FAIRCHILD

SEMICONDUCTOR

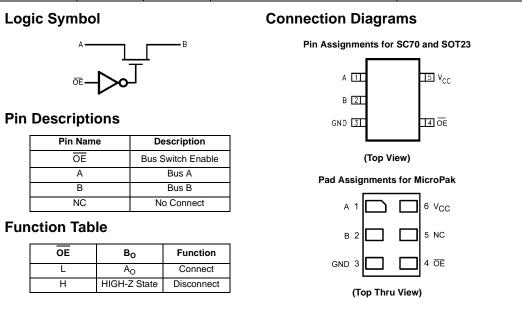
NC7SZD384 TinyLogic™ UHS 1-Bit Low Power Bus Switch with Level Shifting

General Description

The NC7SZD384 provides 1-bit of high-speed CMOS TTLcompatible bus switch. The low on resistance of the switch allows inputs to be connected to outputs with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 1-bit switch with a bus enable (\overline{OE}) signal. When \overline{OE} is LOW, the switch is on and Port A is connected to Port B. When \overline{OE} is HIGH, the switch is open and a high-impedance state exists between the two ports. Reduced voltage drive to the gate of the FET switch permits nominal level shifting of 5V to 3.3V through the switch.

Features

■ Space saving SOT23 or SC70 5-lead package


June 1997

Revised May 2002

- Ultra small MicroPak[™] leadless package
- **Ξ** 5Ω switch connection between two ports
- Designed to be used in level-shifting applications
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZD384M5X	MA05B	8Z4D	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SZD384P5X	MAA05A	Z4D	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
NC7SZD384L6X	MAC06A	A4	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

TinyLogic™ and MicroPak™ are trademarks of Fairchild Semiconductor Corporation.

© 2002 Fairchild Semiconductor Corporation DS500016

Absolute Maximum Ratings(Note 1)

	- 3 -(
Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions (Note 3)	
DC Switch Voltage (VS)	-0.5V to +7.0V	Power Supply Operating (V_{CC})	4.5V to 5.5V
DC Input Voltage (V _{IN}) (Note 2)	-0.5V to +7.0V	Input Voltage (V _{IN})	0V to 5.5V
DC Input Diode Current (I_{IK}) $V_{IN} < 0V$	–50 mA	Output Voltage (V _{OUT})	0V to 5.5V
DC Output (I _{OUT}) Sink Current	128 mA	Input Rise and Fall Time (t_r, t_f)	
DC V _{CC} /GND Current (I _{CC} /GND)	±100 mA	Switch Control Input	0 ns/V to 5 ns
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Switch I/O	0 ns/V to DC
Junction Temperature under bias (T_J)	+150°C	Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Junction Lead Temperature (TL)		Thermal Resistance (θ_{JA})	
(Soldering, 10 seconds)	+260°C	SOT23-5	300°C/Watt
Power Dissipation (P _D) @ +85°C		SC70-5	425°C/Watt
SOT23-5	200 mW	Note 1: The "Absolute Maximum Ratings" are	,
SC70-5	150 mW	the safety of the device cannot be guaranteed operated at these limits. The parametric valu Characteristics tables are not guaranteed at the The "Recommended Operating Conditions" tab for actual device operation.	es defined in the Electrical absolute maximum ratings.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

Recommended Operating

DC Electrical Characteristics

Development		~	= −40°C to +8			
Parameter	(V)	Min	Typ (Note 4)	Max	Units	Conditions
Maximum Clamp Diode Voltage	4.5			-1.2	-V	$I_{IN} = -18 \text{ mA}$
HIGH Level Input Voltage	4.5-5.5	2.0			V	
LOW Level Input Voltage	4.5-5.5			0.8	V	
HIGH Level Output Voltage	4.5-5.5		See Figure 3		V	$V_{IN} = V_{CC}$
Input Leakage Current	0–5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
"OFF" Leakage Current	5.5			±10.0	μΑ	$0 \le A, B, \le V_{CC}$
Switch On Resistance (Note 5)	4.5		5	7	Ω	$V_{IN} = 0V, I_I = 64 \text{ mA}$
			5	7	Ω	$V_{IN} = 0V, I_I = 30 \text{ mA}$
			35	50	Ω	$V_{IN} = 2.4V, I_I = 15 \text{ mA}$
Quiescent Supply Current						$V_{IN} = V_{CC}$ or GND, $I_O = 0$
Switch On	5.5		0.8	1.5	mA	OE = GND
Switch Off	5.5			10	μΑ	$\overline{OE} = V_{CC}$
Increase in I _{CC} per Input (Note 6)	5.5		0.8	2.5	mA	$\overline{OE} = 3.4V$, $I_O = 0$, Control Input only.
	HIGH Level Input Voltage LOW Level Input Voltage HIGH Level Output Voltage Input Leakage Current "OFF" Leakage Current Switch On Resistance (Note 5) Quiescent Supply Current Switch On Switch Off	Maximum Clamp Diode Voltage 4.5 HIGH Level Input Voltage 4.5–5.5 LOW Level Input Voltage 4.5–5.5 HIGH Level Output Voltage 4.5–5.5 Input Leakage Current 0–5.5 "OFF" Leakage Current 5.5 Switch On Resistance (Note 5) 4.5 Quiescent Supply Current 5.5 Switch Off 5.5	Image: Constraint of the second se	(V) (Note 4) Maximum Clamp Diode Voltage 4.5 HIGH Level Input Voltage 4.5–5.5 LOW Level Input Voltage 4.5–5.5 HIGH Level Output Voltage 4.5–5.5 HIGH Level Output Voltage 4.5–5.5 Switch On Resistance (Note 5) 4.5 Quiescent Supply Current 5.5 Switch On 5.5 Switch Off 5.5	(V) (Note 4) Maximum Clamp Diode Voltage 4.5 -1.2 HIGH Level Input Voltage 4.5-5.5 2.0 LOW Level Input Voltage 4.5-5.5 2.0 LOW Level Input Voltage 4.5-5.5 See Figure 3 Input Leakage Current 0-5.5 See Figure 3 "OFF" Leakage Current 5.5 ±10.0 Switch On Resistance (Note 5) 4.5 5 Quiescent Supply Current 5.5 0.8 Switch On 5.5 0.8 Switch On 5.5 10	(V)(Note 4)Maximum Clamp Diode Voltage4.5 -1.2 $-V$ HIGH Level Input Voltage4.5-5.5 2.0 VLOW Level Input Voltage4.5-5.5 2.0 VInput Leakage Current $0-5.5$ See Figure 3V"OFF" Leakage Current $0-5.5$ ± 1.0 μA "OFF" Leakage Current 5.5 ± 10.0 μA Switch On Resistance (Note 5) 4.5 5 7 Ω Quiescent Supply Current 5.5 0.8 1.5 mASwitch Off 5.5 10 μA

Note 4: All typical values are at V_{CC} = 5.0V, T_A= 25°C.

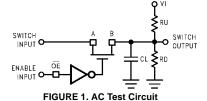
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 6: Per TTL driven input (V $_{\rm IN}$ = 3.4V, control input only). A and B pins do not contribute to I $_{\rm CC.}$

AC Electrical Characteristics

AC E	lectrical Characte	ristics						
Symbol	Parameter	v _{cc}		= –40°C to +8 pF, RU = RD		Units	Conditions	Figure
		(V)	Min	Typ (Note 7)	Max			Number
t _{PHL} , t _{PLH}	Propagation Delay Bus to Bus (Note 8)	4.5–5.5			0.25	ns	V _I = OPEN	Figures 1, 2
t _{PZL} , t _{PZH}	Output Enable Time	4.5–5.5	1.5		7.5	ns	$V_I = 7V$ for t_{PZL} $V_I = OPEN$ for t_{PZH}	Figures 1, 2
t _{PLZ} , t _{PHZ}	Output Disable Time	4.5–5.5	1.0		6.0	ns	$V_I = 7V$ for t_{PLZ} $V_I = OPEN$ for t_{PHZ}	Figures 1, 2

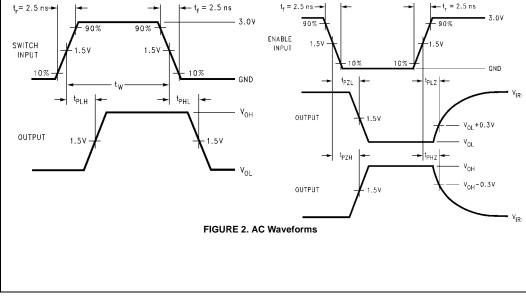
Note 7: All typical values are $V_{CC}=5.0V,\,T_A=25^\circ C$

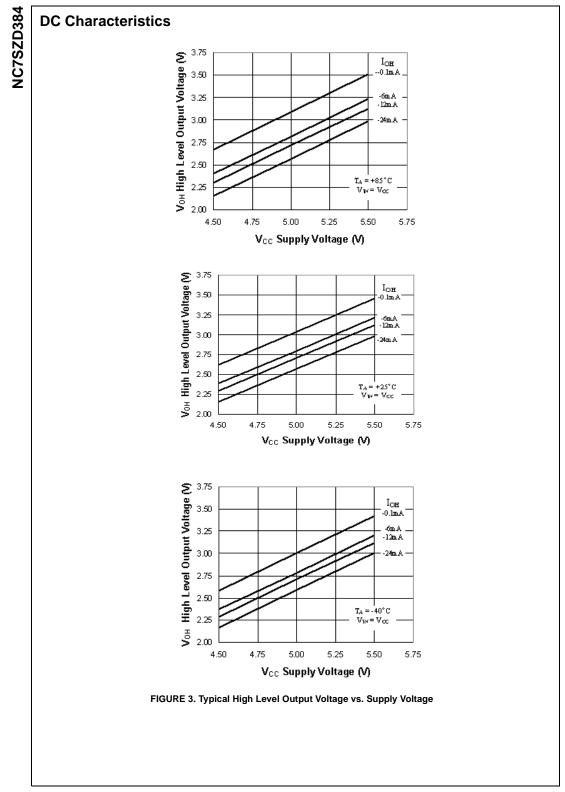

Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On Resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).

Capacitance (Note 9)

Symbol	Parameter	Тур	Мах	Units	Conditions
C _{IN}	Control Pin Input Capacitance	2	5	pF	$V_{CC} = 5.0V$
C _{I/O}	Input/Output Capacitance	4.5	10	pF	$V_{CC} = 5.0V$

Note 9: T_A = 25°C f = 1MHz

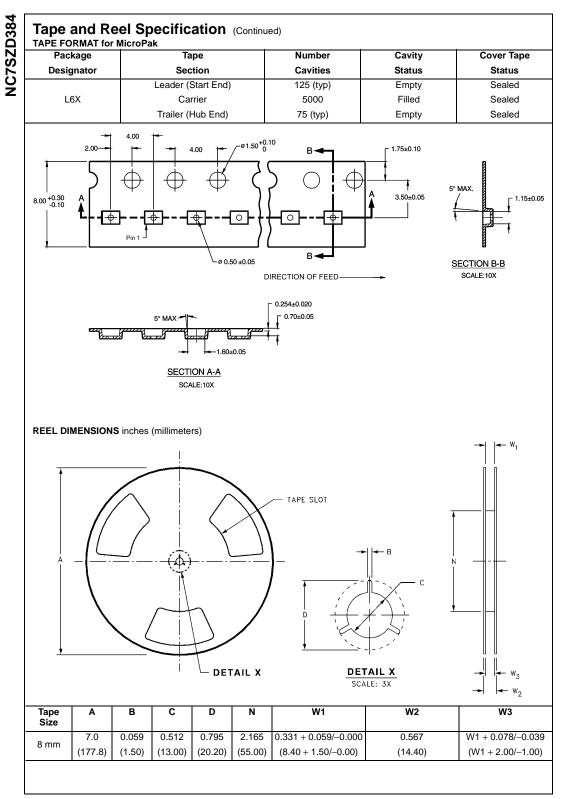

AC Loading and Waveforms



Note: Input driven by 50Ω source terminated in 50Ω .

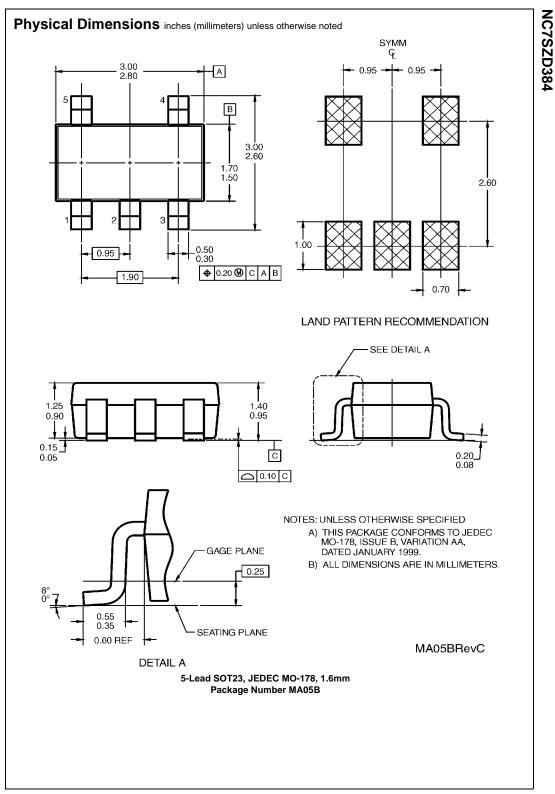
 $\rm C_L$ includes load and stray capacitance.

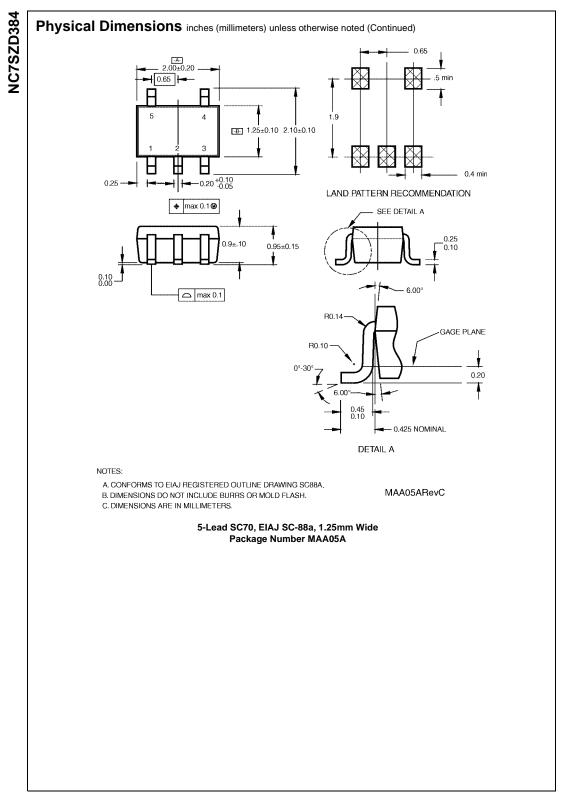
Input PRR = 1.0 MHz t_w = 500 ns.

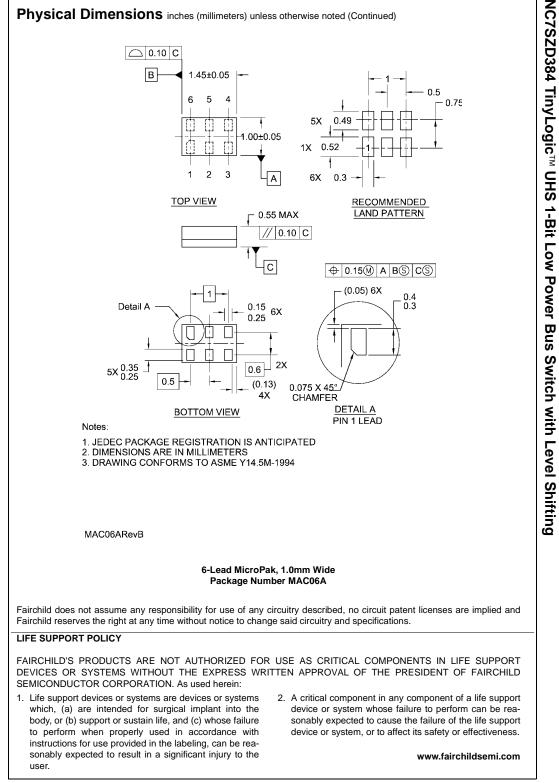


www.fairchildsemi.com

4


	le	SOT23 Tape		Number	Cavity		over Tape
Designa		Section		Cavities	Status		Status Sealed
M5X, P5		eader (Start End) Carrier		125 (typ) 3000	Empty Filled		Sealed
MJA, FC		Trailer (Hub End)		75 (typ)	Empty	,	Sealed
	ISIONS inches (n			(-)F)			
	Ø 0.061±0.0						
		79±0.002 TYP	0.157	>	069	Ко → 0.008 [0.2] →	
1		\rightarrow			\rightarrow	[]	
-{	(-+-)	-(+)-+-	-(+)	·(+·)-·	···	3° MAX. AT TYP.	
	L	'			F A TANG	GENT - F	
ΪţŚ	$ \square \square $				POI		
	γ)	€	and a
$\downarrow \subseteq$	— — — — — — — — — — — — — — — — — — —				5		
	8 🛶	l a	- P1 TYP				
			DIRECTION O	F FEED	}	SECT	ION B-B
0	A TYP						
@ TANGENT						×.	
	POINTS CAVIT						J
			- 60		ζ.		T
					ζ.		181 MIN.
					ζ.		181 MIN.
			- 4 - A		<u>}</u> .		
					₹. 		
		SECTION A				END RADIUS NO	[30] T TO SCALE
20 20		SECTION A	DIM B	DIM F	DIM K _o	END RADIUS NO	[30] T TO SCALE
₃∘ ⟨ ackage		SECTION A	DIM B 0.096	0.138 ± 0.004	DIM K_o 0.053 ± 0.004	DIM P1 0.157	T TO SCALE
3¢ ackage C70-5	Tape Size	SECTION A 0.093 (2.35)	DIM B 0.096 (2.45)	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \end{array}$	DIM K_o 0.053 ± 0.004 (1.35 ± 0.10)	DIM P1 0.157 (4)	T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1)
3¢ 	Tape Size	DIM A 0.093 (2.35) 0.130	DIM B 0.096 (2.45) 0.130	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \\ 0.138 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{DIM K_o} \\ 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \\ 0.055 \pm 0.004 \end{array}$	DIM P1 0.157 (4) 0.157	[30] T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1) 0.315 ± 0.012
3¢ ~ ackage C70-5	Tape Size	SECTION A 0.093 (2.35)	DIM B 0.096 (2.45)	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \end{array}$	DIM K_o 0.053 ± 0.004 (1.35 ± 0.10)	DIM P1 0.157 (4)	T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1)
3¢ ackage C70-5	Tape Size	DIM A 0.093 (2.35) 0.130	DIM B 0.096 (2.45) 0.130	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \\ 0.138 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{DIM K_o} \\ 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \\ 0.055 \pm 0.004 \end{array}$	DIM P1 0.157 (4) 0.157	[30] T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1) 0.315 ± 0.012
	Tape Size	DIM A 0.093 (2.35) 0.130	DIM B 0.096 (2.45) 0.130	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \\ 0.138 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{DIM K_o} \\ 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \\ 0.055 \pm 0.004 \end{array}$	DIM P1 0.157 (4) 0.157	[30] T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1) 0.315 ± 0.012
3¢ ackage C70-5	Tape Size	DIM A 0.093 (2.35) 0.130	DIM B 0.096 (2.45) 0.130	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \\ 0.138 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{DIM K_o} \\ 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \\ 0.055 \pm 0.004 \end{array}$	DIM P1 0.157 (4) 0.157	[30] T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1) 0.315 ± 0.012
3¢ ackage C70-5	Tape Size	DIM A 0.093 (2.35) 0.130	DIM B 0.096 (2.45) 0.130	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \\ 0.138 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{DIM K_o} \\ 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \\ 0.055 \pm 0.004 \end{array}$	DIM P1 0.157 (4) 0.157	[30] T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1) 0.315 ± 0.012
3¢ ackage C70-5	Tape Size	DIM A 0.093 (2.35) 0.130	DIM B 0.096 (2.45) 0.130	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \\ 0.138 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{DIM K_o} \\ 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \\ 0.055 \pm 0.004 \end{array}$	DIM P1 0.157 (4) 0.157	[30] T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1) 0.315 ± 0.012
3¢ 	Tape Size	DIM A 0.093 (2.35) 0.130	DIM B 0.096 (2.45) 0.130	$\begin{array}{c} 0.138 \pm 0.004 \\ (3.5 \pm 0.10) \\ 0.138 \pm 0.002 \end{array}$	$\begin{array}{c} \textbf{DIM K_o} \\ 0.053 \pm 0.004 \\ (1.35 \pm 0.10) \\ 0.055 \pm 0.004 \end{array}$	DIM P1 0.157 (4) 0.157	[30] T TO SCALE DIM W 0.315 ± 0.004 (8 ± 0.1) 0.315 ± 0.012


NC7SZD384



www.fairchildsemi.com

6

9