Features

- Full Range of Matrices up to 490k Cells
- 0.5 µm Drawn CMOS, 3 Metal Layers, Sea of Gates
- RAM and DPRAM Compilers
- . Library Optimised for Synthesis, Floor Plan & Automatic Test Generation (ATG)
- 3 and 5 volts operation: single or dual supply mode
- High Speed Performances:
 - 640 ps max. NAND2 propagation Delay @5V and FO = 1/4 FO max.
 - min. 440 MHz Toggle Frequency @4.5V, 230 MHz @2.7V
- Programmable PLL available on request
- High System Frequency Skew Control:
 - 200 MHz max. PLL for Clock Generation @4.5V.
 - Clock Tree Synthesis Software
- Low Power Consumption:
 - 2 µW/Gate/MHz @5V
 - 0.6 µW/Gate/MHz @3V
- Matrices With a max of 484full programmable Pads
- Standard 3. 6. 12 and 24mA I/Os
- · Versatile I/O Cell: Input, Output, I/O, Supply, Oscillator
- CMOS/TTL/PCI Interface
- ESD (2 kV) And Latch-up Protected I/O
- Wide Selection of MQFPs and CLGA packages up to 564 pins
- High Noise & EMC Immunity:
 - I/O with Slew Rate Control
 - Internal Decoupling
 - Signal Filtering between Periphery & Core
 - Application Dependent Supply Routing & Several Independant Supply Sources
- Delivery in Die Form with 110µm pad pitch
- Advanced CAD Support: Floor Plan, Proprietary Delay Models, Timing Driven Layout, Power Management
- Cadence, Mentor, Vital & Synopsys Reference Platforms
- EDIF & VHDL Reference Formats
- Available In Military and Space Quality Grades (SCC, MIL-PRF-38535)
- Latch up immune
- Total dose better than 300 Krads (TM1019.5)
- QML Q & V with SMD 5962-00B03

Description

The MG2RTP series is a 0.5 micron, array based, CMOS product family. Several arrays up to 490k cells cover all system integration needs. The MG2RTP is manufactured using a 0.5 micron drawn, 3 metal layers CMOS process.

The MG2RTP series base cell architecture provides high routability of logic with extremely dense compiled memories: RAM and DPRAM. ROM can be generated using synthesis tools.

Accurate control of clock distribution can be achieved by PLL hardware and CTS (Clock Tree Synthesis) software. New noise prevention techniques are applied in the array and in the periphery: three or more independent supplies, internal decoupling, customisation dependent supply routing, noise filtering, skew controlled I/Os, low swing differential I/Os, all contribute to improve the noise immunity and reduce the emission level.

Rad Hard 350K used gates 0.5µm CMOS Sea of Gates

MG2RTP

Rev. F-23-Aug-01

The MG2RTP is supported by an advanced software environment based on industry standards linking proprietary and commercial tools. Cadence, Mentor, Synopsys and VHDL are the reference front end tools. Floor planning associated with timing driven layout provides a short back end cycle.

Its Library allows straight forward migration from the MG1, MG1RT, MG2 and MG2RT Sea of Gates.

A netlist based on this library can be simulated as either MG2RTP or MG2RT: for MG2, it must not use SEU free cells.

Table 1. List of Available MG2RTP matrix

Туре	Total Cells	Usable Gates	Maximum I/O	Total Pads
MG2014P	14000	10500	86	103
MG2044P	44600	33400	146	165
MG2092P	91800	68900	212	229
MG2142P	142100	106600	262	281
MG2204P	204100	153100	312	331
MG2270P	270000	202200	360	377
MG2495P*	495000	371300	484	501

Note: (*)contact factory

Libraries

The MG2RTP cell library has been designed to take full advantage of the features offered by both logic and test synthesis tools.

Design testability is assured by the full support of SCAN, JTAG (IEEE 1149) and BIST methodologies.

More complex macro functions are available in VHDL, as example: I2C, UART, Timer,...

Block Generators

Block generators are used to create a customer specific simulation model and metallisation pattern for regular functions like RAM & DPRAM. The basic cell architecture allows one bit per cell for RAM and DPRAM. The main characteristics of these generators are summarised below.

Function	Maximum Size (bits)	bits/word	Typical characteris	tics (16k bits) @5V
			access time (ns)	Used cells
RAM	36 k	1-36	8	20 k
DPRAM	36 k	1-36	8.6	23 k

I/O buffer interfacing

I/O Flexibility All I/O buffers may be configured as input, output, bi-directional, oscillator or supply. A

level translator is located close to each buffer.

Inputs Input buffers with CMOS or TTL thresholds are non inverting and feature versions with

and without hysteresis. The CMOS and TTL input buffers may incorporate pull-up or pull down terminators. For special purposes, a buffer allowing direct input to the matrix core

is available.

Outputs Several kinds of CMOS and TTL output drivers are offered: fast buffers with 3, 6, 12 and

24 mA drive at 5V, low noise buffers with 12 mA drive at 5V.

Clock generation & PLL

Clock generation

Atmel Wireless & Microcontrollers offers 5 different types of oscillators: 3 high frequency crystal oscillator and 2 RC oscillators. For all devices, the mark-space ratio is better than 40/60 and the start-up time less than 10 ms.

	Frequen	Frequency (MHz)		sumption (mA)
	Max 5V	Max 3V	5V	3V
Xtal 7M	10	6	1.2	0.4
Xtal 50M	60	35	7	2
Xtal 100M	120	70	16	5
RC 10M	10	10	2	1
RC 32M	32	32	3	1.5

PLL Contact factory.

Power supply & noise protection

The speed and density of the SCMOS3/2RTP technology causes large switching current spikes for example when:

- either 16 high current output buffers switch simultaneously
- or 10% of the 490 000 gates are switching within a window of 1ns.

Sharp edges and high currents cause some parisitic elements in the packaging to become significant. In this frequency range, the package inductance and series resistance should be taken into account. It is known that an inductor slows down the settling time of the current and causes voltage drops on the power supply lines. These drops can affect the behavior of the circuit itself or disturb the external application (ground bounce).

In order to improve the noise immunity of the MG core matrix, several mechanisms have been implemented inside the MG arrays. Two kinds of protection have been added: one to limit the I/O buffer switching noise and the other to protect the I/O buffers against the switching noise coming from the matrix.

I/O Buffers switching protection

Three features are implemented to limit the noise generated by the switching current:

- The power supplies of the input and output buffers are separated.
- The rise and fall times of the output buffers can be controlled by an internal regulator.
- A design rule concerning the number of buffers connected on the same power supply line has been imposed.

Matrix switching current protection

This noise disturbance is caused by a large number of gates switching simultaneously. To allow this without impacting the functionality of the circuit, three new features have been added:

- Decoupling capacitors are integrated directly on the silicon to reduce the power supply drop.
- A power supply network has been implemented in the matrix. This solution reduces
 the number of parasitic elements such as inductance and resistance and constitutes
 an artificial VDD and Ground plane. One mesh of the network supplies
 approximately 150 cells.
- A low pass filter has been added between the matrix and the input to the output buffer. This limits the transmission of the noise coming from the ground or the VDD supply of the matrix to the external world via the output buffers.

Power consumption

The power consumption of an MG2RTP array is due to three factors: leakage (P1), core (P2) and I/O (P3) consumption.

$$P = P1 + P2 + P3$$

Leakage (Standby) Power Consumption

The consumption due to leakage currents is defined as:

Where I_{CCSB} is the leakage current through a polarized basic gate and N_{CELL} is the number of used cells.

Core Power Consumption

The power consumption due to the switching of cells in the core of the matrix is defined as:

Where N_{CELL} is the number of used cells, F the data toggling frequency, which is equal to half the clock frequency for random data and P_{GATE} is the power consumption per cell.

$$P_{GATE} = P_{CA} + P_{CO}$$

^CACTIVITY is the fraction of the total number of cells toggling per cycle.

Capacitance Power

$$P_{CA} = C * (VDD - VSS)^2/2$$

C is the total output capacitance and may be expressed as the sum of the drain capacitance of the driver, the wiring capacitance and the gate capacitance of the inputs.

Worst case value: PCA # 1.8 μW/gate/MHz @ 5 V

Commutation Power

$$P_{CO} = (VDD - VSS) * I_{dsohm}$$

Where I_{dsohm} is the current flowing into the driver between supply and ground during the commutation. I_{dsohm} is about 15% of the Pmos saturation current.

Worst case value: Pco # 0.7 μW/gate/MHz @ 5 V

I/O Power Consumption

The power consumption due to the I/Os is:

$$P3 = Ni * C_O * (VDD - VSS)^2 * Fi/2$$

With Ni equals to the number of buffers running at Fi and C_O is the output capacitance.

Note: If a signal is a clock, Fi = F, if it is a data with random values, Fi = F/4.

 Table 2. Typical Power Consumption Example

Matrix	MG2270P@5V	MG2270P@3V
Used gates (70%)	190 k	190 k
Frequency	10 MHz	10 MHz
Standby Power		
Iccsb (125°C)	1 nA	1 nA
P1 = (VDD - VSS) * I _{CCSB} * N _{CELL}	1 mW	0.6 mW
Core Power		
Power Consumption per Cell	2.7 μW/Gate/MHz	0.86 μW/Gate/MHz
C _{activity}	20%	20%
P2 = N _{CELL} * P _{GATE} * C _{activity} * F	1026 mW	323 mW
I/O Power		
Total Number of Buffers	360	360
Number of Outputs and I/O Buffers (NI)	100	100
Output Capacitance	50 pF	50 pF
P3 = Ni * C _O * (VDD - VSS) ² * Fi/2	625 mW	220 mW
Total Power		
P = P1 + P2 + P3	1.39 W	0.54 W

Packaging

Atmel Wireless & Microcontrollers offers a wide range of packaging options which are listed below:

	Package Type	Pins** min/max	Lead spacing (mils)
	MLCC	68 84	50 50
CERAMIC	MQFP	100 352	25.6 20
	CLGA*	349 564	50 50

Note: For plastic, call factory; this is a customer decision to use plastic packages in environmental conditions which are beyond those for which they have been developed.

^{*} Ceramic Land Grid Array: contact factory.

^{**} contact Atmel local design centers to check the availability of the used matrix and the package.

Design flows & tools

Design Flows and modes A generic design flow for an MG2RTP array is illustrated below.

A top down design methodology is proposed which starts with high level system description and is refined in successive design steps. At each step, structural verification is performed which includes the following tasks:

- Gate level logic simulation and comparison with high level simulation results.
- Design and test rule check.
- Power consumption analysis.
- Timing analysis (only after floor plan).

The main design stages are:

- System specification, preferably in VHDL form.
- Functional description at RTL level.
- Logic synthesis.
- Floor planning and bonding diagram generation.
- Test/Scan insertion, ATG and/or fault simulation.
- Physical cell placement, JTAG insertion and clock tree synthesis.
- Routing

To meet the various requirements of designers, several interface levels between the customer and Atmel are possible.

For each of the possible design modes a review meeting is required for data transfer from the user to Atmel. In all cases the final routing and verifications are performed by Atmel Wireless & Microcontrollers.

The design acceptance is formalized by a design review which authorizes Atmel to proceed with sample manufacturing.

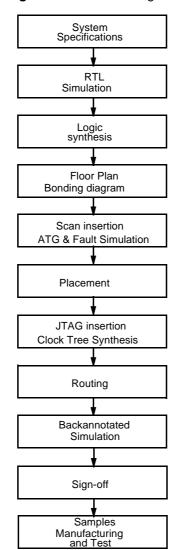


Figure 1. MG2RT Design Flow

Design tool and design kits (DK)

The basic content of a design kit is described in the table below.

The interface formats to and from Atmel Wireless & Microcontrollers rely on IEEE or industry standard:

- VHDL for functional descriptions
- VHDL or EDIF for netlists
- · Tabular, log or .CAP for simulation results
- SDF (VITAL format) and SPF for back annotation
- LEF and DEF for physical floor plan information

The design kit supported for several commercial tools are listed below.

Design Kit Support

- Cadence (VHDL and gate)
- Mentor (VHDL and gate)
- Synopsys (VHDL and gate)
- Vital (VHDL and gate)

Table 3. Design kit Description

	Atmel Software	Third Party
Design Tool or library	Name	Tools
Design manual & libraries		*
VHDL library for blocks		*
Synthesis library		*
Gate level simulation library		*
Design rules analyser	STAR	
Power consumption analyser	COMET	
Floor plan library		*
Timing analyser library		*
Package & bonding software	PIM	
Scan path & JTAG insertion	MISS	
ATG & fault simulation library		*

^{*} refer to "Design kits cross reference tables" ATD-TS-WF-R0181

Operating characteristics

Absolute Maximum Ratings

Ambient temperature under bias (TA) Military $-55 \text{ to } +125^{\circ}\text{C}$ Junction temperature $\text{TJ} < \text{TA} + 20^{\circ}\text{C}$ Storage temperature $-65 \text{ to } +150^{\circ}\text{C}$

TTL/CMOS:

Supply voltage VDD-0.5 V to +6 V I/O voltage -0.5 V to VDD + 0.5 V

Note: Stresses above those listed may cause permanent damage to the device. Exposure to

absolute maximum rating conditions for extended period may affect device reliability.

DC Characteristics

Table 4. DC Characteristics Specified at VDD = +5 V +/- 10%

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VIL	Input LOW voltage CMOS input TTL input	0		0.3VDD 0.8	V	
VIH	Input HIGH voltage CMOS input TTL input	0.7 VDD 2.2		VDD VDD	V	
VOL	Output low voltage TTL			0.4	V	IOL = -12, 6, 3 mA*
VOH	Output high voltage CMOS TTL	3.9 2.4			V	IOH = -12, 6, 3 mA*
VT+	Schmitt trigger positive threshold CMOS input TTL input			3.3 1.5	V	
VT-	Schmitt trigger negative threshold CMOS input TTL input	1.1 0.9			V	
IL	Input leakage No pull up/down Pull up Pull down	-44 75	+/-1 -66 118	+/-5 -100 300	μΑ μΑ μΑ	
IOZ	3-State Output Leakage current		+/-1	+/-5	μΑ	
IOS	OutputShortcircuitcurrent IOSN IOSP			48 36	mA mA	BOUT12 VOUT = 4.5V VOUT = VSS
ICCSB	Leakage current per cell		1.0	10.0	nA	
ICCOP	Operating current per cell		0.39	0.53	μΑ/MHz	

^{*} According buffer: Bout12, Bout6, Bout3, VDD = 4.5V

Table 5. DC Characteristics Specified at VDD = +3 V +/- 10%

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VIL	Input LOW voltage LVCMOS input LVTTL input	0		0.3VDD 0.8	V	
VIH	Input HIGH voltage LVCMOS input LVTTL input	0.7VDD 2.0		VDD VDD	V	
VOL	Output LOW voltage TTL			0.4	٧	IOL = -6, 3, 1.5 mA*
VOH	Output HIGH voltage TTL	2.4			V	IOH = -4, 2, 1 mA*
VT+	Schmitt trigger positive threshold LVCMOS input LVTTL input			2	V	
VT-	Schmitt trigger negative threshold CMOS input TTL input	0.8 0.7			V	
IL	Input leakage No pull up/down Pull up Pull down	-16 31	-20 42	+/-1 -50 140	μΑ μΑ μΑ	
IOZ	3-State Output Leakage current			+/-1	μΑ	
IOS	OutputShortcircuitcurrent IOSN IOSP			24 12	mA mA	BOUT12 VOUT=VDD VOUT=VSS
ICCSB	Leakage current per cell		0.6	5	nA	
ICCOP	Operating current per cell		0.2		μA/MHz	

^{*} According buffer: Bout12, Bout6, Bout3

AC Characteristics

Table 6. AC Characteristics

TJ = 25°C, Process typical (all values in ns)

Buffer	Description	Load	Transition	V	DD
				5V	3V
BOUT12	Output buffer with 12 mA drive	60pf	Tplh	3.332	5.277
			Tphl	2.131	2.842
BOUT3	Output buffer with 3 mA drive	60pf	Tplh	5.358	8.512
			Tphl	3.436	4.440
BOUTQ	Low noise output buffer with 12 mA drive	60pf	Tplh	3.742	5.696
			Tphl	5.515	8.616
B3STA3	3-state output buffer with 3 mA drive	60pf	Tplh	5.468	8.622
			Tphl	3.510	4.617
B3STA12	3-state output buffer with 12 mA drive	60pf	Tplh	3.475	5.426
			Tphl	2.195	2.990
B3STAQ	Low noise 3-state output buffer with 12 mA drive	60pf	Tplh	3.703	5.776
			Tphl	7.320	11.711

Cell	Description	Load	Transition	VI	DD D
				5V	3V
BINCMOS	CMOS input buffer	15 fan	Tplh	0.936	1.430
			Tphl	0.776	1.085
BINTTL	TTL input buffer	16 fan	Tplh	0.983	1.423
			Tphl	0.687	1.081
INV	Inverter	12 fan	Tplh	0.564	0.864
			Tphl	0.382	0.487
NAND2	2 - input NAND	12 fan	Tplh	0.726	1.076
			Tphl	0.599	0.809
FDFF	D flip-flop, Clk to Q	8 fan	Tplh	1.011	1.504
			Tphl	0.889	1.360
			Ts	0.400	0.615
			Th	-0.158	-0.290
BUF4X	High drive internal buffer	51 fan	Tplh	0.813	1.182
			Tphl	0.605	0.876
NOR2	2-Input NOR gate	8 fan	Tplh	0.722	1.204
			Tphl	0.347	0.433
OAI22	4-input OR AND INVERT gate	8 fan	Tplh	0.773	1.287
			Tphl	0.398	0.510
OSFF	D flip-flop with scan input, Clk to Q	8 fan	Tplh	0.981	1.462
			Tphl	1.143	1.656
			Ts	0.501	0.976
			Th	-0.480	-0.791

Atmel Wireless & Microcontrollers Sales Offices

France

3, Avenue du Centre 78054 St.-Quentin-en-Yvelines

Cedex France

Tel: 33130 60 70 00 Fax: 33130 60 71 11

Germany

Erfurter Strasse 31 85386 Eching Germany

Tel: 49893 19 70 0 Fax: 49893 19 46 21

Kruppstrasse 6 45128 Essen Germany

Tel: 492 012 47 30 0 Fax: 492 012 47 30 47

Theresienstrasse 2 74072 Heilbronn Germany

Tel: 4971 3167 36 36 Fax: 4971 3167 31 63

Italy

Via Grosio, 10/8 20151 Milano Italy

Tel: 390238037-1 Fax: 390238037-234

Spain

Principe de Vergara, 112

28002 Madrid

Spain

Tel: 3491564 51 81 Fax: 3491562 75 14 Sweden

Kavallerivaegen 24, Rissne

17402 Sundbyberg

Sweden

Tel: 468587 48 800 Fax: 468587 48 850

United Kingdom

Easthampstead Road Bracknell, Berkshire RG12 1LX

United Kingdom Tel: 441344707 300 Fax: 441344427 371

USA

2325 Orchard Parkway

San Jose California 95131 USA-California Tel: 1408441 0311

Fax: 1408441 0311

1465 Route 31, 5th Floor

Annandale

New Jersey 08801 USA-New Jersey Tel: 1908848 5208 Fax: 1908848 5232 Hong Kong

77 Mody Rd., Tsimshatsui East,

Rm.1219 East Kowloon Hong Kong

Tel: 85223789 789 Fax: 85223755 733

Korea

Ste.605, Singsong Bldg. Young-

deungpo-ku 150-010 Seoul

Korea

Tel: 8227851136 Fax: 8227851137

Singapore

25 Tampines Street 92 Singapore 528877 Rep. of Singapore Tel: 65260 8223

Fax: 65787 9819

Taiwan

Wen Hwa 2 Road, Lin Kou

Hsiang

244 Taipei Hsien 244 Taiwan, R.O.C.

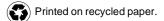
Tel: 88622609 5581 Fax: 88622600 2735

Japan

1-24-8 Shinkawa, Chuo-Ku

104-0033 Tokyo

Japan


Tel: 8133523 3551 Fax: 8133523 7581

Web site

http://www.atmel-wm.com

© Atmel Nantes SA, 2001.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

