
Embedded RISC
Microcontroller
Core

ARM7TDMI™

Rev. 0673CS–11/99
Features
• 32-bit RISC Architecture
• Two Instruction Sets:

– ARM® High-performance 32-bit Instruction Set
– Thumb® High-code-density 16-bit Instruction Set

• Very Low Power Consumption: Industry-leader in MIPS/Watt
• 4G Bytes Linear Address Space
• Von Neumann Load/Store Architecture:

– Single 32-bit Data Bus for Instructions and Data
• 3-Stage Pipeline Architecture:

– Fetch, Decode and Execute Stage
• 8-, 16-, and 32-bit Data Types
• Single Cycle 32x8 Hardware Multiplier:

– Multiplication is Accelerated when Upper Bytes Are All Zero or One
• On-chip JTAG Debug and In Circuit Emulation
• Extensive Range of Third-party Application Development Tools

Description
The ARM7TDMI™ embedded microcontroller core is a member of the Advanced
RISC Machines (ARM®) family of general purpose 32-bit microprocessors, which offer
high performance and very lower power consumption. Its outstanding feature is the
16-bit Thumb® subset of the most commonly used 32-bit instructions. These are
expanded at run time with no degradation of system performance. This gives 16-bit
code density (saving memory area and cost) coupled with 32-bit processor
performance.

The ARM architecture is based on Reduced Instruction Set Computer (RISC) princi-
ples, and the instruction set and related decode mechanism are much simpler than
those of microprogrammed Complex Instruction Set Computers. This simplicity results
in a high instruction throughput and impressive real-time interrupt response from a
small and cost-effective chip.

Pipelining is employed so that all parts of the processing and memory systems can
operate continuously. Typically, while one instruction is being executed, its successor
is being decoded, and a third instruction is being fetched from memory.

The ARM memory interface has been designed to allow the performance potential to
be realized without incurring high costs in the memory system. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic, and these control signals facilitate the exploitation of the fast local
access modes offered by industry standard dynamic RAMs.

The ARM memory interface is also ideally suited to interfacing, either on-chip or off-
chip, with Atmel’s Flash memory blocks. These give the benefits of in-system pro-
grammability and security, reducing time-to-market and system cost.

The ARM7TDMI core is supported by an extensive range of application development
tools. These are fully described in the AT91Business Partners section of Atmels’s
Web site (www.atmel.com).
1
Note: This is a summary document. For the complete 204-page
document, please visit our web site at www.atmel.com or e-mail at
literature@atmel.com and request literature #0673B.

ARM7TDMI Input/Output Signals

Figure 1. ARM7TDMI Input/Output Signals

LOCK

A[31:0]

ABORT
Memory
Management

nOPC

nCPI

CPA
CPB

Coprocessor
Interface

nTRANS

Memory
Interface

Interface

D[31:0]

TCK
TMS
TDI

nTRST

Boundary
Scan

TDO

Processor
Mode

nRW

nMREQ
SEQ

BL[3:0]

MAS[1:0]

APE

TBIT Processor
State

nM[4:0]

A
R

M
7T

D
M

I

DIN[31:0]

DOUT[31:0]

TAPSM[3:0]
IR[3:0]

Boundary Scan

TCK1
TCK2

11
Control Signals

nTDOEN

SCREG[3:0]

ABE

ALE

nIRQ

nFIQ

Bus

Interrupts

ISYNC

nRESET

MCLK

nWAITClocks

VDD

VSS
Power

DBGRQ

BREAKPT

DBGACK
nEXEC

Debug

Controls

EXTERN 1

DBE

TBE

EXTERN 0

nENOUT

nENIN

ECLK

DBGEN

APE

HIGHZ

BIGEND

BUSEN

RANGEOUT0

RANGEOUT1

DBGRQI

COMMRX
COMMTX

nENOUTI

ECAPCLK

BUSDIS
ARM7TDMI2

ARM7TDMI
ARM7TDMI Block Diagram

Figure 2. ARM7TDMI Block Diagram

As shown in Figure 1 and Figure 2, the ARM7TDMI con-
sists of a processor, a TAP controller for boundary scan,
and an in-circuit emulator (ICEBreaker). The bi-directional

data bus D[31:0] is split into uni-directional input and output
buses for compatibility with a wide range of external
memories.

•

•

Scan Chain 0

A[31:0]

Core

Scan Chain 1
D[31:0]

nOPC
nRW

All
Other

Signals

TCK

TMS

TDI

nTRST

TDO

EXTERN1

EXTERN0

nTRANS
nMREQ

Scan Chain 2

ICEBreaker

TAP

Controller

MAS[1:0]

B
u

s
S

p
lit

te
r

DIN[31:0]

DOUT[31:0]

RANGEOUT1

RANGEOUT0

TAPSM[3:0]

IR[3:0]

SCREG[3:0]
3

ARM7TDMI Processor

Figure 3. ARM7TDMI Processor

The ARM7TDMI processor is built around a bank of 37 32-
bit registers and six status registers. It features an integral
32 x 8 multiplier and 32-bit barrel shifter. Five independent
internal buses (the PC Bus, the Increment Bus, the ALU
Bus and the A- and B-Buses) allow a high degree of paral-
lelism in instruction execution.

Operating Modes
ARM7TDMI supports seven modes of operation:
• User (usr):

The normal ARM program execution state

• FIQ (fiq):
Designed to support a data transfer or channel process

• IRQ (irq):
Used for general-purpose interrupt handling

• Supervisor (svc):
Protected mode for the operating system

• Abort mode (abt):
Entered after a data or instruction prefetch abort

• System (sys):
A privileged user mode for the operating system

• Undefined (und):
Entered when an undefined instruction is executed

Mode changes may be made under software control, or
may be brought about by external interrupts or exception
processing. Most application programs will execute in User
mode. The non-user modes - known as privileged modes -
are entered in order to service interrupts or exceptions, or
to access protected resources.

Each operating mode has dedicated banked registers for
fast exception handling. The FIQ mode has five additional
banked working registers, r8_fiq to r12_fiq, to enhance
interrupt processing speed.

�����������	�
��

������	
����	�
���
�	�����	������
�
������	�
����

�������
��������
��

���������
	��	��

�������� 	!
��

���	
��"#

$�	
��%�
�����	�
��

���
���
���
	&��%��&���

'
(&�
�&��"&�	�

���
���
	&�

) ���
���
���
	&�

%��&������&�

*	���	��

��������		
������

��������������

*
(
��
��

�
��
��

�
��
��

��
��
��

��

��

��

�
"#

��
��
ARM7TDMI4

ARM7TDMI
Registers
ARM7TDMI has a total of 37 registers – 31 general-pur-
pose 32-bit registers and six status registers – but these
cannot all be seen at once. The processor state and oper-
ating mode dictate which registers are available to the pro-
grammer.

The ARM State Register Set
In ARM state, 16 general registers and one or two status
registers are visible at any one time. In privileged (non-
User) modes, mode-specific banked registers are switched
in. Figure 4 shows which registers are available in each
mode: the banked registers are marked with a shaded tri-
angle.

The ARM state register set contains 16 directly accessible
registers: R0 to R15. All of these except R15 are general-
purpose, and may be used to hold either data or address
values. In addition to these, there is a seventeenth register
used to store status information.

Figure 4. Register Organization in ARM State

ARM State General Registers and Program Counter

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

R13_fiq

R14_fiq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_svc

R14_svc

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_abt

R14_abt

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_irq

R14_irq

R15 (PC)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13_und

R14_und

R15 (PC)

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

ARM State Program Status Registers

= banked register
5

The THUMB State Register Set
The THUMB state register set is a subset of the ARM state
set. The programmer has direct access to eight general
registers, R0-R7, as well as the Program Counter (PC), a
stack pointer register (SP), a link register (LR), and the

CPSR. There are banked Stack Pointers, Link Registers
and Saved Process Status Registers (SPSRs) for each
privileged mode.

Figure 5. Register Organization in Thumb State

R0

R1

R2

R3

R4

R5

R6

R7

SP

LR

PC

System & User FIQ Supervisor Abort IRQ Undefined

CPSR CPSR

SPSR_fiq

CPSR

SPSR_svc

CPSR

SPSR_abt

CPSR

SPSR_irq

CPSR

SPSR_und

R0

R1

R2

R3

R4

R5

R6

R7

SP_fiq

LR_fiq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_svc

LR_svc

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_abt

LR_abt

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_irq

LR_irq

PC

R0

R1

R2

R3

R4

R5

R6

R7

SP_und

LR_und

PC

THUMB State General Registers and Program Counter

THUMB State Program Status Registers

= banked register
ARM7TDMI6

ARM7TDMI
ARM7TDMI Architecture
The ARM7TDMI is a 3-stage pipeline, 32-bit RISC proces-
sor. The processor architecture is Von Neumann load/store
architecture, which is characterized by a single data and
address bus for instructions and data. The CPU has two
instruction sets, the ARM and the Thumb instruction set.
The ARM instruction set has 32-bit wide instructions and
provides maximum performance. Thumb instructions are
16-bits wide and give maximum code-density. Instructions
operate on 8-, 16-, and 32-bit data types.

The THUMB Concept
The ARM7TDMI processor employs a unique architectural
strategy known as THUMB, which makes it ideally suited to
high-volume applications with memory restrictions, or appli-
cations where code density is an issue.

The key idea behind THUMB is that of a super-reduced
instruction set. Essentially, the ARM7TDMI processor has
two instruction sets:
• the standard 32-bit ARM set

• a 16-bit THUMB set

The THUMB set’s 16-bit instruction length allows it to
approach twice the density of standard ARM code while
retaining most of the ARM’s performance advantage over a
traditional 16-bit processor using 16-bit registers. This is
possible because THUMB code operates on the same 32-
bit register set as ARM code.

THUMB code is able to provide up to 65% of the code size
of ARM, and 160% of the performance of an equivalent
ARM processor connected to a 16-bit memory system.

The Advantages of THUMB
THUMB instructions operate with the standard ARM regis-
ter configuration, allowing excellent interoperability
between ARM and THUMB states. Each 16-bit THUMB

instruction has a corresponding 32-bit ARM instruction with
the same effect on the processor model.

The major advantage of a 32-bit (ARM) architecture over a
16-bit architecture is its ability to manipulate 32-bit integers
with single instructions, and to address a large address
space efficiently. When processing 32-bit data, a 16-bit
architecture will take at least two instructions to perform the
same task as a single ARM instruction.

However, not all the code in a program will process 32-bit
data (for example, code that performs character string han-
dling), and some instructions, like Branches, do not
process any data at all.

If a 16-bit architecture only has 16-bit instructions, and a
32-bit architecture only has 32-bit instructions, then overall
the 16-bit architecture will have better code density, and
better than one half the performance of the 32-bit architec-
ture. Clearly 32-bit performance comes at the cost of code
density.

THUMB breaks this constraint by implementing a 16-bit
instruction length on a 32-bit architecture, making the pro-
cessing of 32-bit data efficient with a compact instruction
coding. This provides far better performance than a 16-bit
architecture, with better code density than a 32-bit
architecture.

THUMB also has a major advantage over other 32-bit
architectures with 16-bit instructions. This is the ability to
switch back to full ARM code and execute at full speed.
Thus critical loops for applications such as
• fast interrupts

• DSP algorithms

can be coded using the full ARM instruction set, and linked
with THUMB code. The overhead of switching from
THUMB code to ARM code is folded into sub-routine entry
time. Various portions of a system can be optimized for
speed or for code density by switching between THUMB
and ARM execution as appropriate.

Figure 6. Flexible Selection of ARM or Thumb Instruction Set
+�
�

���
���
���
	&�
%��&���

) ���
���
���
	&�
%��&��
�����&�

���

���

���

%��&�� ,����
�

������� �������

) �����
�
�

�-./

.�

���	
�%�
�

.�

.�
7

© Atmel Corporation 1999.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard war-
ranty which is detailed in Atmel’s Terms and Conditions located on the Company’s website. The Company assumes no responsibility for
any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without
notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual prop-
erty of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are
not authorized for use as critical components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL (408) 441-0311
FAX (408) 487-2600

Europe
Atmel U.K., Ltd.
Coliseum Business Centre
Riverside Way
Camberley, Surrey GU15 3YL
England
TEL (44) 1276-686677
FAX (44) 1276-686697

Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road
Tsimshatsui East
Kowloon, Hong Kong
TEL (852) 27219778
FAX (852) 27221369

Japan
Atmel Japan K.K.
Tonetsu Shinkawa Bldg., 9F
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Colorado Springs
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL (719) 576-3300
FAX (719) 540-1759

Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4 42 53 60 00
FAX (33) 4 42 53 60 01

Fax-on-Demand
North America:
1-(800) 292-8635

International:
1-(408) 441-0732

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

BBS
1-(408) 436-4309

 Printed on recycled paper.

0673CS–11/99/0M

ARM, Thumb and ARM Powered are registered trademarks of ARM Limited.
ARM7TDMI is a trademark of ARM Ltd.
Other marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation.
Terms and product names in this document may be trademarks of others.

