

April 2001 Revised September 2001

FIN1027

3.3V LVDS 2-Bit High Speed Differential Driver

General Description

This dual driver is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signal levels to LVDS levels with a typical differential output swing of 350 mV which provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed transfer of clock or data.

The FIN1027 can be paired with its companion receiver, the FIN1028, or with any other LVDS receiver.

Features

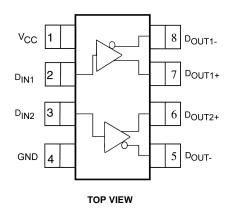
- Greater than 600Mbs data rate
- 3.3V power supply operation
- 0.5ns maximum differential pulse skew
- 1.5ns maximum propagation delay
- Low power dissipation
- Power-Off protection
- Meets or exceeds the TIA/EIA-644 LVDS standard
- Flow-through pinout simplifies PCB layout
- 8-Lead SOIC package saves space

Ordering Code:

-	Order Number	Package Number	Package Description
1-	FIN1027M	M08A	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Pin Descriptions


Pin Name	Description		
D _{IN1} , D _{IN2}	LVTTL Data Inputs		
D _{OUT1+} , D _{OUT2+}	Non-inverting Driver Outputs		
D _{OUT1-} , D _{OUT2-}	Inverting Driver Outputs		
V _{CC}	Power Supply		
GND	Ground		

Function Table

Input	Outputs			
D _{IN}	D _{OUT+}	D _{OUT}		
L	L	Н		
Н	Н	L		
OPEN	L	Н		

H = HIGH Logic Level L = LOW Logic Level X = Don't Care

Connection Diagram

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

 $\begin{array}{lll} \mbox{Supply Voltage (V$_{CC}$)} & -0.5\mbox{V to } +4.6\mbox{V} \\ \mbox{DC Input Voltage (D$_{IN}$)} & -0.5\mbox{V to } +6\mbox{V} \\ \end{array}$

 $\begin{array}{ll} \text{DC Output Voltage (D_{OUT})} & -0.5\text{V to } +4.7\text{V} \\ \text{Driver Short Circuit Current (I_{OSD})} & \text{Continuous} \\ \text{Storage Temperature Range (T_{STG})} & -65^{\circ}\text{C to } +150^{\circ}\text{C} \\ \text{Max Junction Temperature (T_J)} & 150^{\circ}\text{C} \\ \end{array}$

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C ESD (Human Body Model) $\geq 6500\text{V}$ ESD (Machine Model) $\geq 400\text{V}$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

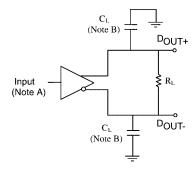
Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Units
V_{OD}	Output Differential Voltage		250	350	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	$R_1 = 100 \Omega$, See Figure 1			25	mV
Vos	Offset Voltage	TL = 100 sz, dee i igule i	1.125	1.25	1.375	V
ΔV _{OS}	Offset Magnitude Change from Differential LOW-to-HIGH				25	mV
l _{OFF}	Power Off Output Current	V _{CC} = 0V, V _{OUT} = 0V or 3.6V			±20	μΑ
los	Short Circuit Output Current	V _{OUT} = 0V			-8	mA
		$V_{OD} = 0V$			±8	IIIA
V _{IH}	Input HIGH Voltage		2.0		V _{CC}	V
V _{IL}	Input LOW Voltage		GND		0.8	V
I _{IN}	Input Current	V _{IN} = 0V or V _{CC}			±20	μΑ
I _{I(OFF)}	Power-Off Input Current	V _{CC} = 0V, V _{IN} = 0V or 3.6V			±20	μΑ
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA	-1.5			V
Icc	Power Supply Current	No Load, V _{IN} = 0V or V _{CC}			12.5	mA
		$R_L = 100 \ \Omega, \ V_{IN} = 0V \ or \ V_{CC}$			17	mA
C _{IN}	Input Capacitance			4		pF
C _{OUT}	Output Capacitance			6		pF

Note 2: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

AC Electrical Characteristics


Over supply voltage and operating temperature ranges, unless otherwise specified


Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
t _{PLHD}	Differential Propagation Delay		0.5		1.5	ns
	LOW-to-HIGH		0.5		1.5	115
t _{PHLD}	Differential Propagation Delay		0.5		1.5	ns
	HIGH-to-LOW		0.5		1.5	115
t _{TLHD}	Differential Output Rise Time (20% to 80%)	$R_L = 100 \ \Omega, \ C_L = 10 pF,$	0.4		1.0	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)	See Figure 2 and Figure 3	0.4		1.0	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}				0.5	ns
t _{SK(LH)} ,	Channel-to-Channel Skew				0.3	ns
t _{SK(HL)}	(Note 4)				0.3	115
t _{SK(PP)}	Part-to-Part Skew (Note 5)				1.0	ns

Note 3: All typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Note 4: $t_{SK(LH)}$, $t_{SK(HL)}$ is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.

Note 5: $t_{SK(PP)}$ is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

Note A: All input pulses have frequency = 10 MHz, t_R or t_F = 2 ns Note B: C_L includes all probe and fixture capacitances

FIGURE 1. Differential Driver DC Test Circuit

FIGURE 2. Differential Driver Propagation Delay and Transition Time Test Circuit

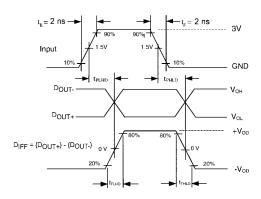
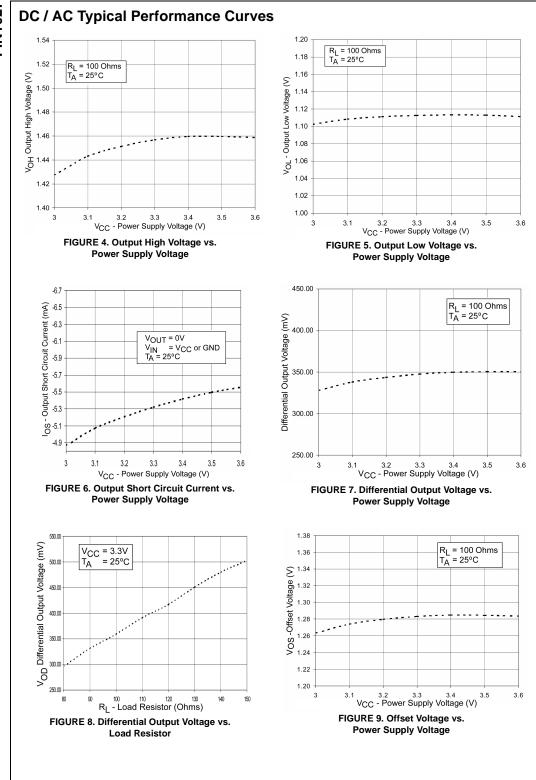
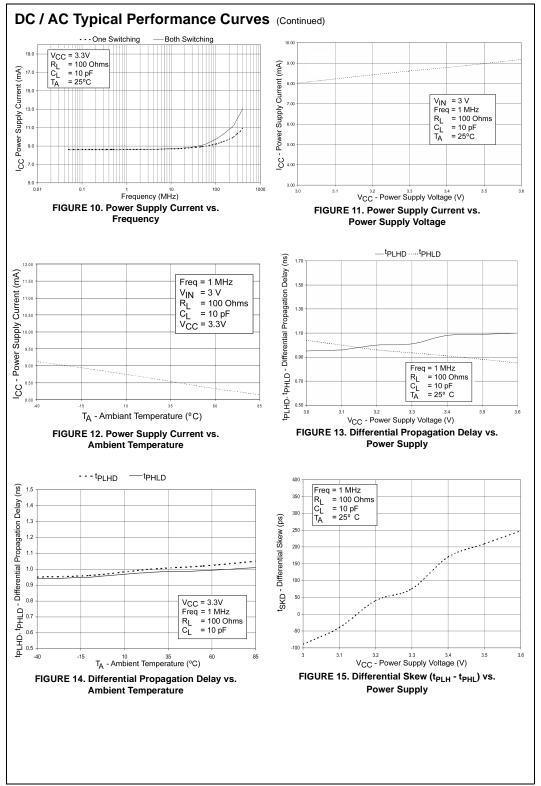
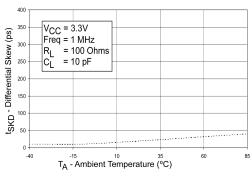





FIGURE 3. AC Waveforms

DC / AC Typical Performance Curves (Continued)

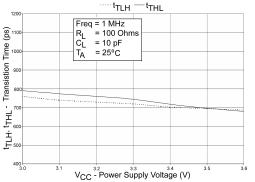


FIGURE 16. Differential Pulse Skew (t_{PLH} - t_{PHL}) vs. Ambient Temperature

FIGURE 17. Transition Time vs. Power Supply Voltage

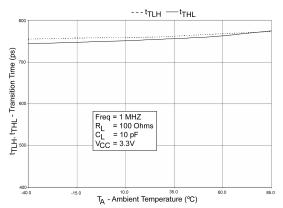
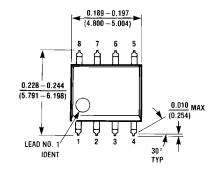
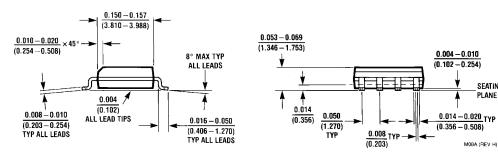




FIGURE 18. Transition Time vs. Ambient Temperature

SEATING

Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com