks, or trade secrets. No part of this publi-
cation may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photographic, or otherwise)
without the prior written consent of Cirrus Logic, Inc. Items from any Cirrus Logic web site or disk may be printed for use by the user. However, no part of the
printout or electronic files may be copied, reproduced, stored in a retrieval system, or transmitted, in any form or by any means (electronic, mechanical, photo-
graphic, or otherwise) without the prior written consent of Cirrus Logic, Inc.Furthermore, no part of this publication may be used as a basis for manufacture or
sale of any items without the prior written consent of Cirrus Logic, Inc. The names of products of Cirrus Logic, Inc. or other vendors and suppliers appearing in
this document may be trademarks or service marks of their respective owners which may be registered in some jurisdictions. A list of Cirrus Logic, Inc. trade-
marks and service marks can be found at http://www.cirrus.com.
2 AN177REV2

AN177

47
ith
s a
m
 a

e
a”

u

e
1. INTRODUCTION

The Cirrus Logic EP72xx microcontrollers use the
ARM7TDMI cores that contain hardware
debugging support via the JTAG interface. This
interface has the following benefits:

l Allows connection of JTAG debugging units,
such as Multi-ICE™ from ARM® and JEENI™
from Embedded Performance, Inc. to gain
direct access to the ARM processor;

l Does not need separate debugging software on
the target board;

l Requires no special hardware on the device;

l Needs no special memory to be set aside for
debugging;

l Supports breakpoints via hardware (great for
debugging code in ROM).

1.1 Organization of this Application Note
This application note covers the steps needed to
configure the 72XX development boards for JTAG
support, and on how to set up the software. (See
Sections 2 and 3) You will also learn how to use
JTAG debugging in the following memory models:

1) A “debug” memory model (ICE_BOOT)
(See Section 4)

2) With Angel running in FLASH memory
(See Section 5)

3) With ROMed applications installed, such as
the Player demo provided by Cirrus Logic.
(See Section 6)

Of the three memory models we explain, the
ICE_BOOT memory model is the most flexible for
use in a debugging environment. Cirrus Logic, Inc.
has provided the files necessary to build
ICE_BOOT along with this application note.

2. DEVELOPMENT BOARD
HARDWARE SETUP

In order to use the JTAG port for debugging, it is
necessary to connect TEST0 and TEST1 of the
EP72xx to ground. On the EDB7209-2X.0 board,

this is accomplished by placing jumpers on JP
and JP48. In the case with the EDP7111-2 (w
EP7211 installed), grounding these two signals i
bit more involved. You need to solder a wire fro
ground to TP8 and TP9. Fortunately, there is
ground nearby at JP33.

3. SOFTWARE SETUP

3.1 Using JEENI
With JEENI, the software required should b
available in the ARM Debugger. Select “remote_
from the Options→Configure Debugger… menu
(serial port option only). Refer to the JEENI User’s
Manual for instructions on how to install the
Ethernet interface.

3.2 Using ARM Tools
Here are a few hints to remember when you work
with ARM Tools.

l You must run the Multi-ICE Server before
launching the Multi-ICE debugger. Use the
configuration file “720.cfg”.

l Make sure you are using the ARM Tools
Version 2.5. Multi-ICE will not operate
correctly with the Version. 2.11a debugger
(JEENI is compatible with 2.11a).

l When using Multi-ICE, make sure that the file
“Multi-ICE.dll” resides in the ARM250\bin
directory

l Confirm that “autoexec.bat” contains the
following (your drive letter or ARM directory
name may be different depending on how yo
installed the software):

SET PATH=C:\ARM250\BIN

SETARMLIB=C:\ARM250\LIB

SET ARMINC=C:\ARM250\INCLUDE

l The processor must be running before Multi-
ICE can access the processor core — it cannot
be in the Standby or Idle modes. Otherwise you
will get a “processor not stopped” error. This
error is also displayed if TEST0 and TEST1 ar
not grounded.
AN177REV2 3

AN177

ta
e
s),
re
s of
e
s
at

is
cts
ine
e
rd

m
he
out
be
s).
 of

ith
de
e
e

of
4. DEBUGGING WITH ICE_BOOT

ICE_BOOT is a program that sets up a memory
configuration that is “ideal” for general purpose
debugging with a JTAG environment. In
ICE_BOOT, DRAM is placed at the beginning of
the memory starting at location 0x0000.0000. This
memory location is where the exception vectors
reside. It also is placed into a state that is
compatible with the default settings of the ARM
debugger and ARMulator.

NOTE: When using the memory model defined by
ICE_BOOT, set the entry location used in
the demons t ra t i on p rograms f rom
0x0802.8000 (as used by Angel) to 0x8000
(the ARM “default”). This is accomplished by
setting the ARMLINK entry points in the
Project Manager.

The program compiles as a straight binary object
that loads into FLASH memory starting at location
at 0x0. The DOWNLOAD.EXE program that is
included with the Developer’s Kit is used to
program the FLASH. After programming the
FLASH, you need to recycle the power on the
board, causing the program to carry out the
following actions:

NOTE: If you are using a Development Board from
Cirrus Logic, consult the appropriate Hard-
ware User’s Guide for instructions on how to
recycle power to the board.

1) Sets up the jump locations for the exception
vectors.

2) Sets up the ARM debugger for little-endian
32-bit code and data

3) Disables all interrupts

4) Enables the DRAM memory.

5) Sets the CPU for highest clock speed

6) Sets up the chip selects and the attributes of
the memory regions.

7) Creates the MMU translation tables

8) Copies the program from FLASH to DRAM

9) Enables the MMU

10) Goes into an endless loop while flashing the
LED. Code is now running out of cached
DRAM. The processor must be running
before invoking a JTAG-ICE debugger.

The memory map that the program ICE_BOOT
defines is shown in Table 1 on page 5:

In order to minimize the size of the translation
tables, the memory region from 0x9000.0000 to
0xFFFF.FFFF is undefined and will cause a “da
abort” error if that region is accessed. Th
translation table has over 2300 entries (>9 Kbyte
and this is small enough so that it will not interfe
with user programs loaded at the default addres
0x8000. Most all of the memory is defined in th
Level I translation table. The only Level II entry i
support of the internal registers starting
0x8000.0000.

The region from 0x1000.0000 to 0x5FFF.FFFF
mapped as one contiguous region for Chip Sele
CS1, CS2, CS3, CS4, and CS5. You can determ
the functions of these chip selects from th
hardware configuration of the development boa
and the comments in the source code.

When using the debugger with this progra
running, you can use the default values of t
debugger settings. For programs larger than ab
450 Kbytes, the $top_of_Memory value should
changed from the default (0x80000 or 512 Kbyte
The debugger uses the default value as the top
the stack area. If this value is not increased w
large programs, there is the possibility that the co
will collide with the stack. Possible values to us
are the top of internal SRAM (0x6000.9600) or th
end of DRAM (0x00FF.FFFF). If you use the LCD
controller, make sure the frame buffer is clear
the stack area.
4 AN177REV2

AN177
From To Description

0x9000.0000 0xFFFF.FFFF Invalid Memory Region

0x8000.E000 0x8FFF.FFFF 255 MB of inaccessible memory

0x8000.0000 0x8000.DFFF Internal Register space

0x7010.0000 0x7FFF.FFFF 255 MB of inaccessible memory

0x7000.0000 0x700F.FFFF Internal ROM (only first 128 bytes is valid)

0x6010.0000 0x6FFF.FFFF 255 MB of inaccessible memory

0x6000.0000 0x600F.FFFF On-chip SRAM (only first 37.5 KB is valid)

0x10000000 0x5FFF.FFFF 1.25 GB of non-cacheable mapped r/w memory (paral-
lel port, NAND FLASH, Ethernet, USB, PCMCIA,
touch screen, SmartMedia, etc.)

0x0200.0000 0x0FFF.FFFF 224 MB of inaccessible memory

0x0100:0000 0x01FF:FFFF 16 MB NOR FLASH

0x0000:0000 0x00FF:FFFF 16 MB DRAM

Table 1. ICE_BOOT Memory Map
AN177REV2 5

AN177

al

w

ts
-

ing

ged
re
5. RUNNING ICE WITH ANGEL
INSTALLED

Angel programs the MMU as shown in Table 2.

If you use Multi-ICE or JEENI, Angel becomes
irrelevant. However, Angel does set up the MMU
to provide enough DRAM memory to load and
debug some large programs and data arrays. Notice
that this memory map differs from that of
ICE_BOOT since FLASH occupies the first 8
Mbytes. So it is not possible to alter the exception
vectors directly. Also, user programs must be
linked starting at location 0x0802.8000. This
means that it is necessary to change some settings
in the ADW (ARM Debugger for Windows) when
using Multi-ICE or JEENI. Make the following
changes:

1) The debugger variable $top_of_memory
must be set to 0xC100.0000 or 0x0900.0000.
The default value of 0x80000 will generate
“data abort” errors since there is no virtu
DRAM there.

2) Set the variable $vector_catch = 0. The ne
setting allows you to debug and view ROM
starting at location zero. This preven
Multi-ICE from trying to set software break
points on the vector table.

The debugger variables can be changed by click
on View→Debugger Internals.

Please note that each time that Multi-ICE or ADW
is restarted, these variables will need to be chan
again. Any changes you make to ADW settings a
not saved from one session to the next.

From To Description

0xC000.0000 0xC0FF.FFFF DRAM Bank 0

0x8000.0000 0x8000.1800 EP7211/09 registers

0x7000.0000 0x7000.007F On-chip boot ROM

0x6000.0000 0x6000.95FF On-chip SRAM

0x5000.0000 0x5FFF.FFFF Expansion Header

0x4000.0000 0x4FFF.FFFF USB Interface Device

0x3001.0000 0x3001.FFFF Keyboard scan latch and Touch Screen

0x3000.0000 0x3000.FFFF Parallel Port

0x2000.0000 0x2FFF.FFFF Ethernet controller CS8900A

0x1000.0000 0x1FFF.FFFF NAND FLASH

0x0802.8000 0x08FF.FFFF User program space (DRAM)

0x0802.0000 0x0802.7FFF Angel workspace (DRAM)

0x0800.0000 0x0801.FFFF LCD frame buffer (DRAM)

0x0000.0000 0x007F.FFFF FLASH Bank 0

Table 2. Angel Memory Map
6 AN177REV2

AN177

-
e.

ick

 on
 to

o-
m-
6. RUNNING MULTI-ICE WITH THE
PLAYER DEMO.

Player is the MP3/WMA audio playback program
that is available from Cirrus Logic. Unlike Angel
or ICE_BOOT, Player does not use DRAM. The
only RAM available is on-chip.

The following table illustrates how memory is set
up for the Player Demo.

Note how much more compact this memory model
is. The size of the Translation table is relatively
small since there are fewer entries (five Level 1
entries for a total of 20 bytes). This is the preferred
method in an embedded environment where
memory is at a premium.

Despite the lack of DRAM, it is still possible to do
source-level debugging of Player. The steps to do
this are as follows:

1) Compile the Player program using the
Debug Variant in the Project Window. This
will create Player.rom in the \Debug direc-
tory.

2) Use the Download utility to program the
Flash memory with Player.rom

3) Start the Player

4) Start the debugger with MultiICE

5) Set $vector_catch = 0

6) Load the symbols for the player. Note that
under File, there is a “Load” and “Load sym
bols only” menu option. Use the second on
Select Player.axf in the \Debug directory.

7) Set the PC to 0. This simulates a reset (Cl
on View → Registers → Current Mode).

8) Click on Run or press the F5 key.

9) Press the User 1 or User 2 key (depending
release number) on the evaluation board
start the music playing.

10) At this point you can stop and restart the pr
gram using the debugger Stop and Run co
mands.

From To Description

0x0050.0000 0xFFFF.FFFF Undefined. Accesses generate Data Abort

0x0040.0000 0x004F.FFFF USB interface (nCS4)

0x0030.0000 0x003F.FFFF NAND FLASH interface (nCS1)

0x0020.0000 0x002F.FFFF EP7209 internal registers

0x0010.0000 0x001F.FFF 1 Mb Internal SRAM (only 38.4K exists)

0x0000.0000 0x000F.FFFF 1Mb of program ROM (nCS0)

Table 3. Player Demo Memory Map
AN177REV2 7

AN177

r
or
n

i-
ot
le

to
g
o

-

7. ALTERNATIVE DEBUGGING
METHOD

The previous method uses the native environment
for source level debugging of Player. It has the
advantage of being easy to set up and use.
However, there are some inherent disadvantages:

l Since code resides and Flash, you cannot
change program memory (although you can
change registers and data in SRAM)

l Downloading the program to Flash takes some
time, which can be inconvenient if you need to
make many changes to the code.

An alternative is to build the Player program in the
ICE_Boot debugging environment. In this case,
code is loaded into DRAM and debugged there.
Code downloads are via MultiICE, which is very
fast. And since all code is in DRAM, you can
modify the code, change interrupt vectors, and do
other debugging tricks that may not be possible
using the native mode.

NOTE: This should only be performed by experi-
enced or daring programmers.

Building the project for ICE_Boot mode requires
that you make some changes to the source code. In
particular:

l All registers need to be redefined with a base
address of 0x8000.0000 (instead of
0x0002.C000).

l The base address of the internal SRAM needs
to be changed to 0x6000.0000 (instead of
0x0002.0000).

l The base address of the NAND Flash needs to
be changed to 0x1000.000 (instead of
0x0030.000).

l The base address of the USB port needs to be
changed to 0x4000.0000 (instead of
0x0040.0000).

The easiest way to manage this is to create a new
project file and add #defines (for C) and :DEF: (for
assembly) to the source files. The files affected are:
ep7209.h, ep7209.inc, and vectors.s.
The changes to vectors.s are such that all code

that sets up the MMU and the memory
configuration registers are bypassed, as this is
already set up in ICE_BOOT. (These tasks are
performed in the Reset Handler routine.)

8. GENERAL HINTS

Here are some tips or hints that will assist you in
carrying out your debugging activities:

1) As mentioned earlier, you can click on View
→Debugger Internals to set the debugger’s
internal variables. But, here are two alterna-
tive ways of accomplishing the same task

l In the Command Window of the
ADW, you can assign the values
directly, for example, type
$vector_catch=0 then press the Enter
key.

l You can also create a text file with a
list of debugger commands. Then in
the Command Window, type Obey
filename, where filename is the
ASCII file (created with Notepad)
that contains the commands.

2) Under Windows® 95/98, you can view the
A U TO E XE C . B AT f i l e b y r un n in g
SYSEDIT. Go to the START button, click on
RUN, then type SYSEDIT and click on OK.

3) Any “Data Abort” errors that the debugge
displays are due to either a bad value f
$top_of_memory, or the memory regio
being examined is invalid.

4) A “Processor not stopped” message ind
cates that either TEST0 and TEST 1 are n
grounded or that the processor is in the Id
or the Standby state

5) If you use SWI calls in your code, be sure
use the -fz compiler option before compilin
the project in the ARM Project Manager. T
choose this option go to Project → Tools
Configuration for xxx.apj → <cc>=armcc
→ set; then check “Inline SWI's may over
write link register” under the Code Genera-
tion tab.
8 AN177REV2

AN177
6) With Multi-ICE, you need to cycle the
power on the development board in order to
restart the ROM program in your develop-
ment board.

7) An updated ARM debugger for Multi-ICE
(ADW or MDW) is installed by Multi-ICE
setup. Use this debugger as it supports
Multi-ICE in Options → Configure Debug-
ger.
AN177REV2 9

