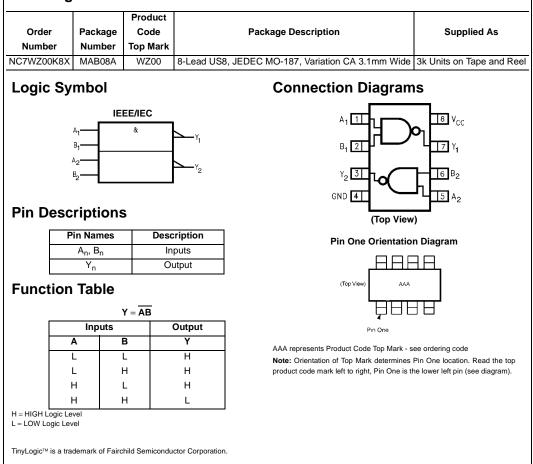
April 2000 Revised February 2002

NC7WZ00 TinyLogic™ UHS Dual 2-Input NAND Gate

General Description

FAIRCHILD


SEMICONDUCTOR

The NC7WZ00 is a dual 2-Input NAND Gate from Fairchild's Ultra High Speed Series of TinyLogicTM. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving US8 surface mount package
- Ultra High Speed; t_{PD} 2.4 ns typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V–5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

© 2002 Fairchild Semiconductor Corporation DS500267

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

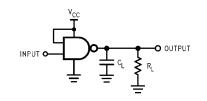
Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
DC Output Current (I _{OUT})	\pm 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	\pm 100 mA
Storage Temperature (T _{STG})	$-65^\circ C$ to $+150^\circ C$
Junction Temperature under Bias (T $_{\rm J}$)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 2)

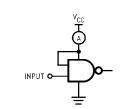
Supply Voltage Operating (V _{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V_{CC} @ 1.65V \pm 0.15V, 2.5V \pm 0.2V	0 ns/V to 20 ns/V
$V_{CC} @ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.


DC Electrical Characteristics

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^\circ C \text{ to } +85^\circ C$		Units	Conditions		
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	1.65-1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3-5.5	0.70 V _{CC}			$0.70 \ V_{CC}$		v		
V _{IL}	LOW Level Input Voltage	1.65-1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3-5.5			0.30 V _{CC}		0.30 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2		V	V V -V	I _{OH} = -100 μA
		3.0	2.9	3.0		2.9		v	VIN = VIL	$I_{OH} = -100 \mu A$
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.69				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1		$V_{IN} = V_{IH}$ $I_{OL} = 10$	
		2.3		0.0	0.1		0.1	V		$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.1		0.1	v		
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μA	V _{IN} = 5.5\	/, GND
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V_{IN} or V_{OI}	_{UT} = 5.5V
I _{CC}	Quiescent Supply Current	1.65-5.5			1		10	μA	V _{IN} = 5.5\	/, GND

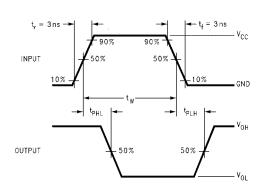

Symbol	Parameter	V _{CC}		$T_A = +25^{\circ}C$ $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ Unit		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Conditions	Fig. No		
Symbol	raiallielei	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Conditions	Fig. NO.
t _{PLH} ,	Propagation Delay	$\textbf{1.8} \pm \textbf{0.15}$	2.0	5.3	9.6	2.0	9.8			Figures 1, 3	
t _{PHL}		2.5 ± 0.2	1.2	3.2	5.3	1.2	5.7		$C_L = 15 \text{ pF},$		
		3.3 ± 0.3	0.8	2.4	3.7	0.8	4.0	ns	$R_L = 1 M\Omega$		
		5.0 ± 0.5	0.5	1.9	2.9	0.5	3.2				
t _{PLH,}	Propagation Delay	3.3 ± 0.3	1.2	3.0	4.6	1.2	4.9	ns	$C_{L} = 50 \text{ pF},$	Figures	
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.6	0.8	3.9	115	$R_L = 500\Omega$	1, 3	
CIN	Input Capacitance	0		2.5				pF			
C _{PD}	Power Dissipation Capacitance	3.3		13				pF (Note	(Note 3)	Figure 2	
		5.0		17				рг	(NOLE 3)	Figure 2	

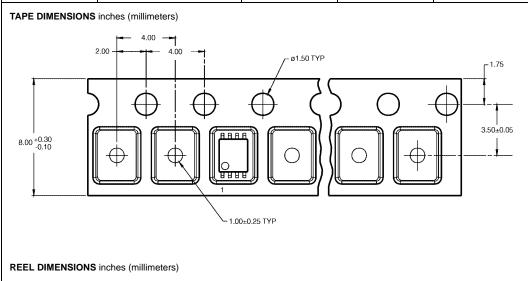
Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) +(I_{CC}static).

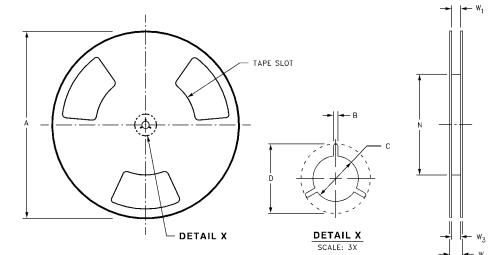
AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_w = 500 ns $\mbox{FIGURE 1. AC Test Circuit}$

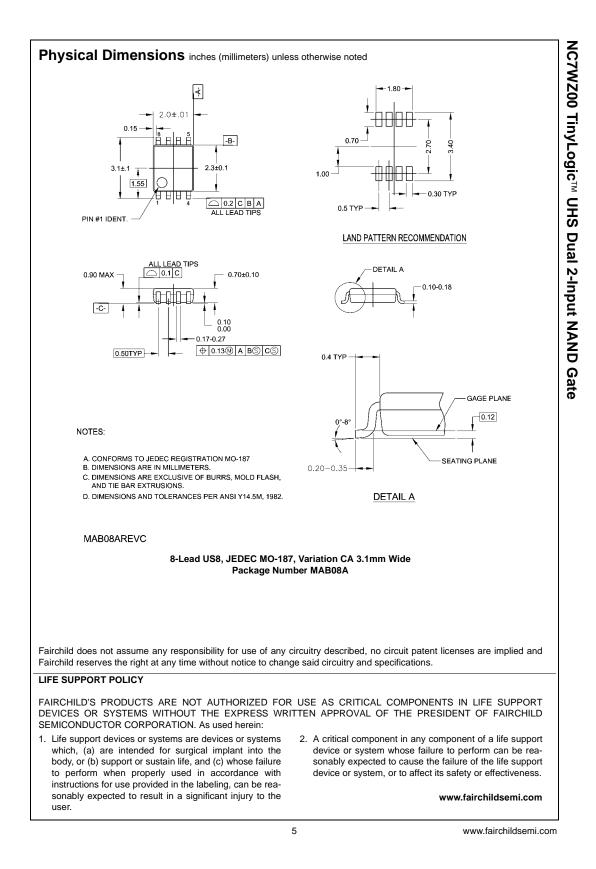
Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit




FIGURE 3. AC Waveforms


www.fairchildsemi.com

Tape and Reel Specification


Tape Format									
Package	Таре	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
K8X	Carrier	3000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					

Tape Size	A	В	С	D	N	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
0 11111	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

www.fairchildsemi.com

