

June 1999

LMV431/LMV431A Low-Voltage (1.24V) Adjustable Precision Shunt Regulators

General Description

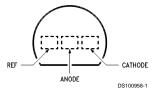
The LMV431and LMV431A are precision 1.24V shunt regulators capable of adjustment to 30V. Negative feedback from the cathode to the adjust pin controls the cathode voltage, much like a non-inverting op amp configuration (Refer to Symbol and Functional diagrams). A two resistor voltage divider terminated at the adjust pin controls the gain of a 1.24V band-gap reference. Shorting the cathode to the adjust pin (voltage follower) provides a cathode voltage of a 1.24V.

The LMV431 and LMV431A have respective initial tolerances of 1.5% and 1%. Both grades are available in commercial and Industrial temperature ranges.

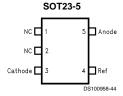
The LMV431 and LMV431A functionally lends themselves to several applications that require zener diode type performance at low voltages. Applications include a 3V to 2.7V low drop-out regulator, an error amplifier in a 3V off-line switching regulator and even as a voltage detector. The part is typically stable with capacitive loads greater than 10nF and less than 50 pF.

The LMV431 and LMV431A provide performance at a competitive price.

Features

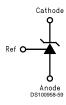

- Low Voltage Operation/Wide Adjust Range (1.24V/30V)
- 1% Initial Tolerance (LMV431A)
- Temperature Compensated for Industrial Temperature Range (39 PPM/*C for the LMV431AI)
- Low Operation Current (55µA)
- Low Output Impedance (0.25Ω)
- Fast Turn-On Response
- Low Cost

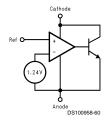
Applications

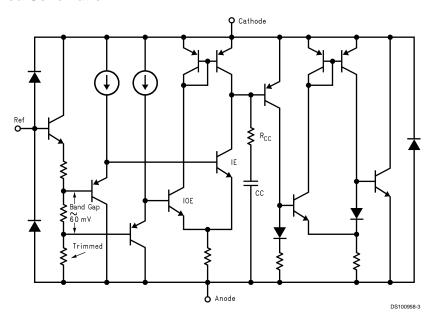

- Shunt Regulator
- Series Regulator
- Current Source or Sink
- Voltage Monitor
- Error Amplifier
- 3V Off-Line Switching Regulator
- Low Dropout N-Channel Series Regulator

Connection Diagrams

TO92: Plastic Package




Top View Order Number LMV431AIZ, LMV431IZ, LMV431ACZ, LMV431CZ


Top View Order Number LMV431AIM5, LMV431IM5, LMV431ACM5, LMV431CM5

Symbol and Functional Diagrams

Simplified Schematic

Ordering Information

Package	Temperature Range	Voltage Tolerance	Part Number	Package Marking	Drawing Number
TO92	Industrial Range -40°C to +85°C	1%	LMV431AIZ	LMV431AIZ	
		1.5%	LMV431IZ	LMV431IZ	Z03A
	Commerial Range 0°C to + 70°C	1%	LMV431ACZ	LMV431ACZ	203A
		1.5%	LMV431CZ	LMV431CZ	
SOT23-5	Industrial Range -40°C to +80°C	1%	LMV431AIM5	N08A	
		1%	LMV431AIM5X	N08A	
		1.5%	LMV431IM5	N08B	
		1.5%	LMV431IM5X	N08B	MA05A
	Commercial Range 0°C to + 70°C	1%	LMV431ACM5	N09A	IVIAUDA
		1%	LMV431ACM5X	N09A	
		1.5%	LMV431CM5	N09B	
		1.5%	LMV431CM5X	N09B	

DC/AC Test Circuits for Table and Curves

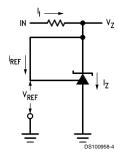
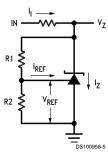



FIGURE 1. Test Circuit for $V_z = V_{REF}$

Note: $V_Z = V_{REF} (1 + R1/R2) + I_{REF} R1$

FIGURE 2. Test Circuit for $V_z > V_{REF}$

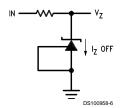


FIGURE 3. Test Circuit for Off-State Current

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Storage Temperature Range -65°C to +150°C

Operating Temperature Range

Industrial (LMV431AI, LMV431I) -40°C to +85°C 0°C to +70°C

Commercial (LMV431AC, LMV431C) Lead Temperature

TO92 Package/SOT23 -5Package

(Soldering, 10 sec.) Internal Power Dissipation (Note 2)

SOT23-5 Package

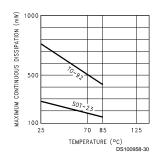
Cathode Voltage Continuous Cathode Current

-30 mA to +30 mA

Reference Input Current range -.05mA to 3 mA

Operating Conditions

Cathode Voltage V_{REF} to 30V Cathode Current 0.1 mA to 15mA


Temperature range

LMV431AI $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le 85^{\circ}\text{C}$

Thermal Resistance (θ_{JA})(Note 3)

455 °C/W SOT23-5 Package 161 °C/W TO-92 Package

Derating Curve (Slope = $-1/\theta_{JA}$)

LMV431C Electrical Characteristics

T_A = 25°C unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{REF}	Reference Voltage	$V_Z = V_{REF}$, $I_Z = 10$ mA	$T_A = 25^{\circ}C$	1.222	1.24	1.258	
		(See Figure 1)	T _A = Full Range	1.21		1.27	V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}$, $I_Z = 10mA$,			4	12	mV
	Over Temperature (Note 4)	T _A =Full Range (See Fi					
ΔV _{REF}	Ratio of the Change in Reference	I _Z = 10 mA (see Figure 2)			-1.5	-2.7	mV/V
ΔV_{7}							
	Voltage $R_1 = 10k, R_2 = \infty$ and 2.6K						
I _{REF}	Reference Input Current	urrent $R_1 = 10 \text{ k}\Omega, R_2 = \infty$			0.15	0.5	μA
		I _I = 10 mA (see Figure 2)					
≪I _{REF}	Deviation of Reference Input Current	$R_1 = 10 \text{ k}\Omega, R_2 = \infty,$					
	over Temperature $I_I = 10 \text{ mA}, T_A = \text{Full Range (see Figu.)}$		Range (see Figure		0.05	0.3	μA
		2)					
I _{Z(MIN)}	Minimum Cathode Current for	$V_Z = V_{REF}$ (see Figure 1)			55	80	μΑ
	Regulation						
I _{Z(OFF)}	Off-State Current	V _Z =6V, V _{REF} = 0V (see Figure 3)			0.001	0.1	μA
r _z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 \text{mA}$	to 15mA				
		Frequency = 0 Hz (see Figure 1)			0.25	0.4	Ω

265°C

0.78W 0.28W

35V

LMV431I Electrical Characteristics

T_A = 25°C unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{REF}	Reference Voltage	V _Z =V _{REF} , I _Z =10 mA	$T_A = 25^{\circ}C$	1.222	1.24	1.258	V
		(See Figure 1)	T _A = Full Range	1.202		1.278	1 V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}, I_Z = 10 mA,$			6	20	mV
	Over Temperature (Note 4)	T _A =Full Range (See Fi	T _A =Full Range (See Figure 1)				
ΔV_{REF}	Ratio of the Change in Reference	I _Z = 10 mA (see Figure	I _Z = 10 mA (see Figure 2)		-1.5	-2.7	mV/V
ΔV_{7}	Voltage to the Change in Cathode V _Z from V _{REF} to 6V						
	Voltage $R_1 = 10k, R_2 = \infty$ and 2.6K						
I _{REF}	Reference Input Current	$R_1 = 10 \text{ k}\Omega, R_2 = \infty$		0.15	0.5	μA	
		I _I = 10 mA (see Figure 2)					
∝I _{REF}	Deviation of Reference Input Current	$R_1 = 10 \text{ k}\Omega, R_2 = \infty,$					
	over Temperature $I_I = 10 \text{ mA}, T_A = \text{Full Range (see Figure}$			0.1	0.4	μA	
		2)					
I _{Z(MIN)}	Minimum Cathode Current for	$V_Z = V_{REF}$ (see Figure	$I_Z = V_{REF}$ (see Figure 1)		55	80	μA
	Regulation				33	00	μΛ_
I _{Z(OFF)}	Off-State Current	V_Z =6V, V_{REF} = 0V (see Figure 3)			0.001	0.1	μA
r _z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 \text{mA}$	to 15mA				
	Frequency = 0 Hz (see Figure 1)			0.25	0.4	Ω	

LMV431AC Electrical Characteristics

T_A = 25°C unless otherwise specified

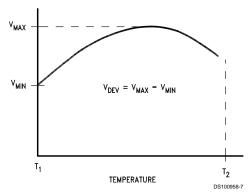
Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{REF}	Reference Voltage	V _Z =V _{REF} , I _Z =10 mA	$T_A = 25^{\circ}C$	1.228	1.24	1.252	V
		(See Figure 1)	T _A = Full Range	1.221		1.259	1 V
V _{DEV}	Deviation of Reference Input Voltage Over Temperature (Note 4)	V_Z = V_{REF} , I_Z =10mA, T_A =Full Range (See Fi		4	12	mV	
$\frac{\Delta V_{REF}}{\Delta V_{Z}}$	Ratio of the Change in Reference Voltage to the Change in Cathode Voltage	I_Z = 10 mA (see Figure V_Z from V_{REF} to 6V V_Z from V_R = 0 and		-1.5	-2.7	mV/V	
I _{REF}	Reference Input Current	R_1 = 10 kΩ, R_2 = ∞ I_1 = 10 mA (see Figure		0.15	0.50	μA	
∝I _{REF}	Deviation of Reference Input Current over Temperature	$R_1 = 10 \text{ k}\Omega, R_2 = \infty,$ $I_1 = 10 \text{ mA}, T_A = \text{Full Range (see Figure 2)}$			0.05	0.3	μA
$I_{Z(MIN)}$	Minimum Cathode Current for Regulation	$V_Z = V_{REF}$ (see Figure 1)			55	80	μA
I _{Z(OFF)}	Off-State Current	V _Z =6V, V _{REF} = 0V (see Figure 3)			0.001	0.1	μA
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1$ mA to 15mA Frequency = 0 Hz (see Figure 1)			0.25	0.4	Ω

LMV431AI Electrical Characteristics

T_A = 25°C unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{REF}	Reference Voltage	V _Z =V _{REF} , I _Z =10 mA	$T_A = 25^{\circ}C$	1.228	1.24	1.252	
		(See Figure 1)	T _A = Full Range	1.215		1.265	V
V _{DEV}	Deviation of Reference Input Voltage	$V_Z = V_{REF}$, $I_Z = 10mA$,			6	20	mV
	Over Temperature (Note 4)	T _A =Full Range (See Fi	igure 1)				
ΔV_{REF}	Ratio of the Change in Reference	I _Z = 10 mA (see Figure		-1.5	-2.7	mV/V	
ΔV_{7}	Voltage to the Change in Cathode	V_Z from V_{REF} to 6V					
	Voltage	$R_1 = 10k, R_2 = \infty$ and					
I _{REF}	Reference Input Current	$R_1 = 10 \text{ k}\Omega, R_2 = \infty$			0.15	0.5	μA
		I _I = 10 mA (see Figure	2)				
∝I _{REF}	Deviation of Reference Input Current	$R_1 = 10 \text{ k}\Omega, R_2 = \infty,$					
	over Temperature	I _I = 10 mA, T _A = Full Range <i>(see Figure</i>			0.1	0.4	μA
		2)					
$I_{Z(MIN)}$	Minimum Cathode Current for	$V_Z = V_{REF}$ (see Figure 1)			55	80	μA
	Regulation					00	μ, τ
$I_{Z(OFF)}$	Off-State Current	V_Z =6V, V_{REF} = 0V (see Figure 3)			0.001	0.1	μA
r _Z	Dynamic Output Impedance (Note 5)	$V_Z = V_{REF}$, $I_Z = 0.1 \text{mA}$	to 15mA				
		Frequency = 0 Hz (see Figure 1)			0.25	0.4	Ω

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its rated operating conditions.


Note 2: Ratings apply to ambient temperature at 25°C. Above this temperature, derate the TO92 at 6.2 mW/°C, and the SOT23-5 at 2.2 mW/°C. See derating curve in Operating Condition section.

Note 3: $T_{J \text{ Max}} = 150^{\circ}\text{C}$, $T_{J} = T_{A} + (\theta_{JA} P_{D})$, where P_{D} is the operating power of the device.

Note 4: Deviation of reference input voltage, V_{DEV}, is defined as the maximum variation of the reference input voltage over the full temperature range. See following:

www.national.com

LMV431AI Electrical Characteristics (Continued)

The average temperature coefficient of the reference input voltage, ${\it \sim}{\it V}_{REF},$ is defined as:

$${}_{\text{oc}}V_{\text{REF}}\frac{ppm}{{}^{\text{o}}C} = \frac{\pm \left[\frac{V_{\text{Max}} - V_{\text{Min}}}{V_{\text{REF}} (at\,25^{\circ}C)}\right]10^{6}}{T_{2} - T_{1}} = \frac{\pm \left[\frac{V_{\text{DEV}}}{V_{\text{REF}} (at\,25^{\circ}C)}\right]10^{6}}{T_{2} - T_{1}}$$

Where:

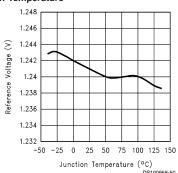
 $T_2 - T_1$ = full temperature change.

 ${}^{\mbox{\tiny cV}}\mbox{\scriptsize REF}$ can be positive or negative depending on whether the slope is positive or negative.

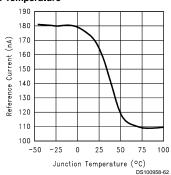
Example: V_{DEV} = 6.0mV, R_{EF} = 1240mV, $T_2 - T_1$ = 125°C.

$$_{\rm \infty} V_{REF} = \frac{\left[\frac{6.0 \text{ mV}}{1240 \text{ mV}}\right]_{106}}{125^{\circ} C} = \ +39 \text{ ppm/}^{\circ} C$$

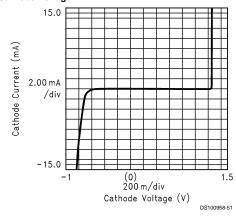
Note 5: The dynamic output impedance, r_Z, is defined as:

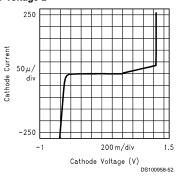

$$r_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

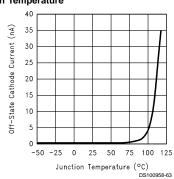
When the device is programmed with two external resistors, R1 and R2, (see Figure 2), the dynamic output impedance of the overall circuit, rz, is defined as:

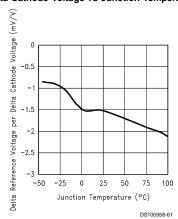

$$r_Z = \frac{\Delta V_Z}{\Delta I_Z} \cong \left[\, r_Z \left(\, 1 \, + \frac{R1}{R2} \right) \, \right]$$

Typical Performance Characteristics

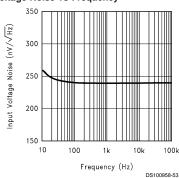

Reference Voltage vs Junction Temperature

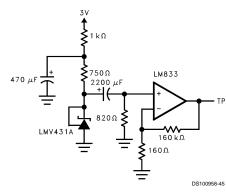

Reference Input Current vs Junction Temperature


Cathode Current vs Cathode Voltage 1

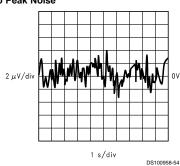

Cathode Current vs Cathode Voltage 2

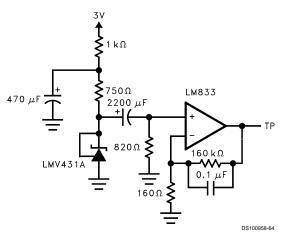
Off-State Cathode Current vs Junction Temperature



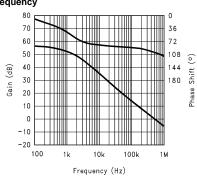

Delta Reference Voltage Per Delta Cathode Voltage vs Junction Temperature

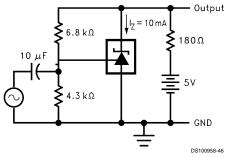
Typical Performance Characteristics (Continued)


Input Voltage Noise vs Frequency



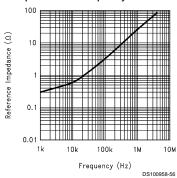
Test Circuit for Input Voltage Noise vs Frequency


Low Frequency Peak to Peak Noise



Test Circuit for Peak to Peak Noise (BW= 0.1Hz to 10Hz)

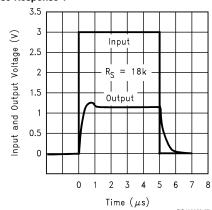
Small Signal Voltage Gain and Phase Shift vs Frequency

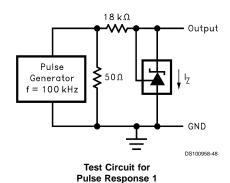


Test Circuit For Voltage Gain and Phase Shift vs Frequency

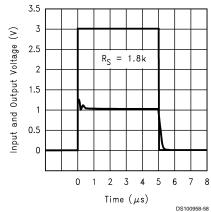
Typical Performance Characteristics (Continued)

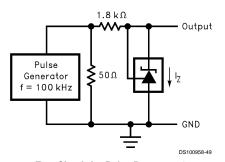
Reference Impedance vs Frequency


Test Circuit For Reference Impedance vs Frequency

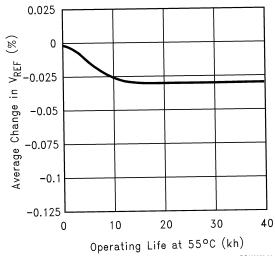

I_Z = 10 mA

100Ω


100Ω

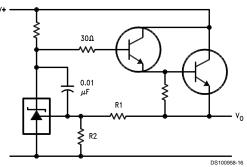

Pulse Response 1

Pulse Response 2

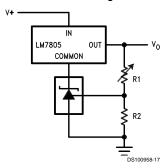


Test Circuit for Pulse Response 2

Typical Performance Characteristics (Continued)

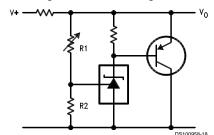

Percentage Change in V_{REF} vs Operating Life at 55°C

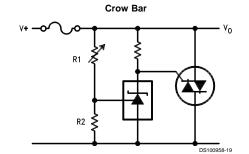
Extrapolated from life-test data taken at 125°C; the activation energy assumed is 0.7eV.


Typical Applications

Series Regulator

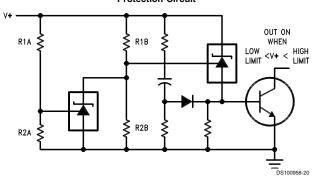
$$V_{O} \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$$


Output Control of a Three Terminal Fixed Regulator

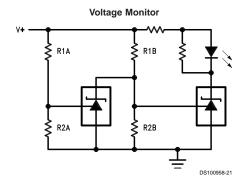

$$V_{O} = \left(1 + \frac{R1}{R2}\right) V_{REF}$$

$$V_{O\ MIN} = V_{REF} + 5V$$

Higher Current Shunt Regulator



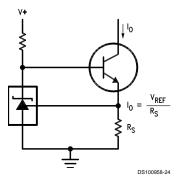
$$V_{O} pprox \left(1 + \frac{R1}{R2}\right) V_{REF}$$


$$V_{LIMIT} \approx \left(1 + \frac{R1}{R2}\right) V_{REF}$$

Over Voltage/Under Voltage Protection Circuit

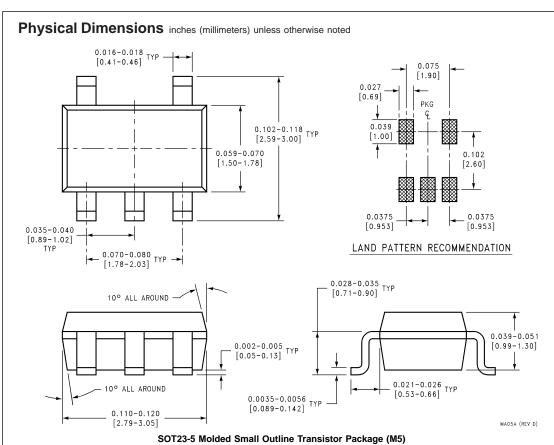

$$\begin{split} & \text{LOW LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1B}}{\text{R2B}}\right) + \text{V}_{\text{BE}} \\ & \text{HIGH LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1A}}{\text{R2A}}\right) \end{split}$$

Typical Applications (Continued)


$$\begin{split} & \text{LOW LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1B}}{\text{R2B}} \right) & \text{LED ON WHEN} \\ & \text{LOW LIMIT} < \text{V}^+ < \text{HIGH LIMIT} \end{split}$$

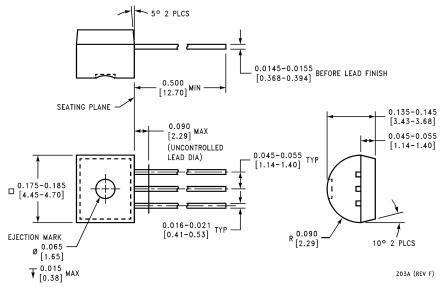
$$& \text{HIGH LIMIT} \approx \text{V}_{\text{REF}} \left(1 + \frac{\text{R1A}}{\text{R2A}} \right)$$

Delay Timer V+ OFF ON DS1100958-22



$$DELAY = R \bullet C \bullet \ \ell n \frac{V+}{(V^+) - V_{REF}}$$

Constant Current Sink



www.national.com

SOT23-5 Molded Small Outline Transistor Package (M5) Order Number LMV431AIM5, LMV431AIM5X, NS Package Number MA05A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Order Number LMV431AIZ, LMV431AIZX, NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86
Email: curope-support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com

National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507