
1

Copyright  Cirrus Logic, Inc. 1997
(All Rights Reserved)

Cirrus Logic, Inc.
Crystal Semiconductor Products Division
P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.crystal.com

AN89

Application Note

Interfacing the CS5525/6/9 to the 68HC05

By Keith Coffey

INTRODUCTION

This application note details the interface of Crys-
tal Semiconductor’s CS5525/6/9 Analog-to-Digi-
tal Converter (ADC) to a Motorola 68HC05
microcontroller. This note takes the reader through
a simple example describing how to communicate
with the ADC. All algorithms discussed are includ-
ed in the Appendix at the end of this note.

ADC DIGITAL INTERFACE

The CS5525/6/9 interfaces to the 68HC05 through
either a three-wire or a four-wire interface. Figure
1 depicts the interface between the two devices.
Though this software was written to interface to the
SPITM on the 68HC05, the algorithms can be easily
modified to work in the four-wire format.

The ADC’s serial port consists of four control
lines: CS, SCLK, SDI, and SDO.

CS, Chip Select, is the control line which enables
access to the serial port.

SCLK, Serial Clock, is the bit-clock which controls
the shifting of data to or from the ADC’s serial
port.

SDI, Serial Data In, is the data signal used to trans-
fer data from the 68HC05 to the ADC.

SDO, Serial Data Out, is the data signal used to
transfer output data from the ADC to the 68HC05.

SOFTWARE DESCRIPTION

This note presents algorithms to initialize the
68HC05 and the CS5525/6/9, perform a self-offset
calibration, modify the CS5525/6/9’s gain register,
and acquire a conversion. Figure 2 depicts a block

CS5525/6/9 68HC05

PA0

MOSI (PD3)

MISO (PD2)

SCK (PD4)

CS

SDI

SDO

SCLK

Figure 1. 3-Wire and 4-Wire Interfaces

CS5525/6/9 68HC05

No Connect

MOSI (PD3)

MISO (PD2)

SCK(PD4)

CS

SDI

SDO

SCLK

NOV ‘97
AN89Rev2

AN89

2 AN89Rev2

diagram. While reading this application note,
please refer to the Appendix for the code listing.

Initialize

Initialize is a subroutine that configures the SPITM

on the 68HC05 and places the CS5525/6/9 in the
command-state. Figure 1 depicts how the interface
is configured (for more information on configuring
the SPITM refer to Motorola’s M68HC05 Applica-
tion Guide). After configuring the SPITM, the con-
troller enters a delay state to allow time for the
CS5525/6/9’s power-on-reset and oscillator to
start-up (oscillator start-up time is typically 500
mS). The last step is to reinitialize the serial port on
the ADC (reinitializing the serial port is unneces-
sary here, the code was added for demonstration
purposes only). This is implemented by sending the
converter sixteen bytes of logic 1’s followed by one
final byte, with its LSB at logic 0. Once sent, the se-
quence places the serial port of the ADC into the
command-state, where it awaits a valid command.

After returning to main, the software demonstrates
how to calibrate the converter’s offset.

Self-Offset Calibration

Calibrate is a subroutine that calibrates the con-
verter’s offset. Calibrate first sends 0x000001
(Hex) to the configuration register. This instructs
the converter to perform a self-offset calibration.
Then the Done Flag (DF) bit in the configuration
register is polled until set. Once DF is set, it indi-
cates that a valid calibration is performed. To min-
imize digital noise (while performing a calibration
or a conversion), many system designers may find
it advantageous to add a software delay equivalent
to a conversion or calibration cycle before polling
the DF bit.

Read/Write Gain Register

To modify the gain register the command-byte and
data-byte variables are first initialized. This is ac-
complished with the LDA and STA opcodes. The
subroutine write_register uses these variables to set
the contents of the gain register in the CS5525/6/9
to 0x800000 (HEX). To do this, write_register
calls send_spi four times (once for the command-
byte and three additional times for the 24 bits of da-
ta). Send_spi is a subroutine used to transfer a byte
of information from the 68HC05 to the CS5525/6/
9 via the SPITM. A byte is transferred one bit at a
time, MSB (most significant bit) first. Figure 3 de-
picts the timing diagram for the write-cycle in the
CS5525/6/9’s serial port. This algorithm demon-
strates how to write to the gain register. It does not
perform a gain calibration. To perform a gain cali-
bration, follow the procedures outlined in the data
sheet.

To verify if 0x800000(HEX) was written to the
gain register, read_register is called. It duplicates
the read-cycle timing diagram depicted in Figure 4.
Read_register calls send_spi once to transfer the
command-byte to the CS5525/6/9. This places the
converter into the data-state where it waits until
data is read from its serial port. Read_register calls
receive_spi three times and transfers three bytes of

START

INITIALIZE

SELF-OFFSET CAL.

MODIFY GAIN

ACQUIRE CONVERSION

MICROCONTROLLER & CS5525/6/9

Figure 2. CS5525/6/9 Software Flowchart

AN89

AN89Rev2 3

information from the CS5525/6/9 to the 68HC05
via the SPITM. Similar to send_spi, receive_spi re-
ceives a byte one bit at a time MSB first. When the
transfer is complete, highbyte, midbyte, and low-
byte byte contain the CS5525/6/9’s 24-bit gain reg-
ister.

Acquire Conversion

To acquire a conversion the subroutine convert is
called. Convert sends the command-byte 0x0C to
the converter instructing it to perform a single con-
version. Then the Done Flag bit in the configura-
tion register is polled. When DF is set, it indicates

that a conversion was performed. The 68HC05 then
reads the conversion data register to acquire the
conversion. Figure 6 depicts how 16-bit and 20-bit
conversion words are stored in the 68HC05.

An alternate method can be used to acquire a con-
version. By setting the Port Flag bit (PF, the fifth
bit in the configuration register), SDO’s function is
modified to fall to logic 0 when a conversion is
complete (refer to Figure 5). By tying SDO to the
controller’s interrupt pin, conversions can be ac-
quired via an interrupt service routine.

Figure 3. Write-Cycle Timing

Figure 4. Read-Cycle Timing

AN89

4 AN89Rev2

.MSB High-Byte

Mid-Byte

Low-Byte

A) 20-Bit Conversion Data Word

MSB High-Byte

Mid-Byte

Low-Byte

B) 16-Bit Conversion Data Word

 0- always zero, 1- always one,

OD - Oscillation Detect, OF - Overflow

Figure 6. Bit Representation/Storage in 68HC05

MAXIMUM SCLK RATE

A machine cycle in the 68HC05 consists 2 oscilla-
tor periods or 500 ns if the microcontroller’s oscil-
lator frequency is 4 MHz. Since the CS5525/6/9’s
maximum SCLK rate is 2MHz, additional no oper-
ation (NOP) delays may be necessary to reduce the

transfer rate if the microcontroller system requires
higher rate oscillators.

CONCLUSION

This application note presents an example of how
to interface the CS5525/6/9 to the 68HC05. It is di-
vided into two main sections: hardware and soft-
ware. The hardware section illustrates both a three-
wire and a four-wire interface. The three-wire in-
terface is SPITM and MICROWIRETM compatible.
The software section illustrates how to initialize the
converter and microcontroller, calibrate the con-
verters offset, write to and read from the ADC’s in-
ternal register, and acquire a conversion. The
software is modularized and illustrates important
subroutines, e.g. write_register and read_register.
The software described in this note is included in
the Appendix at the end of this document.

SPITM is a trademark of Motorola.

MICROWIRETM is a trademark of National Semi-
conductor.

D19 D18 D17 D16 D15 D14 D13 D12

D11 D10 D9 D8 D7 D6 D5 D4

D3 D2 D1 D0 0 0 OD OF

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 0 0 OD OF

Command Time
8 SCLKs

8 SCLKs Clear SDO Flag

Data SDO Continuous Conversion Read (PF bit = 1)

SDO

SCLK

SDI

t *d

Data Time
24 SCLKs

MSB LSB

* td = XIN/OWR clock cycles for each conversion except the
first conversion which will take XIN/OWR + 7 clock cycles

XIN/OWR
Clock Cycles

Figure 5. Conversion/Acquisition Cycle with the PF Bit Asserted

AN89

AN89Rev2 5

APPENDIX

68HC05 Microcode to Interface to the CS5525/6/9

**
*
* File: 55266805.asm
* Date: November 1, 1996
* Programmer: Keith Coffey
* Revision: 0
*
* Processor: 68HC05
*
* Program entry point at routine "main". The entry point is address $100
**
*
* This program is designed as an example of interfacing a 68HC05 to a CS5525/6/9
* ADC. The program interfaces via SPI (i.e. port D) which controls the
* serial communications, calibration, and conversion signals. Other ADC’s
* (16-bit and 20-bit) in the product family can be used.
**
******** Memory Map Equates
PORTA EQU $00 ; General Purpose I/O Port
DDRA EQU $04 ; Data Direction Control For Port A
SPCR EQU $0A ; Serial Peripheral Control Register
SPSR EQU $0B ; Serial Peripheral Status Register
SPDR EQU $0C ; Serial Peripheral Data I/O Register
SPIF EQU 7 ; Serial Peripheral Data Transfer Flag
******** RAM Values

ORG $50
******** Ram Memory Equates
HIGHBYTE RMB 1 ; Upper 8 bits of Conversion Register
MIDBYTE RMB 1 ; Middle 8 bits of Conversion Register
LOWBYTE RMB 1 ; Lowest 8 Bits of Conversion Register
COMMANDBYTE RMB 1 ; One byte RAM storage location

AN89

6 AN89Rev2

**
* Program Code
**

ORG $0100
**
* Routine - Main
* Input - none
* Output - none
* This is the entry point to the program.
**
MAIN EQU * ; Start from Reset Vector
******** Initialize System and Perform SELF OFFSET Calibration

JSR initialize ; Initialize the system
JSR calibrate ; Calibrate the ADC Offset

******** Write to the GAIN Register
LDA #$82 ; Prepare COMMANDBYTE
STA COMMANDBYTE
LDA #$80 ; Prepare HIGHBYTE
STA HIGHBYTE
CLR MIDBYTE ; Prepare MIDBYTE
CLR LOWBYTE ; Prepare LOWBYTE
JSR write_register ; Write to Gain Register

******** Read from the GAIN Register
LDA #$92 ; Prepare COMMANDBYTE
STA COMMANDBYTE
JSR read_register ; Read the Gain Register

******** Perform Single Conversions
LOOP JSR convert ; Convert Analog input

JMP LOOP ; Repeat Loop
******** End MAIN

AN89

AN89Rev2 7

**
* Subroutines
**
**
* Routine - initialize
* Input - none
* Output - none
* This subroutine initializes port D for interfacing to the CS5525/6/9 ADC.
* It provides a time delay for oscillator start-up/wake-up period.
* A typical start-up time for a 32768 Hz crystal, due to high Q, is 500 ms.
* Also 1003 XIN clock cycles are allotted for the ADC’s power on reset.
**
initialize LDA #%01010000 ; Load ACCA with for SPSC

STA SPCR ; Setup SPI
LDA #40 ; Load ACCA with delay count
JSR delay ; Delay, Power on Reset 1003 XIN
LDA #220 ; Load ACCA with delay count
JSR delay ; Delay, Oscillator start-up 170 mS
JSR delay ; Delay, Oscillator start-up 170 mS
JSR delay ; Delay, Oscillator start-up 170 mS
LDX #$0F ; Reset Serial Port on ADC
LDA #$FF ; Load ACCA with $FF

loop JSR send_spi ; Move $FF to SPDR
DECX ; Decrement the counter
BNE loop ; Repeat loop is counter not zero
LDA #%11111110 ; Load ACCA with last byte
JSR send_spi ; Move $FE to SPDR
RTS ; Exit subroutine

**
* Routine - calibrate
* Input - none
* Output - none
* This subroutine instructs the CS5525/6/9 to perform self-calibration.
**
calibrate LDA #$84 ; set command byte for config write

STA COMMANDBYTE ; set COMMAND BYTE
CLR HIGHBYTE ; clear HIGHBYTE
CLR MIDBYTE ; clear MIDBYTE
LDA #$01 ; get ready for self offset cal
STA LOWBYTE ; set LOWBYTE
JSR write_register ; Write to Config Register

LDA #$94 ; set command byte for config read
STA COMMANDBYTE ; set COMMAND BYTE

poll_done: JSR read_register ; Poll done flag until cal complete
BRCLR 3,LOWBYTE,poll_done; repeat if flag not set
RTS ; Exit subroutine

AN89

8 AN89Rev2

**
* Routine - convert
* Input - none
* Output - Conversion results in memory locations HIGHBYTE, MIDBYTE and
* LOWBYTE. This algorithm performs only single conversions. If
* continuous conversions are needed the routine needs to be
* modified. Port flag is zero.
*
* HIGHBYTE MIDBYTE LOWBYTE
* 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
* 16-bit results MSB LSB 1 1 1 1 0 0 OD OF
* 20-bit results MSB LSB 0 0 OD OF
* This subroutine initiates a single conversion.
**
convert LDA #$C0 ; Set COMMANDBYTE for single CONV

STA COMMANDBYTE
JSR send_spi ; Transmit command out SPI
LDA #$94 ; Set command byte for config read
STA COMMANDBYTE ; Send COMMAND BYTE

done1 JSR read_register ; Poll done flag until CONV complete
BRCLR 3,LOWBYTE,done1 ; Repeat if Done Flag not Set

LDA #$96 ; Set Byte to Read Conversion Reg.
STA COMMANDBYTE ; Store COMMAND BYTE
JSR read_register ; Acquire the Conversion
RTS ; Exit subroutine

**
* Routine - write_register
* Input - COMMANDBYTE, HIGHBYTE, MIDBYTE, LOWBYTE
* Output - none
* This subroutine instructs the CS5525/6/9 to write to an internal register.
**
write_register LDA COMMANDBYTE ; Load ACCA with COMMANDBYTE

JSR send_spi ; transfer byte
LDA HIGHBYTE ; Load ACCA with HIGHBYTE
JSR send_spi ; transfer byte
LDA MIDBYTE ; Load ACCA with MIDBYTE
JSR send_spi ; transfer byte
LDA LOWBYTE ; Load ACCA with LOWBYTE
JSR send_spi ; transfer byte
RTS ; Exit Subroutine

AN89

AN89Rev2 9

**
* Routine - read_register
* Input - COMMANDBYTE
* Output - HIGHBYTE, MIDBYTE, LOWBYTE
*
* This subroutine reads an internal register of the ADC.
**
read_register LDA COMMANDBYTE ; Load ACCA with COMMANDBYTE

JSR send_spi ; transfer byte
JSR receive_spi ; receive byte
STA HIGHBYTE ; Move ACCA with HIGHBYTE
JSR receive_spi ; receive byte
STA MIDBYTE ; Move ACCA with MIDBYTE
JSR receive_spi ; receive byte
STA LOWBYTE ; Move ACCA with LOWBYTE
RTS ; Exit Subroutine

**
* Routine - send_spi
* Input - Byte to be transmitted is placed in ACCA
* Output - none
*
* This subroutine sends a byte to the ADC.
**
send_spi: STA SPDR ; Move ACCA to SPDR
wait0 BRCLR SPIF,SPSR,wait0 ; Loop until byte is transmitted

RTS ; Exit Subroutine

**
* Routine - receive_spi
* Input - none
* Output - Byte received is placed in ACCA
* This subroutine receives a byte from the ADC.
**
receive_spi: CLRA ; Load ACCA register with Zero

STA SPDR ; Initiate a transfer of all Zero’s
wait1 BRCLR SPIF,SPSR,wait1 ; Reset Flag SPIF bit

LDA SPDR ; Move SPDR to ACCA
RTS ; Exit Subroutine

AN89

10 AN89Rev2

**
* Routine - delay
* Input - Count in register A
* Output - none
*
* This subroutine delays by using count from register A. The 68HC05
* development board uses a 4.0MHz clock (E = 2.0 MHz), thus each cycle is
* 500 nS. This delay is equivalent to (500ns)*(1545)*(count value),
* (a count of 720 provides a 556ms delay).
**
delay
outlp CLRX ; X used as inner loop count
innlp DECX ; 0-FF, FF-FE, FE-FD,1-0 256 loops

NOP ; 2 cycles
NOP ; 2 cycles
BNE innlp ; 10 cycles*256*500ns=1.28 ms
DECA ; Countdown the accumulator
BNE outlp ; 2569 cycles*500ns*A
RTS ; Exit subroutine

**
* Interrupt Vectors
**
NOT_USED RTI

ORG $1FF4 ; Interrupt Vectors
FDB NOT_USED ; SPI Interrupt
FDB NOT_USED ; SCI Interrupt
FDB NOT_USED ; Timer Interrupt
FDB NOT_USED ; IRQ Interrupt
FDB NOT_USED ; SWI Interrupt
FDB MAIN ; Reset interrupt- power on reset

• Notes •

