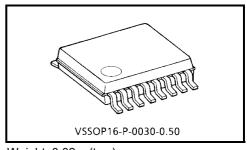
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T C 7 M H 5 9 5 F K


8-Bit Shift Register/Latch (3-State)

The TC7MH595FK is an advanced high speed 8 bit shift register/latch fabricated with silicon gate $\rm C^2MOS$ technology.

It achieves the high speed operation similar to equivalent bipolar schottky TTL while maintaining the CMOS low power dissipation.

The TC7MH595FK contains an 8 bit static shift register which feeds an 8 bit storage register.

Shift operation is accomplished on the positive going transition of the SCK input. The output register is loaded with the contents of the shift register on the positive going transition of the RCK input. Since RCK and SCK signal are independent, parallel

Weight: 0.02 g (typ.)

outputs can be held stable during the shift operation. And, since the parallel outputs are 3-state, it can be directly connected to 8 bit bus. This register can be used in serial-to-parallel conversion, data receivers, etc.

An input protection circuit ensures that 0 to 7 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.

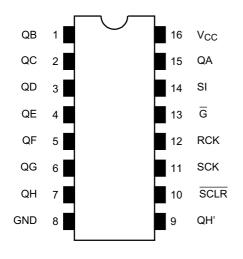
Features

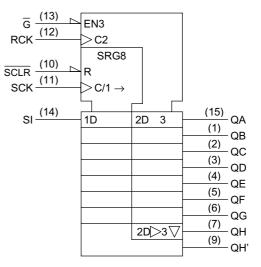
- High speed: $f_{max} = 185 \text{ MHz} (typ.) (V_{CC} = 5 \text{ V})$
- Low power dissipation: $I_{CC} = 4 \ \mu A \ (max) \ (Ta = 25^{\circ}C)$
- High noise immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ (min)
- Power down protection is provided on all inputs.
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: V_{CC} (opr) = 2~5.5 V
- Low noise: VOLP = 1.0 V (max)
- Pin and function compatible with 74ALS595

• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

• The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.


• The products described in this document are subject to the foreign exchange and foreign trade laws.

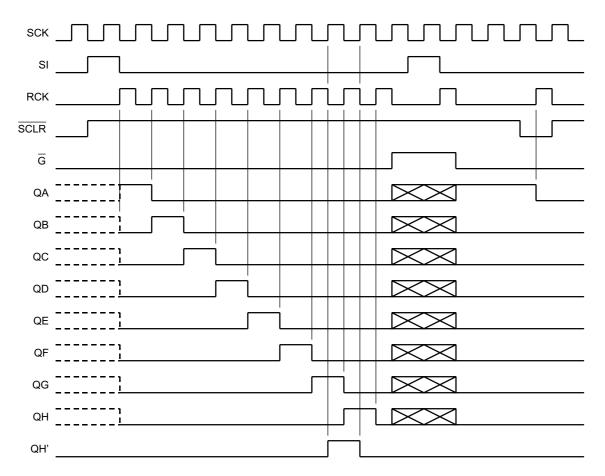

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

• The information contained herein is subject to change without notice.

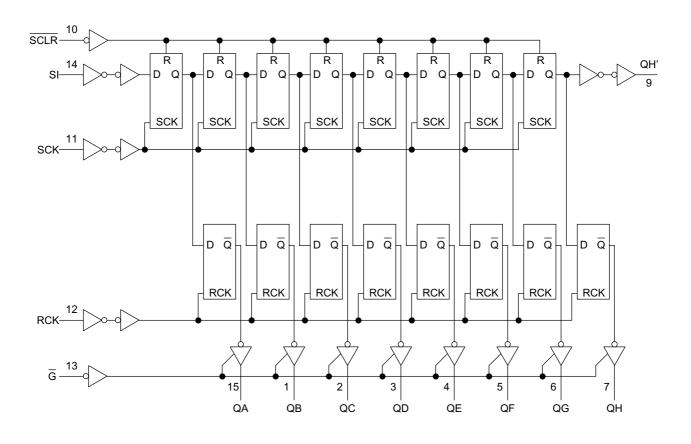
<u>TOSHIBA</u>

Pin Assignment (top view)

IEC Logic Symbol


Truth Table

	Inputs				Function				
SI	SCK	SCLR	RCK	Ğ	Function				
Х	х	Х	Х	Н	QA thru QH outputs disable				
Х	х	Х	Х	L	QA thru QH outputs enable				
Х	х	L	Х	Х	Shift register is cleared.				
L		Н	х	х	st stage of S.R. becomes "L". ner stages store the data of previous stage, respectively.				
н		Н	х	х	First stage of S.R. becomes "H". Other stages store the data of previous stage, respectively.				
Х	\neg	Н	Х	Х	State of S.R. is not changed.				
Х	х	Х		Х	S.R. data is stored into storage register.				
Х	Х	Х		Х	Storage register stage is not changed.				


X: Don't care

TOSHIBA

Timing Chart

System Diagram

Maximum Ratings

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7.0	V
DC input voltage	V _{IN}	-0.5~7.0	V
DC output voltage	V _{OUT}	$-0.5 \sim V_{CC} + 0.5$	V
Input diode current	IIК	-20	mA
Output diode current	I _{OK}	±20	mA
DC output current	IOUT	±25	mA
DC V _{CC} /ground current	ICC	±75	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65~150	°C

Recommended Operating Conditions

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	2.0~5.5	V
Input voltage	V _{IN}	0~5.5	V
Output voltage	V _{OUT}	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~100 (V_{CC} = 3.3 \pm 0.3 V)	ns/V
	ut/uv	$0\sim20 \ (V_{CC} = 5 \pm 0.5 \ V)$	115/ V

Electrical Characteristics

DC Characteristics

Charac	Symbol	Test Condition			Ta = 25°C			Ta = -40~85°C		Unit		
Charac	Characteristics		Test Condition		$V_{CC}(V)$	Min	Тур.	Max	Min	Max	Offic	
Input voltage			_		2.0	1.50	_	_	1.50	_	V	
	High level	V _{IH}			3.0~5.5	V _{CC} × 0.7			$V_{CC} \times 0.7$	_		
input voltage					2.0	—	—	0.50		0.50	v	
	Low level	VIL	—		3.0~5.5	_		$\begin{array}{c} V_{CC} \\ \times 0.3 \end{array}$	_	$\begin{array}{c} V_{CC} \\ \times 0.3 \end{array}$		
					2.0	1.9	2.0	—	1.9	—		
			., .,	I _{OH} = -50 μA	3.0	2.9	3.0	—	2.9	—		
	High level	V _{OH}	$V_{IN} = V_{IH}$ or V_{IL}		4.5	4.4	4.5	_	4.4	—		
				$I_{OH} = -4 \text{ mA}$	3.0	2.58	—	—	2.48	—		
Output				$I_{OH} = -8 \text{ mA}$	4.5	3.94	_	_	3.80		- v	
voltage					2.0	_	0	0.1	—	0.1	v	
				$I_{OL} = 50 \ \mu A$	3.0	—	0	0.1	—	0.1		
	Low level	V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}		4.5		0	0.1	_	0.1		
				$I_{OL} = 4 \text{ mA}$	3.0	—	—	0.36	—	0.44		
				$I_{OL} = 8 \text{ mA}$	4.5		_	0.36	_	0.44		
3-state output off-state current		I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = V_{CC} \text{ or } GND$		5.5	—	—	±0.25	_	±2.50	μΑ	
Input leakage current		I _{IN}	$V_{IN} = 5.5 \text{ V or GND}$		0~5.5	_		±0.1	—	±1.0	μA	
Quiescent sup	ply current	ICC	$V_{IN} = V_{CC}$	or GND	5.5	_	_	4.0		40.0	μA	

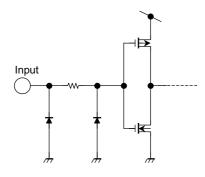
Timing Requirements (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = -40~85°C	Unit	
Characteristics	Symbol	Test Condition	$V_{CC}(V)$	Тур.	Limit	Limit	Unit	
Minimum pulse width	t _{w (H)}		3.3 ± 0.3	_	5.0	5.0		
(SCK, RCK)	t _{w (L)}		5.0 ± 0.5	—	5.0	5.0	ns	
Minimum pulse width	t		3.3 ± 0.3	_	5.0	5.0	ns	
(SCLR)	t _{w (L)}		5.0 ± 0.5		5.0	5.0	115	
Minimum set-up time	+		3.3 ± 0.3	_	3.5	3.5	ns	
(SI-SCK)	ts	—	5.0 ± 0.5	—	3.0	3.0	ns	
Minimum set-up time	+		3.3 ± 0.3	_	8.0	8.5	20	
(SCK-RCK)	ts	—	5.0 ± 0.5	—	5.0	5.0	ns	
Minimum set-up time	+		3.3 ± 0.3	_	8.0	9.0	20	
(SCLR -RCK)	ts	—	5.0 ± 0.5	—	5.0	5.0	ns	
Minimum hold time	t .		3.3 ± 0.3	_	1.5	1.5	20	
(SI-SCK)	t _h	—	5.0 ± 0.5	—	2.0	2.0	ns	
Minimum hold time	t.		3.3 ± 0.3	_	0	0	200	
(SCK-RCK, SCLR -RCK)	t _h		5.0 ± 0.5	_	0	0	ns	
Minimum removal time	+		3.3 ± 0.3		3.0	3.0	20	
(SCLR)	t _{rem}	_	5.0 ± 0.5		2.5	2.5	ns	

AC Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Currente e l	Test Condition			Ta = 25°C			Ta = -4	Unit	
Characteristics	Symbol	Test Condition	V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Unit
			3.3 ± 0.3	15		8.8	13.0	1.0	15.0	ns
Propagation delay time	t _{pLH}		3.3 ± 0.3	50	_	11.3	16.5	1.0	18.5	
(SCK-QH')	tpHL		5.0 ± 0.5	15	_	6.2	8.2	1.0	9.4	
			5.0 ± 0.5	50	_	7.7	10.2	1.0	11.4	
			3.3 ± 0.3	15	_	8.4	12.8	1.0	13.7	
Propagation delay time	+		3.3 ± 0.3	50		10.9	16.3	1.0	17.2	20
(SCLR -QH')	t _{pHL}		5.0 ± 0.5	15	_	5.9	8.0	1.0	9.1	ns
			5.0 ± 0.5	50	_	7.4	10.0	1.0	11.1	
		_	3.3 ± 0.3	15	_	7.7	11.9	1.0	13.5	- ns
Propagation delay time	^t pLH ^t pHL			50	_	10.2	15.4	1.0	17.0	
(RCK-Q _n)			5.0 ± 0.5	15		5.4	7.4	1.0	8.5	
				50		6.9	9.4	1.0	10.5	
	t _{pZL} t _{pZH}	$R_L = 1 k\Omega$	3.3 ± 0.3	15	_	7.5	11.5	1.0	13.5	ns
Output enable time				50	_	9.0	15.0	1.0	17.0	
Output enable time			5.0 ± 0.5	15	_	4.8	8.6	1.0	10.0	
				50		8.3	10.6	1.0	12.0	
Output disable time	t _{pLZ}	$R_L = 1 k\Omega$	$\textbf{3.3}\pm\textbf{0.3}$	50	_	12.1	15.7	1.0	16.2	ns
	t _{pHZ}	1/2 - 1 //22	5.0 ± 0.5	50	_	7.6	10.3	1.0	11.0	115
			3.3 ± 0.3	15	80	150	_	70	_	MHz
Maximum clock frequency	f _{max}		5.5 ± 0.5	50	55	130		50	_	
Maximum clock frequency	Imax	_	5.0 ± 0.5	15	135	185	_	115	—	
			5.0 ± 0.5	50	95	155	_	85	_	
Input capacitance	C _{IN}		_			4	10		10	pF
Output capacitance	C _{OUT}	-			_	6				pF
Power dissipation capacitance	C _{PD}			(Note)		87	_		_	pF

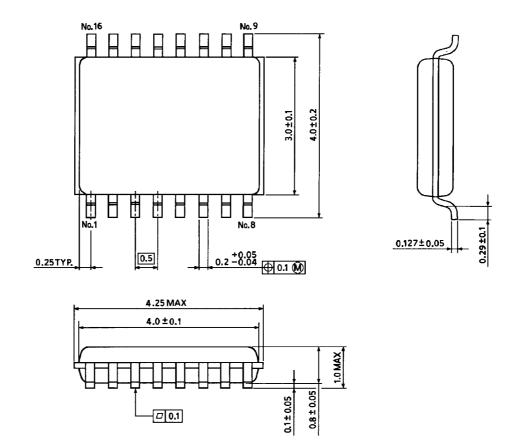
Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

Noise Characteristics (Input: $t_r = t_f = 3 \text{ ns}$)

Characteristics	Symbol	Test Condition	_	Ta = 25°C		Unit
	Symbol	Test Condition	$V_{CC}(V)$	Тур.	Limit	Onic
Quiet output maximum dynamic V_{OL}	V _{OLP}	$C_L = 50 \text{ pF}$	5.0	0.8	1.0	V
Quiet output minimum dynamic V_{OL}	V _{OLV}	$C_L = 50 \text{ pF}$	5.0	-0.8	-1.0	V
Minimum high level dynamic input voltage VIH	V _{IHD}	$C_L = 50 \text{ pF}$	5.0	_	3.5	V
Maximum low level dynamic input voltage VIL	V _{ILD}	C _L = 50 pF	5.0		1.5	V


Input Equivalent Circuit

Package Dimensions

VSSOP16-P-0030-0.50

Unit : mm

Weight: 0.02 g (typ.)