

February 1996

### LM7121

## 235 MHz Tiny Low Power Voltage Feedback Amplifier

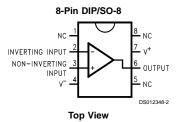
### **General Description**

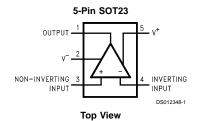
The LM7121 is a high performance operational amplifier which addresses the increasing AC performance needs of video and imaging applications, and the size and power constraints of portable applications.

The LM7121 can operate over a wide dynamic range of supply voltages, from 5V (single supply) up to  $\pm 15V$  (see the Application Information section for more details). It offers an excellent speed-power product delivering  $1300V/\mu s$  and 235 MHz Bandwidth (–3 dB,  $A_{\rm V}$  = +1). Another key feature of this operational amplifier is stability while driving unlimited capacitive loads.

Due to its Tiny SOT23-5 package, the LM7121 is ideal for designs where space and weight are the critical parameters. The benefits of the Tiny package are evident in small portable electronic devices, such as cameras, and PC video cards. Tiny amplifiers are so small that they can be placed anywhere on a board close to the signal source or near the input to an A/D converter.

- Easy to use voltage feedback topology
- Stable with unlimited capacitive loads
- Tiny SOT23-5 package typical circuit layout takes half the space of SO-8 designs
- Unity gain frequency: 175 MHz
- Bandwidth (–3 dB,  $A_V$  = +1,  $R_L$  = 100 $\Omega$ ): 235 MHz
- Slew rate: 1300V/µs
- Supply Voltages DIP/SO-8: 5V to ±15V
- SOT23-5: 5V to ±5V
- Characterized for: +5V, ±5V, ±15V
- Low supply current: 5.3 mA


### **Applications**


- Scanners, color fax, digital copiers
- PC video cards
- Cable drivers
- Digital cameras
- ADC/DAC buffers
- Set-top boxes

#### **Features**

(Typical unless otherwise noted)  $V_S = \pm 15V$ 

## **Connection Diagrams**





### **Ordering Information**

| Package          | Ordering Information | NSC Drawing | Package  | Supplied As        |
|------------------|----------------------|-------------|----------|--------------------|
|                  |                      | Number      | Marking  |                    |
| 8-Pin Molded DIP | LM7121IN             | N08E        | LM7121IN | Rails              |
| 8-Pin SO-8       | LM7121IM             | M08A        | LM7121IM | Rails              |
|                  | LM7121IMX            | M08A        | LM7121IM | 2.5k Tape and Reel |
| 5-Pin SOT23-5    | LM7121IM5X           | MA05A       | A03A     | 3k Tape and Reel   |

### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 ESD Tolerance (Note 2)
 2000V

 Differential Input Voltage (Note 7)
 ±2V

 Voltage at Input/Output Pin
 (V\*)-1.4V, (V^-)+1.4V

Supply Voltage (V<sup>+</sup>–V<sup>-</sup>) 36V

Output Short Circuit to Ground

(Note 3) Continuous
Lead Temperature 260°C
(soldering, 10 sec) 260°C

Storage Temperature Range -65°C to +150°C Junction Temperature (Note 4) 150°C

### **Operating Ratings** (Note 1)

Supply Voltage: DIP/SO-8  $4.5 \text{V} \leq \text{V}_{\text{S}} \leq 33 \text{V}$   $\text{SOT23-5} \qquad \qquad 4.5 \text{V} \leq \text{V}_{\text{S}} \leq 11 \text{V}$ 

Junction Temperature Range  $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +85^{\circ}\text{C}$ 

Thermal Resistance ( $\theta_{JA}$ )

N Package, 8-pin Molded DIP 115°C/W M Package, 8-pin Surface Mount 165°C/W SOT23-5 Package 325°C/W

## ±15V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = +15V,  $V^-$  = -15V,  $V_{CM}$  =  $V_O$  = 0V and  $R_L$  > 1 M $\Omega$ . Boldface limits apply at the temperature extremes.

| Symbol          | Parameter             | Conditions                            | Typ<br>(Note 5) | LM7121I<br>Limit<br>(Note 6) | Units |
|-----------------|-----------------------|---------------------------------------|-----------------|------------------------------|-------|
| V <sub>OS</sub> | Input Offset Voltage  |                                       | 0.9             | 8                            | mV    |
|                 |                       |                                       |                 | 15                           | max   |
| I <sub>B</sub>  | Input Bias Current    |                                       | 5.2             | 9.5                          | μA    |
|                 |                       |                                       |                 | 12                           | max   |
| los             | Input Offset Current  |                                       | 0.04            | 4.3                          | μA    |
|                 |                       |                                       |                 | 7                            | max   |
| R <sub>IN</sub> | Input Resistance      | Common Mode                           | 10              |                              | MΩ    |
|                 |                       | Differential Mode                     | 3.4             |                              | MΩ    |
| C <sub>IN</sub> | Input Capacitance     | Common Mode                           | 2.3             |                              | pF    |
| CMRR            | Common Mode           | $-10V \le V_{CM} \le 10V$             | 93              | 73                           | dB    |
|                 | Rejection Ratio       |                                       |                 | 70                           | min   |
| +PSRR           | Positive Power Supply | 10V ≤ V <sup>+</sup> ≤ 15V            | 86              | 70                           | dB    |
|                 | Rejection Ratio       |                                       |                 | 68                           | min   |
| -PSRR           | Negative Power Supply | -15V ≤ V <sup>-</sup> ≤ -10V          | 81              | 68                           | dB    |
|                 | Rejection Ratio       |                                       |                 | 65                           | min   |
| V <sub>CM</sub> | Input Common-Mode     | CMRR ≥ 70 dB                          | 13              | 11                           | V     |
|                 | Voltage Range         |                                       |                 |                              | min   |
|                 |                       |                                       | -13             | -11                          | V     |
|                 |                       |                                       |                 |                              | max   |
| A <sub>V</sub>  | Large Signal          | $R_L = 2 k\Omega$ , $V_O = 20 V_{PP}$ | 72              | 65                           | dB    |
|                 | Voltage Gain          |                                       |                 | 57                           | min   |
| Vo              | Output Swing          | $R_L = 2 k\Omega$                     | 13.4            | 11.1                         | V     |
|                 |                       |                                       |                 | 10.8                         | min   |
|                 |                       |                                       | -13.4           | -11.2                        | V     |
|                 |                       |                                       |                 | -11.0                        | max   |
|                 |                       | $R_L = 150\Omega$                     | 10.2            | 7.75                         | V     |
|                 |                       |                                       |                 | 7.0                          | min   |
|                 |                       |                                       | -7.0            | -5.0                         | V     |
|                 |                       |                                       |                 | -4.8                         | max   |
| I <sub>sc</sub> | Output Short Circuit  | Sourcing                              | 71              | 54                           | mA    |
|                 | Current               |                                       |                 | 44                           | min   |
|                 |                       | Sinking                               | 52              | 39                           | mA    |
|                 |                       |                                       |                 | 34                           | min   |

## ±15V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = +15V,  $V^-$  = -15V,  $V_{CM}$  =  $V_O$  = 0V and  $R_L$  > 1 M $\Omega$ . **Boldface** limits apply at the temperature extremes.

| Symbol | Parameter      | Conditions | Typ<br>(Note 5) | LM7121I<br>Limit | Units |
|--------|----------------|------------|-----------------|------------------|-------|
|        |                |            |                 | (Note 6)         |       |
| Is     | Supply Current |            | 5.3             | 6.6              | mA    |
|        |                |            |                 | 7.5              | max   |

#### ±15V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = 15V,  $V^-$  = -15V,  $V_{CM}$  =  $V_O$  = 0V and  $R_L$  > 1 M $\Omega$ . **Boldface** limits apply at the temperature extremes.

| Symbol                          | Parameter                 | Conditions                                       | Typ<br>(Note 5) | LM7121I<br>Limit<br>(Note 6) | Units                         |
|---------------------------------|---------------------------|--------------------------------------------------|-----------------|------------------------------|-------------------------------|
| SR                              | Slew Rate                 | $A_V = +2$ , $R_L = 1 k\Omega$ ,                 | 1300            | (11010-0)                    | V/µs                          |
|                                 | (Note 8)                  | $V_O = 20 V_{PP}$                                |                 |                              |                               |
| GBW                             | Unity Gain-Bandwidth      | $R_L = 1 k\Omega$                                | 175             |                              | MHz                           |
| $\phi_{m}$                      | Phase Margin              |                                                  | 63              |                              | Deg                           |
| f (-3 dB)                       | Bandwidth                 | $R_{L} = 100\Omega, A_{V} = +1$                  | 235             |                              | MHz                           |
|                                 | (Notes 9, 10)             | $R_L = 100\Omega, A_V = +2$                      | 50              |                              |                               |
| t <sub>s</sub>                  | Settling Time             | 10 V <sub>PP</sub> Step, to 0.1%,                | 74              |                              | ns                            |
|                                 |                           | $R_L = 500\Omega$                                |                 |                              |                               |
| t <sub>r</sub> , t <sub>f</sub> | Rise and Fall Time        | $A_V = +2, R_L = 100\Omega,$                     | 5.3             |                              | ns                            |
|                                 | (Note 10)                 | $V_O = 0.4 V_{PP}$                               |                 |                              |                               |
| A <sub>D</sub>                  | Differential Gain         | $A_V = +2, R_L = 150\Omega$                      | 0.3             |                              | %                             |
| φ <sub>D</sub>                  | Differential Phase        | $A_V = +2, R_L = 150\Omega$                      | 0.65            |                              | Deg                           |
| e <sub>n</sub>                  | Input-Referred            | f = 10 kHz                                       | 17              |                              | nV                            |
|                                 | Voltage Noise             |                                                  |                 |                              | $\overline{\sqrt{\text{Hz}}}$ |
| i <sub>n</sub>                  | Input-Referred            | f = 10 kHz                                       | 1.9             |                              | pА                            |
|                                 | Current Noise             |                                                  |                 |                              | $\frac{pA}{\sqrt{Hz}}$        |
| T.H.D.                          | Total Harmonic Distortion | 2 V <sub>PP</sub> Output, R <sub>L</sub> = 150Ω, | 0.065           |                              | %                             |
|                                 |                           | $A_{V} = +2$ , f = 1 MHz                         |                 |                              |                               |
|                                 |                           | 2 V <sub>PP</sub> Output, R <sub>L</sub> = 150Ω, | 0.52            |                              |                               |
|                                 |                           | $A_V = +2$ , f = 5 MHz                           |                 |                              |                               |

## ±5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = 5V,  $V^-$  = -5V,  $V_{CM}$  =  $V_O$  = 0V and  $R_L$  > 1 M $\Omega$ . **Bold-face** limits apply at the temperature extremes.

| Symbol          | Parameter            | Conditions        | Typ<br>(Note 5) | LM7121I<br>Limit | Units |
|-----------------|----------------------|-------------------|-----------------|------------------|-------|
|                 |                      |                   |                 | (Note 6)         |       |
| Vos             | Input Offset Voltage |                   | 1.6             | 8                | mV    |
|                 |                      |                   |                 | 15               | max   |
| I <sub>B</sub>  | Input Bias Current   |                   | 5.5             | 9.5              | μA    |
|                 |                      |                   |                 | 12               | max   |
| Ios             | Input Offset Current |                   | 0.07            | 4.3              | μA    |
|                 |                      |                   |                 | 7.0              | max   |
| R <sub>IN</sub> | Input Resistance     | Common Mode       | 6.8             |                  | ΜΩ    |
|                 |                      | Differential Mode | 3.4             |                  | ΜΩ    |

## ±5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = 5V,  $V^-$  = -5V,  $V_{CM}$  =  $V_O$  = 0V and  $R_L$  > 1 M $\Omega$ . **Bold-face** limits apply at the temperature extremes.

| Symbol          | Parameter             | Conditions                        | Typ<br>(Note 5) | LM7121I<br>Limit<br>(Note 6) | Units |
|-----------------|-----------------------|-----------------------------------|-----------------|------------------------------|-------|
| C <sub>IN</sub> | Input Capacitance     | Common Mode                       | 2.3             |                              | pF    |
| CMRR            | Common Mode           | $-2V \le V_{CM} \le 2V$           | 75              | 65                           | dB    |
|                 | Rejection Ratio       |                                   |                 | 60                           | min   |
| +PSRR           | Positive Power Supply | 3V ≤ V <sup>+</sup> ≤ 5V          | 89              | 65                           | dB    |
|                 | Rejection Ratio       |                                   |                 | 60                           | min   |
| -PSRR           | Negative Power Supply | -5V ≤ V <sup>-</sup> ≤ -3V        | 78              | 65                           | dB    |
|                 | Rejection Ratio       |                                   |                 | 60                           | min   |
| V <sub>CM</sub> | Input Common Mode     | CMRR ≥ 60 dB                      | 3               | 2.5                          | V     |
|                 | Voltage Range         |                                   |                 |                              | min   |
|                 |                       |                                   | -3              | -2.5                         | V     |
|                 |                       |                                   |                 |                              | max   |
| A <sub>V</sub>  | Large Signal          | $R_L = 2 k\Omega, V_O = 3 V_{PP}$ | 66              | 60                           | dB    |
|                 | Voltage Gain          |                                   |                 | 58                           | min   |
| Vo              | Output Swing          | $R_L = 2 k\Omega$                 | 3.62            | 3.0                          | V     |
|                 |                       |                                   |                 | 2.75                         | min   |
|                 |                       |                                   | -3.62           | -3.0                         | V     |
|                 |                       |                                   |                 | -2.70                        | max   |
|                 |                       | $R_L = 150\Omega$                 | 3.1             | 2.5                          | V     |
|                 |                       |                                   |                 | 2.3                          | min   |
|                 |                       |                                   | -2.8            | -2.15                        | V     |
|                 |                       |                                   |                 | -2.00                        | max   |
| I <sub>sc</sub> | Output Short Circuit  | Sourcing                          | 53              | 38                           | mA    |
|                 | Current               |                                   |                 | 33                           | min   |
|                 |                       | Sinking                           | 29              | 21                           | mA    |
|                 |                       |                                   |                 | 19                           | min   |
| Is              | Supply Current        |                                   | 5.1             | 6.4                          | mA    |
|                 |                       |                                   |                 | 7.2                          | max   |

## ±5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = 5V,  $V^-$  = -5V,  $V_{CM}$  =  $V_O$  = 0V and  $R_L$  > 1 M $\Omega$ . **Bold-face** limits apply at the temperature extremes.

| Symbol                          | Parameter            | Conditions                       | Typ<br>(Note 5) | <b>LM7121I Limit</b> (Note 6) | Units |
|---------------------------------|----------------------|----------------------------------|-----------------|-------------------------------|-------|
| SR                              | Slew Rate            | $A_V = +2, R_L = 1 k\Omega,$     | 520             |                               | V/µs  |
|                                 | (Note 8)             | $V_O = 6 V_{PP}$                 |                 |                               |       |
| GBW                             | Unity Gain-Bandwidth | $R_L = 1 \text{ k}\Omega$        | 105             |                               | MHz   |
| φ <sub>m</sub>                  | Phase Margin         | $R_L = 1 \text{ k}\Omega$        | 74              |                               | Deg   |
| f (-3 dB)                       | Bandwidth            | $R_{L} = 100\Omega, A_{V} = +1$  | 160             |                               | MHz   |
|                                 | (Notes 9, 10)        | $R_L = 100\Omega, A_V = +2$      | 50              |                               |       |
| t <sub>s</sub>                  | Settling Time        | 5 V <sub>PP</sub> Step, to 0.1%, | 65              |                               | ns    |
|                                 |                      | $R_L = 500\Omega$                |                 |                               |       |
| t <sub>r</sub> , t <sub>f</sub> | Rise and Fall Time   | $A_V = +2, R_L = 100\Omega,$     | 5.8             |                               | ns    |
|                                 | (Note 10)            | $V_O = 0.4 V_{PP}$               |                 |                               |       |
| A <sub>D</sub>                  | Differential Gain    | $A_V = +2, R_1 = 150\Omega$      | 0.3             |                               | %     |

## ±5V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for  $T_J = 25^{\circ}C$ ,  $V^+ = 5V$ ,  $V^- = -5V$ ,  $V_{CM} = V_O = 0V$  and  $R_L > 1$  M $\Omega$ . **Boldface** limits apply at the temperature extremes.

| Symbol         | Parameter                 | Conditions                                | Typ<br>(Note 5) | LM7121I<br>Limit<br>(Note 6) | Units     |
|----------------|---------------------------|-------------------------------------------|-----------------|------------------------------|-----------|
| ф <sub>D</sub> | Differential Phase        | $A_V = +2, R_L = 150\Omega$               | 0.65            | (11010-0)                    | Deg       |
| e <sub>n</sub> | Input-Referred            | f = 10 kHz                                | 17              |                              | nV<br>√Hz |
|                | Voltage Noise             |                                           |                 |                              | √Hz       |
| i <sub>n</sub> | Input-Referred            | f = 10 kHz                                | 2               |                              | pA<br>√Hz |
|                | Current Noise             |                                           |                 |                              | √Hz       |
| T.H.D.         | Total Harmonic Distortion | 2 $V_{PP}$ Output, $R_L$ = 150 $\Omega$ , | 0.1             |                              | %         |
|                |                           | $A_{V} = +2$ , f = 1 MHz                  |                 |                              |           |
|                |                           | 2 $V_{PP}$ Output, $R_L$ = 150 $\Omega$ , | 0.6             |                              |           |
|                |                           | $A_V = +2$ , f = 5 MHz                    |                 |                              |           |

## +5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = +5V,  $V^-$  = 0V,  $V_{CM}$  =  $V_O$  =  $V^+/2$  and  $R_L$  > 1 M $\Omega$ . **Boldface** limits apply at the temperature extremes.

| Symbol          | Parameter                                | Conditions                                   | Typ<br>(Note 5) | <b>LM7121I Limit</b> (Note 6) | Units    |
|-----------------|------------------------------------------|----------------------------------------------|-----------------|-------------------------------|----------|
| Vos             | Input Offset Voltage                     |                                              | 2.4             |                               | mV       |
| I <sub>B</sub>  | Input Bias Current                       |                                              | 4               |                               | μA       |
| los             | Input Offset Current                     |                                              | 0.04            |                               | μA       |
| R <sub>IN</sub> | Input Resistance                         | Common Mode                                  | 2.6             |                               | MΩ       |
|                 |                                          | Differential Mode                            | 3.4             |                               | MΩ       |
| C <sub>IN</sub> | Input Capacitance                        | Common Mode                                  | 2.3             |                               | pF       |
| CMRR            | Common Mode<br>Rejection Ratio           | $2V \le V_{CM} \le 3V$                       | 65              |                               | dB       |
| +PSRR           | Positive Power Supply<br>Rejection Ratio | 4.6V ≤ V <sup>+</sup> ≤ 5V                   | 85              |                               | dB       |
| -PSRR           | Negative Power Supply<br>Rejection Ratio | 0V ≤ V <sup>-</sup> ≤ 0.4V                   | 61              |                               | dB       |
| V <sub>CM</sub> | Input Common-Mode<br>Voltage Range       | CMRR ≥ 45 dB                                 | 3.5             |                               | V<br>min |
|                 |                                          |                                              | 1.5             |                               | V<br>max |
| A <sub>V</sub>  | Large Signal<br>Voltage Gain             | $R_L = 2 k\Omega$ to V+/2                    | 64              |                               | dB       |
| Vo              | Output Swing                             | $R_L = 2 k\Omega$ to V+/2, High              | 3.7             |                               | V        |
|                 |                                          | $R_L = 2 k\Omega$ to V <sup>+</sup> /2, Low  | 1.3             |                               | 1        |
|                 |                                          | $R_L = 150\Omega$ to V <sup>+</sup> /2, High | 3.48            |                               | 1        |
|                 |                                          | $R_L = 150\Omega$ to V <sup>+</sup> /2, Low  | 1.59            |                               | 1        |
| I <sub>sc</sub> | Output Short Circuit                     | Sourcing                                     | 33              |                               | mA       |
|                 | Current                                  | Sinking                                      | 20              |                               | mA       |
| Is              | Supply Current                           |                                              | 4.8             |                               | mA       |

#### +5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for  $T_J$  = 25°C,  $V^+$  = +5V,  $V^-$  = 0V,  $V_{CM}$  =  $V_O$  =  $V^+/2$  and  $R_L$  > 1 M $\Omega$ . Bold-face limits apply at the temperature extremes.

| Symbol                          | Parameter                 | Conditions                                         | Typ<br>(Note 5) | LM7121I<br>Limit | Units |
|---------------------------------|---------------------------|----------------------------------------------------|-----------------|------------------|-------|
|                                 |                           | 1                                                  |                 | (Note 6)         |       |
| SR                              | Slew Rate                 | $A_V = +2$ , $R_L = 1 \text{ k}\Omega$ to          | 145             |                  | V/µs  |
|                                 | (Note 8)                  | $V^{+}/2$ , $V_{O} = 1.8 V_{PP}$                   |                 |                  |       |
| GBW                             | Unity Gain-Bandwidth      | $R_{L} = 1k$ , to $V^{+}/2$                        | 80              |                  | MHz   |
| φ <sub>m</sub>                  | Phase Margin              | $R_L = 1k \text{ to } V^+/2$                       | 70              |                  | Deg   |
| f (-3 dB)                       | Bandwidth                 | $R_L = 100\Omega$ to V+/2, $A_V = +1$              | 200             |                  | MHz   |
|                                 | (Notes 9, 10)             | $R_L = 100\Omega$ to V <sup>+</sup> /2, $A_V = +2$ | 45              |                  |       |
| t <sub>r</sub> , t <sub>f</sub> | Rise and Fall Time        | $A_V = +2, R_L = 100\Omega,$                       | 8               |                  | ns    |
|                                 | (Note 10)                 | $V_O = 0.2 V_{PP}$                                 |                 |                  |       |
| T.H.D.                          | Total Harmonic Distortion | 0.6 $V_{PP}$ Output, $R_L = 150Ω$ ,                | 0.067           |                  | %     |
|                                 |                           | $A_{V} = +2$ , f = 1 MHz                           |                 |                  |       |
|                                 |                           | 0.6 $V_{PP}$ Output, $R_L = 150Ω$ ,                | 0.33            |                  |       |
|                                 |                           | $A_{V} = +2$ , f = 5 MHz                           |                 |                  |       |

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, 1.5 k $\Omega$  in series with 100 pF.

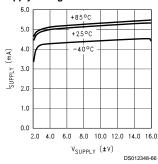
Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.

Note 4: The maximum power dissipation is a function of  $T_{J(max)}$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any ambient temperature is  $P_D = (T_{J(max)} - T_A)/\theta_{JA}$ . All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

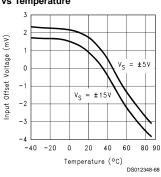
Note 7: Differential input voltage is measured at  $V_S = \pm 15V$ .


Note 8: Slew rate is the average of the rising and falling slew rates.

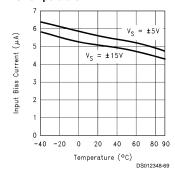
Note 9: Unity gain operation for ±5V and ±15V supplies is with a feedback network of 510Ω and 3 pF in parallel (see the Application Information section). For +5V single supply operation, feedback is a direct short from the output to the inverting input.

Note 10:  $A_V$  = +2 operation with 2  $k\Omega$  resistors and 2 pF capacitor from summing node to ground.

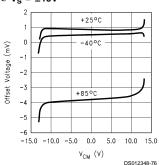
### Typical Performance Characteristics $T_A = 25^{\circ}C$ , $R_L = 1 \text{ M}\Omega$ . unless otherwise specified


### Supply Current vs Supply Voltage

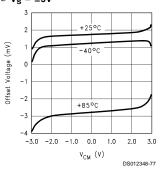



#### Supply Current vs Temperature

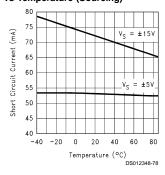



## Input Offset Voltage vs Temperature

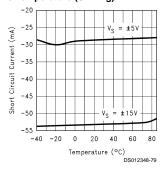



## Input Bias Current vs Temperature

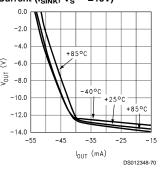



Input Offset Voltage vs Common Mode Voltage @ V<sub>S</sub> = ±15V

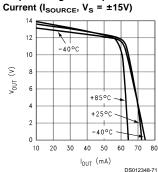



Input Offset Voltage vs Common Mode Voltage @ V<sub>S</sub> = ±5V

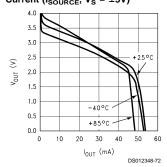



Short Circuit Current vs Temperature (Sourcing)

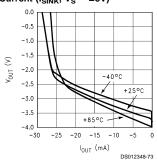



Short Circuit Current vs Temperature (Sinking)



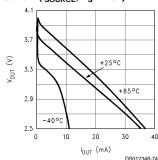

Output Voltage vs Output Current ( $I_{SINK}$ ,  $V_S = \pm 15V$ )



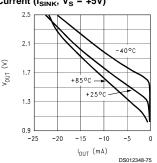

Output Voltage vs Output



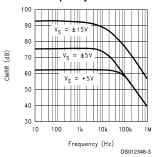
Output Voltage vs Output Current (I<sub>SOURCE</sub>, V<sub>S</sub> = ±5V)



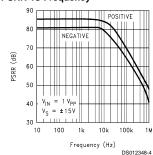

Output Voltage vs Output Current (I<sub>SINK</sub>, V<sub>S</sub> = ±5V)



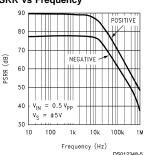

## $\textbf{Typical Performance Characteristics} \ \ T_A = 25^{\circ}C, \ R_L = 1 \ M\Omega. \ unless \ otherwise \ specified \ (Continued)$


#### Output Voltage vs Output Current (I<sub>SOURCE</sub>, V<sub>S</sub> = +5V)

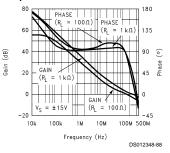



Output Voltage vs Output Current (I<sub>SINK</sub>, V<sub>S</sub> = +5V)

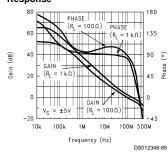



#### **CMRR** vs Frequency

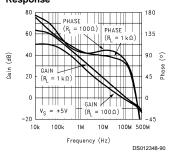



#### **PSRR vs Frequency**

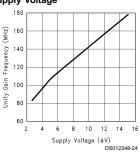



#### **PSRR** vs Frequency

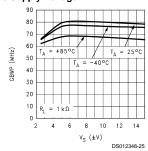



## Open Loop Frequency Response

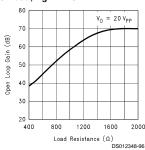



## Open Loop Frequency Response

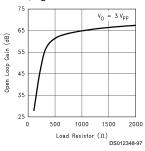



#### Open Loop Frequency Response

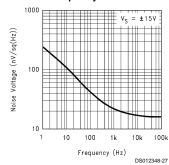



#### Unity Gain Frequency vs Supply Voltage

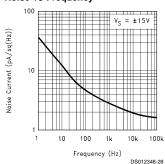



## GBWP @ 10 MHz vs Supply Voltage

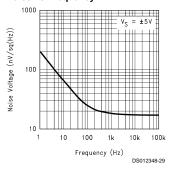



## Large Signal Voltage Gain vs Load, V<sub>S</sub> = ±15V

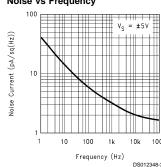



Large Signal Voltage Gain vs Load, V<sub>S</sub> = ±5V

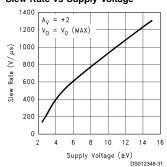



#### Input Voltage Noise vs Frequency

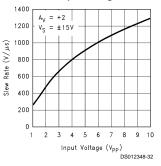



#### Input Current Noise vs Frequency



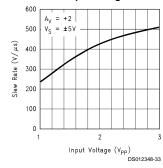

#### Input Voltage Noise vs Frequency



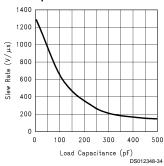

#### Input Current Noise vs Frequency



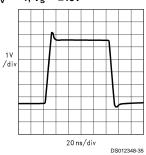
### Slew Rate vs Supply Voltage



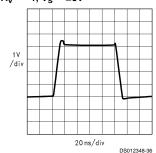

#### Slew Rate vs Input Voltage



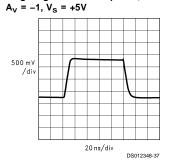

## $\textbf{Typical Performance Characteristics} \ \ T_{A} \text{= } 25^{\circ}\text{C}, \ R_{L} \text{= } 1 \ \text{M}\Omega. \ \text{unless otherwise specified (Continued)}$


Slew Rate vs Input Voltage

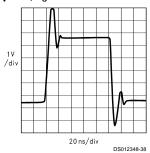



Slew Rate vs Load Capacitance

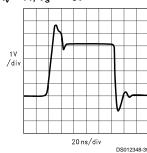



Large Signal Pulse Response,  $A_V = -1$ ,  $V_S = \pm 15V$ 

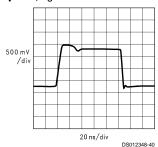



Large Signal Pulse Response,  $A_V = -1$ ,  $V_S = \pm 5V$ 

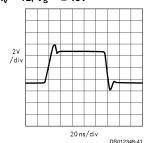



Large Signal Pulse Response,



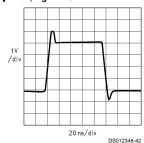

Large Signal Pulse Response,  $A_V = +1$ ,  $V_S = \pm 15V$ 



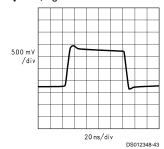

Large Signal Pulse Response,  $A_V = +1$ ,  $V_S = \pm 5V$ 



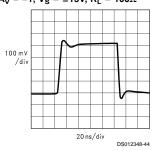
Large Signal Pulse Response,  $A_V = +1$ ,  $V_S = +5V$ 



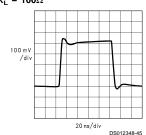

Large Signal Pulse Response,  $A_V = +2$ ,  $V_S = \pm 15V$ 



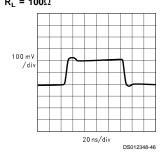

## $\textbf{Typical Performance Characteristics} \ \ \textbf{T}_{A} \text{= } 25^{\circ}\text{C}, \ \textbf{R}_{L} \text{= } 1 \ \text{M}\Omega. \ \text{unless otherwise specified (Continued)}$


Large Signal Pulse Response,  $A_V = +2$ ,  $V_S = \pm 5V$ 

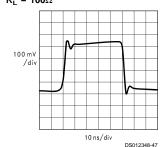



Large Signal Pulse Response,  $A_V = +2$ ,  $V_S = +5V$ 

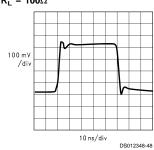



Small Signal Pulse Response,  $A_V$  = -1,  $V_S$  = ±15V,  $R_L$  = 100 $\Omega$ 

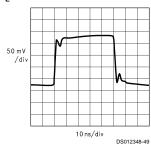



Small Signal Pulse Response, A<sub>V</sub> = -1, V<sub>S</sub> =  $\pm 5$ V, R<sub>L</sub> =  $100\Omega$ 

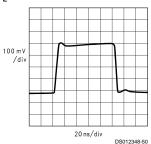



Small Signal Pulse Response,  $A_{\text{V}} = -1, \ V_{\text{S}} = +5\text{V}, \\ R_{\text{L}} = 100\Omega$ 



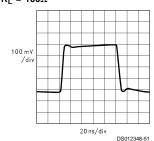

Small Signal Pulse Response, A<sub>V</sub> = +1, V<sub>S</sub> = ±15V, R<sub>L</sub> = 100 $\Omega$ 



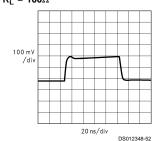

Small Signal Pulse Response, A<sub>V</sub> = +1, V<sub>S</sub> = ±5V, R<sub>L</sub> = 100 $\Omega$ 



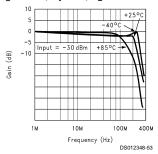
Small Signal Pulse Response,  $A_V$  = +1,  $V_S$  = +5V,  $R_L$  = 100 $\Omega$ 



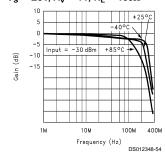

Small Signal Pulse Response, A<sub>V</sub> = +2, V<sub>S</sub> = ±15V, R<sub>L</sub> = 100 $\Omega$ 



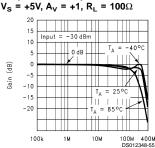

## $\textbf{Typical Performance Characteristics} \ \ T_A = 25^{\circ}C, \ R_L = 1 \ M\Omega. \ unless \ otherwise \ specified \ (Continued)$


Small Signal Pulse Response, A<sub>V</sub> = +2, V<sub>S</sub> =  $\pm 5$ V, R<sub>L</sub> =  $100\Omega$ 

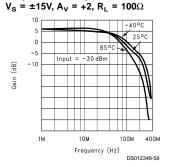



Small Signal Pulse Response,  $A_V$  = +2,  $V_S$  = +5 $V_S$ ,  $R_L$  = 100 $\Omega$ 

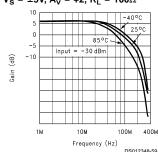



Closed Loop Frequency Response vs Temperature  $V_S = \pm 15V$ ,  $A_V = +1$ ,  $R_L = 100\Omega$ 

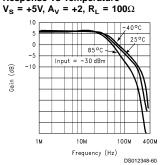



Closed Loop Frequency Response vs Temperature  $V_S = \pm 5V$ ,  $A_V = +1$ ,  $R_L = 100\Omega$ 

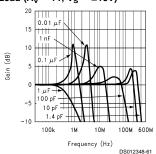



Closed Loop Frequency
Response vs Temperature

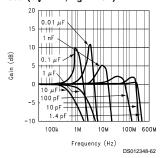



Closed Loop Frequency
Response vs Temperature

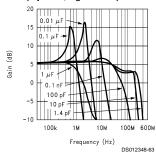



Closed Loop Frequency Response vs Temperature  $V_S = \pm 5V$ ,  $A_V = +2$ ,  $R_L = 100\Omega$ 

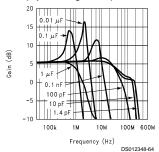



Closed Loop Frequency
Response vs Temperature

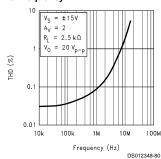



Closed Loop Frequency Response vs Capacitive Load ( $A_V = +1$ ,  $V_S = \pm 15V$ )

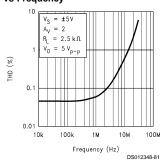



#### Closed Loop Frequency Response vs Capacitive Load (A<sub>V</sub> = +1, V<sub>S</sub> = ±5V)

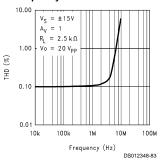



Closed Loop Frequency Response vs Capacitive Load (A<sub>V</sub> = +2, V<sub>S</sub> = ±15V)

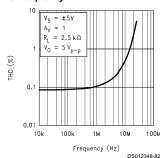



Closed Loop Frequency Response vs Capacitive Load ( $A_V = +2$ ,  $V_S = \pm 5V$ )

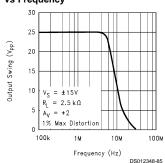



Total Harmonic Distortion vs Frequency

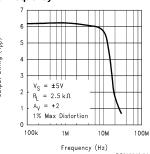



Total Harmonic Distortion vs Frequency

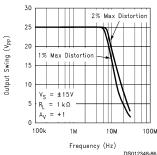



Total Harmonic Distortion vs Frequency




Total Harmonic Distortion vs Frequency




Undistorted Output Swing vs Frequency



Undistorted Output Swing vs Frequency



## Undistorted Output Swing vs Frequency



# Application Information

The table below, depicts the maximum operating supply voltage for each package type:

**TABLE 1. Maximum Supply Voltage Values** 

|               | SOT23-5 | SO-8 | DIP  |
|---------------|---------|------|------|
| Single Supply | 10V     | 30V  | 30V  |
| Dual Supplies | ±5V     | ±15V | ±15V |

Stable unity gain operation is possible with supply voltage of 5V for all capacitive loads. This allows the possibility of using the device in portable applications with low supply voltages with minimum components around it.

Above a supply voltage of 6V (±3V Dual supplies), an additional resistor and capacitor (shown below) should be placed in the feedback path to achieve stability at unity gain over the full temperature range.

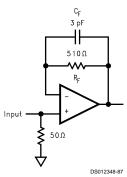
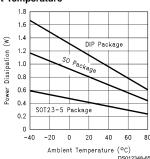




FIGURE 1. Typical Circuit for  $A_V$  = +1 Operation ( $V_S \ge 6V$ )

The package power dissipation should be taken into account when operating at high ambient temperatures and/or high power dissipative conditions. Refer to the power derating curves in the data sheet for each type of package.

In determining maximum operable temperature of the device, make sure the total power dissipation of the device is considered; this includes the power dissipated in the device with a load connected to the output as well as the nominal dissipation of the op amp.

## Total Power Dissipation vs Ambient Temperature



The device is capable of tolerating momentary short circits from its output to ground but prolonged operation in this mode will damage the device, if the maximum allowed junction temperation is exceeded.

#### APPLICATION CIRCUITS

#### **Current Boost Circuit**

The circuit in *Figure 2* can be used to achieve good linearity along with high output current capability.

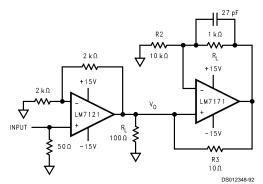



FIGURE 2. Simple Circuit to Improve Linearity and Output Drive Current

By proper choice of  $R_3$ , the LM7121 output can be set to supply a minimal amount of current, thereby improving its output linearity.

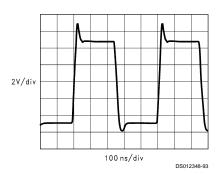
R<sub>3</sub> can be adjusted to allow for different loads:

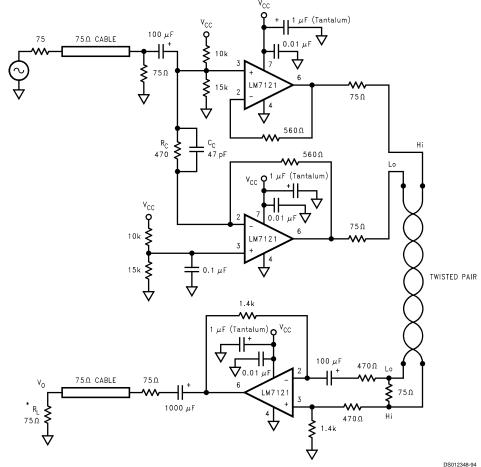
$$R_3 = 0.1 R_L$$

The circuit above has been set for a load of  $100\Omega$ .

Reasonable speeds (<30 ns rise and fall times) can be expected up to 120 mA $_{\rm PP}$  of load current (see Figure 3 for step response across the load).







FIGURE 3. Waveform across a 100 $\!\Omega$  Load

| Application Information (Continued)                                                                                                          | <b>Caution:</b> If R <sub>L</sub> is removed, the current balance at the output of LM7121 would be disturbed and it would have to supply |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| It is very important to keep the lead lengths to a minimum and to provide a low impedance current path by using a ground-plane on the board. | the full amount of load current. This might damage the part if power dissipation limit is exceeded.                                      |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |
|                                                                                                                                              |                                                                                                                                          |

### **Application Information** (Continued)

#### Color Video on Twisted Pairs Using Single Supply

The circuit shown in Figure 4 can be used to drive in excess of 25 meters length of twisted pair cable with no loss of resolution or picture definition when driving a NTSC monitor at the load end.



#### Note:

Pin numbers shown are for DIP/SO-8 packages.

FIGURE 4. Single Supply Differential Twister Pair Cable Transmitter/Receiver 8.5V  $\leq$  V  $_{\text{CC}} \leq$  30V

Differential Gain and Differential Phase errors measured at the load are less than 1% and 1 $^{\circ}$  respectively.

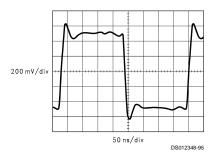
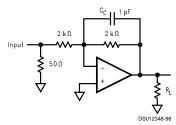
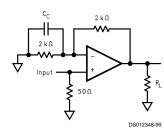
 $\rm R_G$  and  $\rm C_C$  can be adjusted for various cable lengths to compensate for the line losses and for proper response at the output. Values shown correspond to a twisted pair cable length of 25 meters with about 3 turns/inch (see *Figure 5* for step response).

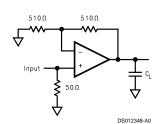
The supply voltage can vary from 8.5V up to 30V with the output rise and fall times under 12 ns. With the component values shown, the overall gain from the input to the output is about 1.

Even though the transmission line is not terminated in its nominal characteristic impedance of about  $600\Omega,$  the resulting reflection at the load is only about 5% of the total signal and in most cases can be neglected. Using  $75\Omega$  termination instead, has the advantage of operating at a low impedance and results in a higher realizable bandwidth and signal fidelity.

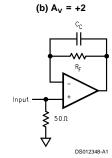
<sup>\*</sup>Input termination of NTSC monitor.

## Application Information (Continued)

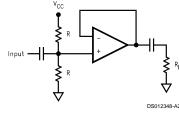


FIGURE 5. Step Response to a 1  $\text{V}_{\text{PP}}$  Input Signal Measured across the 75 $\!\Omega$  Load





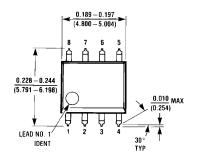


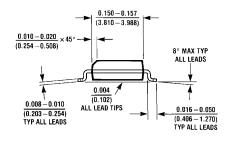

$$C_C$$
 = 2 pF for  $R_L$  = 100 $\Omega$   
 $C_C$  = Open for  $R_L$  = Open

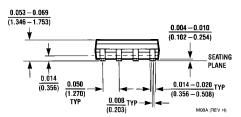



(c)  $A_V = +2$ , Capacitive Load

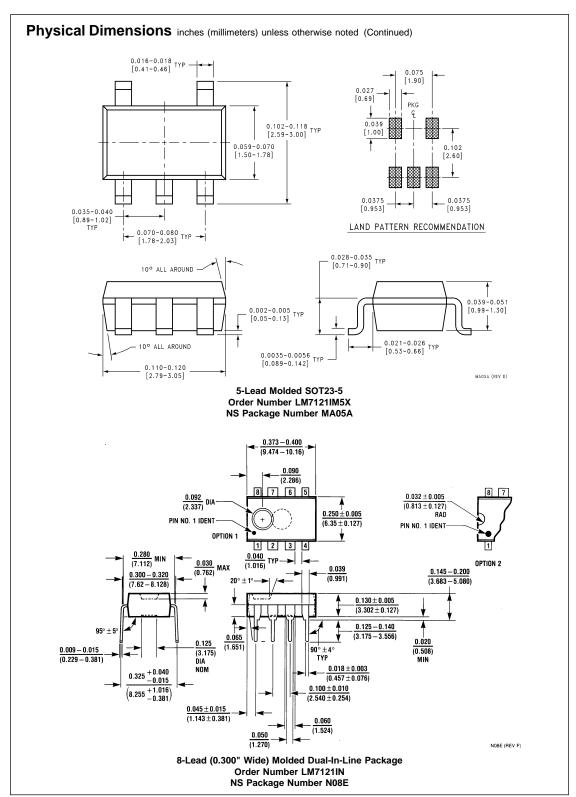



 $R_F$  = 00,  $C_C$  = Open for  $V_S$  < 6V  $R_F$  = 5100,  $C_C$  = 3 pF for  $V_S \ge 6V$ 




(e)  $A_V$  = +1,  $V_S$  = +5V, Single Supply Operation FIGURE 6. Application Test Circuits


## $\label{physical Dimensions} \textbf{Physical Dimensions} \ \ \textbf{inches} \ \ \textbf{(millimeters)} \ \ \textbf{unless otherwise noted}$







8-Lead (0.150" Wide) Small Outline Package, JEDEC Order Number LM7121IM or LM7121IMX NS Package Number M08A



#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor

Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-530 85 85

English Tel: +49 (0) 1 80-532 85 85

Eranglish Tel: +49 (0) 1 80-532 93 58

Italiano Tel: +49 (0) 1 80-532 93 58

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507