CLC420 High-Speed, Voltage Feedback Op Amp

General Description

The CLC420 is an operational amplifier designed for applications requiring matched inputs, integration or transimpedance amplification. Utilizing voltage feedback architecture, the CLC420 offers a 300MHz bandwidth, a 1100V/us slew rate and a 4mA supply current (power consumption of 40mW, ±5V supplies). Additional benefits of the CLC420B are a 0.5mV input offset voltage and a 4μV/°C temperature coefficient.

Applications such as differential amplifiers will benefit from 70dB common mode rejection ratio and an input offset current of 0.2µA. With its unity-gain stability, 2pA/√Hz current noise and 3μA of input bias current, the CLC420 is designed to meet the needs of filter applications and log amplifiers. The low input offset current and current noise, combined with a settling time of 18ns to 0.01% make the CLC420 ideal for D/A converters, pin diode receivers and photo multipliers amplifiers. All applications will find 70dB power supply rejection ratio attractive.

The CLC420 is available in several versions to meet a variety of requirements:

CLC420AJP/BJP -40°C to +85°C

CLC420AJE/BJE -40°C to +85°C -40°C to +85°C

CLC420ALC CLC420AMC -55°C to +125°C

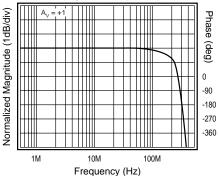
CLC420AIB/BIB -40°C to +85°C DESC SMD number: 5962-91958

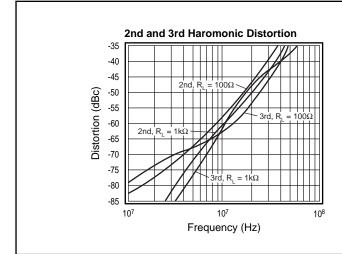
8-pin plastic DIP 8-pin plastic SOIC

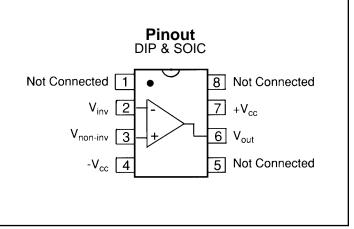
dice qualified to Method 5008,

MIL-STD-883, Level B

8-pin CERDIP


Features


- 300MHz small signal bandwidth
- 1100V/us slew rate
- Unity-gain stability
- Low distortion, -60dBc at 20MHz
- 0.01% settling in 18ns
- CLC420B: 0.5mV input offset voltage, 4μV/°C
- 0.2µA input offset current
- 2pA√Hz current noise


Applications

- Active filters/integrators
- Differential amplifiers
- Pin diode receivers
- Log amplifiers
- D/A converters
- Photo multiplier amplifiers

Non-Inverting Frequency Response

CLC420 Electrica	I Characteristics	: (\(- \) 1	V - +5V I	P - 1000	P 00: 11	inlace enac	ified)
PARAMETER	CONDITIONS	TYP	$(A_V = +1, V_{CC} = \pm 5V, R_L = 100\Omega, R_f = 0\Omega; u$ TYP MAX & MIN RATINGS			UNITS	SYMBOL
	· · · · · · · · · · · · · · · · · · ·	 				UNITS	STIVIBOL
Ambient Temperature	CLC420AJ/BJ	+25°C	-40°C	+25°C	+85°C		
FREQUENCY DOMAIN RI -3dB bandwidth	$V_{OUT} < 0.4V_{pp}$ $V_{OUT} < 5V_{pp}$	300 40	>200 >20	>200 >25	>130 >20	MHz MHz	SSBW LSBW
A_v =-1, R_f =500 Ω A_v =-1, R_f =500 Ω gain flatness	V _{OUT} <0.4V _{pp} V _{OUT} <5V _{pp} V _{OUT} <0.4V _{pp}	100 60	>65 >30	>65 >35	>45 >30	MHz MHz	SSBWI LSBWI
peaking peaking rolloff †rolloff, A _V =-1, R _f =500Ω linear phase deviation	0.1MHz to 100MHz >100MHz 0.1MHz to 100MHz 0.1MHz to 30MHz 0.1MHz to 100MHz	0 0 0.2 0.2 0.9	<1 <5 <1 <1.4 <1.8	<0.6 <3 <1 <1.4 <1.8	<0.6 <3 <2 <1.6 <2.5	dB dB dB dB	GFPL GFPH GFR GFRI LPD
TIME DOMAIN RESPONS rise and fall time		1.2	<2	< 2	< 3	ns	TRS
rise and fall time, $A_v = -1$, $R_f = \frac{1}{2}$ settling time to $\pm 0.1\%$	5V step 500Ω 0.4V step 5V step 2V step	14 3.5 6 12	< 25 < 5.5 < 10 < 18	< 20 < 5.5 < 9.5 < 18	< 20 < 7.8 < 10 < 18	ns ns ns ns	TRL TRSI TRLI TSS
$\pm 0.01\%$ overshoot slew rate slew rate, A $_{\rm V}$ = -1, R $_{\rm f}$ = 500 Ω	2V step 0.4V step 5V step 5V step	18 8 1100 750	< 25 < 35 > 600 > 430	< 25 < 25 > 750 > 500	< 25 < 25 > 600 > 430	ns % V/µs V/µs	TSP OS SR SRI
3^{RD} harmonic distortion 2^{ND} harmonic distortion, $A_V=-1$, 3^{RD} harmonic distortion, $A_V=-1$,	2V _{PP} , 20MHz 2V _{PP} , 20MHz 2V _{PP} , 20MHz, R _f =500Ω	-50 -53 -51 -51	<-40 <-45 <-40 <-40	<-40 <-45 <-40 <-40	<-40 <-40 <-40 <-35	dBc dBc dBc dBc	HD2 HD3 HD2 HD3
	1MHz to 200MHz 1MHz to 200MHz	4.2 2	< 5.3 < 2.9	< 5.3 < 2.6	<6 <2.3	nV/√Hz pA/√Hz	VN ICN
*Input offset voltage average temperature *input offset voltage average temperature *input offset voltage average temperature *input bias current average temperature coeff *input offset current average temperature coeff *open loop gain power supply rejection ratio common mode rejection ratio *supply current	(A version) coefficient (B version) coefficient icient icient no load, quiescent	1 8 0.5 4 3 45 0.2 2 65 70 80 4	<3.2 <15 <1.6 <10 <20 <120 <2.6 <20 >52 >55 >60 <5	<2 -0.8 -10 -1 <1 -56 >60 >65 <5	<3.5 <15 <1.8 <10 <10 <60 <2 <10 >56 >60 >65 >65 <5	mV μV/°C mV μΑ °C μΑ °C μΑ °C αΒ αΒ αΒ αΒ αΒ	VIO DVIO VIOB DVIOB IB DIB IIO DIIO AOL PSRR CMRR ICC
differential mode input common mode input output impedance output voltage range *output voltage range common mode input range output current	resistance capacitance resistance capacitance at DC no load RL=100Ω	2 1 1 1 0.02 ±3.6 ±2.9 ±3.2 ±60	>0.5 <2 >0.25 <2 <0.3 ±2.8 ±2.5 ±30	>1 <2 >0.5 <2 <0.2 ±3 ±2.5 ±2.8 ±50	>1 <2 >0.5 <2 <0.2 ±3 ±2.5 ±2.8 ±50	MΩ pF MΩ pF Ω V V V mA	RIND CIND RINC CINC RO VO VOL CMIR IO

Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

2

Absolute Maximum Ratings

 V_{cc}

±7V l_{out} (is short circuit protected to ground, maximum reliability maintained if

l_{out} does not exceed 60mA, except ABD, BBD which should not exceed 35mA over the military temperature range) ±V_{cc} 10V common mode input voltage differential input voltage junction temperature +150°C

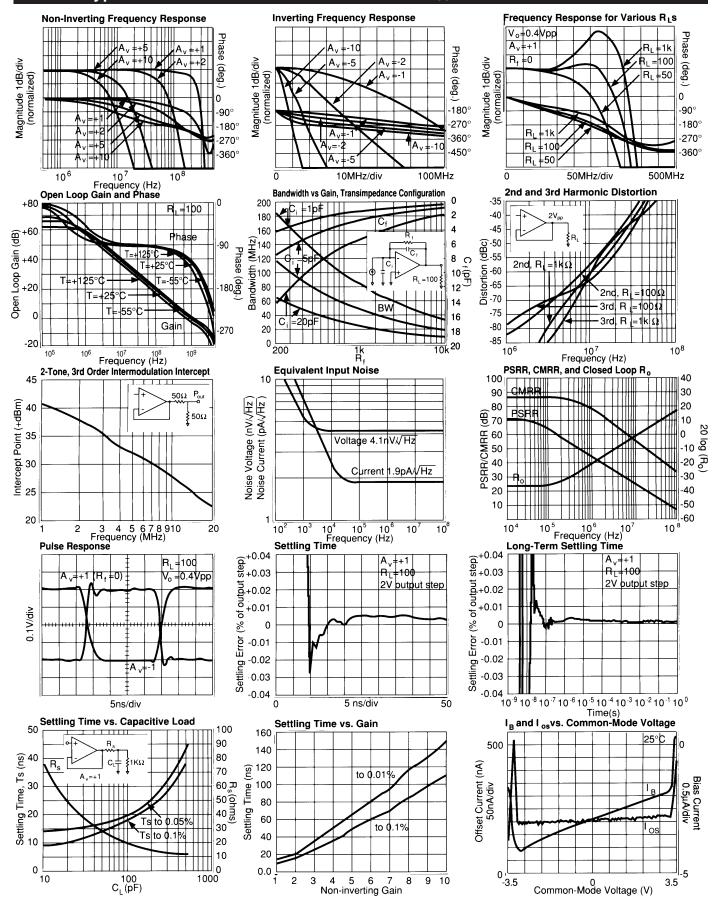
operating temperature range AJ/BJ: -40°C to +85°C -65°C to +150°C storage temperature range lead solder duration (+300°C) 10 sec

Reliability Information

Transistor count 42

Miscellaneous Ratings

recommended gain range: ± 1 to ± 10


Notes:

* AJ, BJ 100% tested at +25°C.

Package Thermal Resistance						
Package	θ_{JC}	θ_{JA}				
AJP	65°C/W	120°C/W				
AJE	60°C/W	140°C/W				
CERDIP	35°C/W	125°C/W				

http://www.national.com

CLC420 Typical Performance Characteristics ($A_v = +1, V_{CC} = \pm 5V, R_L = 100\Omega, R_f = 0\Omega$; unless specified)

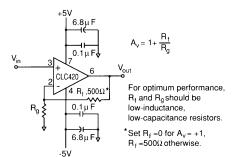


Figure 1: recommended non-inverting gain circuit Description

The CLC420 is a high-speed, slew-boosted, voltage-feedback amplifier with unity-gain stability. These features along with matched inputs, low input bias and noise currents, and excellent CMRR render the CLC420 very attractive for active filters, differential amplifiers, log amplifiers, and transimpedance amplifiers.

DC accuracy

Unlike current-feedback amplifiers, voltage-feedback amplifiers have matched inputs. This means that the non-inverting and inverting input bias currents are well matched and track over temperature, etc. As a result, by matching the resistance looking out of the two inputs, these errors can be reduced to a small offset current term.

Gain bandwidth product

Since the CLC420 is a voltage-feedback op-amp, closed-loop bandwidth is approximately equal to the gain-bandwidth product (typically 100MHz) divided by the noise gain of the circuit (for noise gains greater than 5). At lower noise gains, higher-order amplifier poles contribute to higher closed-loop bandwidth. At low gains use the frequency response performance plots given in the data sheet.

Another point to remember is that the closed-loop bandwidth is determined by the noise gain, not the signal gain of the circuit. Noise gain is the reciprocal of the attenuation in the feedback network enclosing the op amp. For example, a CLC420 setup as a non-inverting amplifier with a closed-loop gain of +1 (a noise gain of 1) has a 300MHz bandwidth. When used as an inverting amplifier with a gain of -1 (a noise gain of 2), the bandwidth is less, typically only 100MHz.

Full-power bandwidth, and slew-rate

The CLC420 combines exceptional full-power bandwidths (40MHz, V_0 =5Vpp, A_V =+1) and slew rates (1100V/ μ s, A_V =+1) with low (40mW) power consumption. These attractive results are achieved by using slew-boosting circuitry to keep the slew rates high while consuming very little power.

In non-slew boosted amplifiers, full-power bandwidth can be easily determined from slew-rate measurements, but in slew-boosted amplfiers, such as the CLC420, you can't. For this reason we provide data for both.

Slew rate is also different for inverting and non-inverting configurations. This occurs because common-mode signal voltages are present in non-inverting circuits but absent in inverting circuits. Once again data is provided for both.

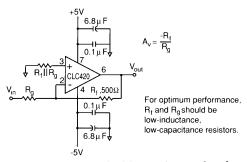


Figure 2: recommended inverting gain circuit

Transimpedance amplifier circuits

Low inverting, input current noise (2pA/ \sqrt{Hz}) makes the CLC420 ideal for high-sensitivity transimpedance amplifier circuits for applications such as pin-diode optical receivers, and detectors in receiver IFs. However, feedback resistors $4k\Omega$ or greater are required if feedback resistor noise current is going to be less than the input current noise contribution of the op-amp.

With feedback resistors this large, shunt capacitance on the inverting input of the op-amp (from the pin-diode, etc.) will unacceptably degrade phase margin causing frequency response peaking or oscillations. A small-valued capacitor shunting the feedback resistor solves this problem (Note:This approach does not work for a current-feedback op-amp configured for transimpedance applications). To determine the value of this capacitor, refer to the "Transimpedance BW vs. Rf and Ci" plot.

For example, let's assume an optical transimpedance receiver is being developed. Total capacitance from the inverting input to ground, including the photodiode and strays is 5pF. A $5k\Omega$ feedback resistor value has been determined to provide best dynamic range based on the responsivity of the photodiode and the range of incident optical powers, etc. From the "Transimpedance BW vs. R_f and C_i " plot, using C_i = 5pF it is determined from the two curves labeled C_i = 5pF, that C_f = 1.5pF provides optimal compensation (no more than 0.5dB frequency response peaking) and a -3dB bandwidth of approximately 27MHz.

Printed circuit layout

As with any high frequency device, a good PCB layout will enhance performance. Ground plane construction and good power supply bypassing close to the package are critical to achieving full performance. The amplifier is sensitive to stray capacitance to ground at the output and inverting input: Node connections should be small with minimal coupling to the ground plane.

Parasitic or load capacitance directly on the output (pin 6) will introduce additional phase shift in the loop degrading the loop phase margin and leading to frequency response peaking. A small series resistor before this capacitance, if present, effectively decouples this effect. The graphs on the preceding page, "Settling Time vs. C_L ", illustrate the required resistor value and resulting performance vs. capacitance.

Evaluation PC boards (part numbers CLC730013 for through-hole and CLC730027 for SOIC) are available for the CLC420.

This page intentionally left blank.

Customer Design Applications Support

National Semiconductor is committed to design excellence. For sales, literature and technical support, call the National Semiconductor Customer Response Group at **1-800-272-9959** or fax **1-800-737-7018**.

Life Support Policy

National's products are not authorized for use as critical components in life support devices or systems without the express written approval of the president of National Semiconductor Corporation. As used herein:

- 1. Life support devices or systems are devices or systems which, a) are intended for surgical implant into the body, or b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 E-mail: europe.support.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Francais Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.

Hong Kong Ltd. 2501 Miramar Tower 1-23 Kimberley Road Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600

Fax: (852) 2736-9960

National Semiconductor Japan Ltd.

Tel: 81-043-299-2309 Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.