

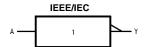
June 1997 Revised March 2002

NC7SZ05

TinyLogic™ UHS Inverter (Open Drain Output)

General Description

The NC7SZ05 is a single Inverter with open drain output stage from Fairchild's Ultra High Speed Series of TinyLogic™. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad $V_{\mbox{\footnotesize{CC}}}$ operating range. The device is specified to operate over the 1.65V to 5.5V $V_{\mbox{\footnotesize{CC}}}$ range. The input and output are high impedance when $V_{\mbox{\footnotesize{CC}}}$ is 0V. Inputs tolerate voltages up to 6V independent of V_{CC} operating voltage. The open drain output stage tolerates voltages up to 6V independent of V_{CC} when in the high impedance state.


Features

- Space saving SOT23 or SC70 5-lead package
- Ultra small MicroPak™ leadless package
- Open drain output for OR tied applications
- Ultra High Speed; t_{PD} 1.9 ns Typ into 50 pF at 5V V_{CC}
- High Output I_{OL} Drive; +24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Matches the performance of LCX when operated at $3.3V V_{CC}$
- Power down high impedance inputs/output
- Overvoltage Tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ05M5X	MA05B	7Z05	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SZ05P5X	MAA05A	Z05	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7SZ05L6X	MAC06A	C6	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

Logic Symbol

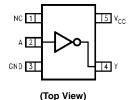
Pin Descriptions

Pin Names	Description		
Α	Input		
Υ	Output		
NC	No Connect		

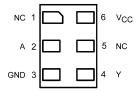
Function Table

$$\mathbf{Y} = \overline{\mathbf{A}}$$

Input	Output
Α	Υ
L	*H
Н	L


TinyLogic™ and MicroPak™ are trademarks of Fairchild Semiconductor Corporation.

L = LOW Logic Level


H = HIGH Logic Level L = LOW Log *H = HIGH Impedance output state (Open Drain)

Connection Diagrams

Pin Assignments for SOT23 and SC70

Pad Assignments for MicroPak

(Top Thru View)

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to $+6V$
DC Input Diode Current (I _{IK})	

 $@V_{IN} < -0.5V$ -50 mA @ V_{IN} > 6V +20 mA

DC Output Diode Current (I_{OK})

 $@V_{OUT} < -0.5V$ -50 mA $@V_{OUT} > 6V, V_{CC} = GND$ +20 mA DC Output Current (I_{OUT}) +50 mA DC V_{CC}/GND Current (I_{CC}/I_{GND}) ±50 mA Storage Temperature (T_{STG}) -65°C to +150°C Junction Temperature under Bias (T_J) 150°C

Junction Lead Temperature (T1);

(Soldering, 10 seconds) 260°C

Power Dissipation (P_D) @ +85°C

SOT23-5 200 mW SC70-5 150 mW Supply Voltage Operating (V_{CC}) 1.65V to 5.5V Supply Voltage Data Retention (V_{CC}) 1.5V to 5.5V Input Voltage (V_{IN}) 0V to 5.5V Output Voltage (V_{OUT}) 0V to 5.5V -40°C to +85°C Operating Temperature (T_A) Input Rise and Fall Time (t_r, t_f) $V_{CC}=1.8V,\,2.5V\,\pm\!0.2V$ 0 ns/V to 20 ns/V $V_{CC}=3.3V\pm0.3V$ 0 ns/V to 10 ns/V $V_{CC} = 5.0V \pm 0.5V$ 0 ns/V to 5 ns/V Thermal Resistance (θ_{JA}) SOT23-5 300°C/W

SC70-5 425°C/W Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifica-

tion should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifi-

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = +25°C			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Unit	Conditions	
Syllibol	Farameter	(V)	Min	Тур	Max	Min	Max	Onn	Con	uitions
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		V		
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			$0.3 V_{\rm CC}$		0.3 V _{CC}	V		
I _{LKG}	HIGH Level Output	1.65 to 5.5			±5		±10	μА	$V_{IN} = V_{IL}$	
	Leakage Current	1.03 10 3.3			±5		±10	μΛ	$V_{OUT} = V_{CC}$	or GND
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1			
		1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$	$I_{OL} = 100 \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μΑ	$0 \le V_{IN} \le 5$.	5V
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OUT}	= 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			2.0		20	μΑ	$V_{IN} = 5.5V$,	GND

AC Electrical Characteristics

Symbol	Parameter	V _{CC}		T _A = +25°C		T _A = 40°C	C to +85°C	Units	Conditions	Figure
		(V)	Min	Тур	Max	Min	Max	Units		Number
t _{PZL}	Propagation Delay	1.65	1.5	5.5	12.9	1.5	13.4			
		1.8	1.5	4.6	10.5	1.5	11.0	Ī	$C_L = 50 pF$	l
		2.5 ± 0.2	8.0	3.0	7.0	0.8	7.5	ns	$RU=500\Omega$	Figures 1, 3
		3.3 ± 0.3	8.0	2.4	5.0	0.8	5.2	Ī	$\text{RD} = 500\Omega$., 0
		5.0 ± 0.5	0.5	1.9	4.3	0.5	4.5	Ť	$V_I = 2 \times V_{CC}$	
t _{PLZ}	Propagation Delay	1.65	1.5	5.0	12.9	1.5	13.4			
		1.8	1.5	4.1	10.5	1.5	11.0	Ť	$C_L = 50 pF$	
		2.5 ± 0.2	8.0	2.5	7.0	0.8	7.5	ns	$RU=500\Omega$	Figures 1, 3
		3.3 ± 0.3	8.0	2.1	5.0	0.8	5.2	Ī	$\text{RD} = 500\Omega$., 0
		5.0 ± 0.5	0.5	1.2	4.3	0.5	4.5	Ť	$V_I = 2 \times V_{CC}$	
C _{IN}	Input Capacitance	0		4				pF		
C _{OUT}	Output Capacitance	0		6				pF		
C _{PD}	Power Dissipation	3.3		3.6				pF	(Note 3)	Figure 2
	Capacitance	5.0		6.5				þΕ	(Note 3)	rigure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:
I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static)

AC Loading and Waveforms

C_L includes load and stray capacitance

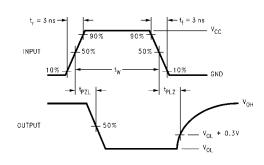
Input PRR = 1.0 MHz; t_w = 500 ns

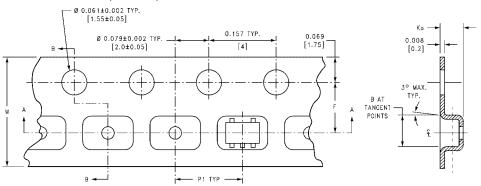
FIGURE 1. AC Test Circuit

 $Input = AC \ Waveform; \ t_r = t_f = 1.8 \ ns$

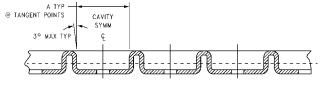
PRR = 10 MHz; Duty Cycle = 50%

FIGURE 2. AC Test Circuit

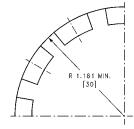



FIGURE 3. AC Waveforms

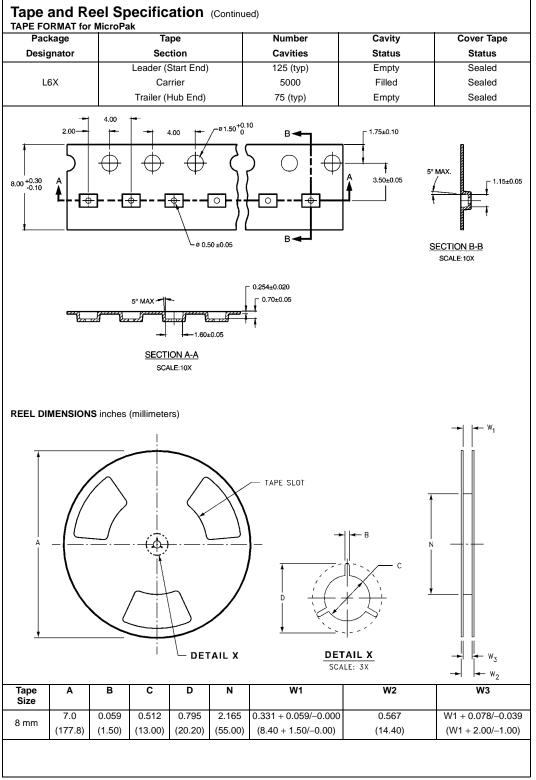
Tape and Reel Specification

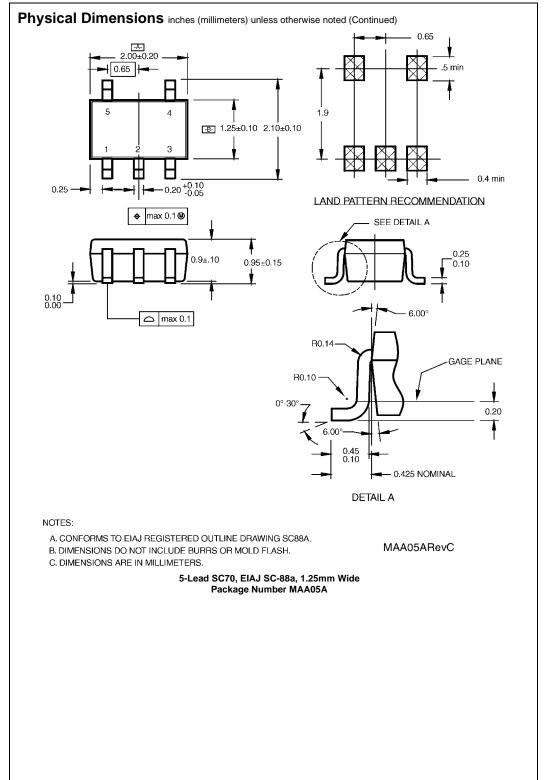

TAPE FORMAT for SOT23 and SC70

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed


TAPE DIMENSIONS inches (millimeters)

DIRECTION OF FEED ______




SECTION A-A

BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
	O IIIIII	(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. JEDEC PACKAGE REGISTRATION IS ANTICIPATED
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06ARevB

6-Lead MicroPak, 1.0mm Wide Package Number MAC06A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com