## LMC2001 Qualification Package

## PRECISION OVER TIME

## LMC2001 OP AMP



LMC2001 Op Amp – Precision Over Time

INDUSTRY'S MOST PRECISE OP AMP EVER IN A VERY SMALL PACKAGE - THE SOT23-5.

- V<sub>OS</sub> Drift: 5μV Over 10 Years Guaranteed!
- No 1/f Noise at Any Frequency
- 6MHz GAIN BANDWIDTH PRODUCT 750µA SUPPLY CURRENT @ 5V
- SOT23-5 PACKAGING





## LMC2001 QUALIFICATION PACKAGE

Fall 1998

# Table of Contents

| 1.0 Intro    | duction                |                        |        |      |         |       |       |       |     |    |     |  |
|--------------|------------------------|------------------------|--------|------|---------|-------|-------|-------|-----|----|-----|--|
| 1.1 Gen      | eral Product Do        | escriptio              | 1      |      |         |       |       |       |     |    | 1-1 |  |
| 1.2 Tech     | nical Product          | al Product Description |        |      |         |       |       |       |     |    |     |  |
| 1.3 Relia    | ability/Qualific       | ation Ove              | erview |      |         |       |       |       |     |    | 1-1 |  |
| 1.4 Tech     | nical Assistan         | Ce                     |        |      |         | •••   | •••   | •••   | ••• | •• | 1-1 |  |
| 2.0 Devic    | e Informatio           | n                      |        |      |         |       |       |       |     |    |     |  |
| 2.1 Data     | sheet                  |                        |        | •••• | • • • • | • • • | • • • | • • • | ••• | •• | 2-1 |  |
| 3.0 Proce    | ess Informati          | on                     |        |      |         |       |       |       |     |    |     |  |
| 3.1 Proc     | ess Flow               |                        |        |      |         |       |       |       |     |    | 3-1 |  |
| 3.2 Proc     | ess Detail & N         | lasks                  |        |      |         |       |       |       |     |    | 3-1 |  |
| 3.3 Mas      | king Sequence          | 9                      |        |      |         | • • • | • • • | •••   | ••• | •• | 3-2 |  |
| 4.0 Packa    | aging Inform           | ation                  |        |      |         |       |       |       |     |    |     |  |
| 4.1 Pacl     | kage Material.         |                        |        |      |         |       |       |       |     |    | 4-1 |  |
| 4.2 Dim      | ensions                |                        |        |      |         |       |       |       |     |    | 4-2 |  |
| <b>4.2.1</b> | <b>Fape and Reel</b> . |                        |        |      |         |       |       |       |     |    | 4-2 |  |
| 4.2.2        | Package                |                        |        |      |         |       |       |       |     |    | 4-4 |  |
| 4.3 Bon      | ding Diagrams          |                        |        |      |         |       | • • • | • • • | ••• | •• | 4-6 |  |
| 5.0 Relia    | bility Data            |                        |        |      |         |       |       |       |     |    |     |  |
| 5.1 Relia    | ability Report .       |                        |        |      |         |       |       |       |     |    | 5-1 |  |
| 5.2 ESD      | Latch-Up               |                        |        |      | • • • • | • • • | • • • | • • • |     | •• | 5-4 |  |
| 6.0 Chara    | acterization I         | Data                   |        |      |         |       |       |       |     |    |     |  |
| 6.1 Test     | Summary                |                        |        |      |         |       |       |       |     |    | 6-1 |  |
| 6.2 Test     | Graphs                 |                        |        |      |         |       |       |       |     |    | 6-2 |  |

## **1.0 INTRODUCTION**

## **1.1 General Product Description**

This qualification booklet covers a general purpose Op Amp. It is available in 2 different package.

Single Op Amp LMC2001ACM5/ACM5X (5 lead SOT-23 package) LMC2001AIM/AIMX (8 lead SOIC package)

It features low voltage operation (4.75V to 5.25V) and is designed for applications where low power, small size, and price are main objectives. LMC2001 Op Amp offers enhanced performance over that of the OP0x series Op Amps. The LMC2001 offers precision at a price you can afford.

## **1.2 Technical Product Description**

The LMC2001 is manufactured using National's advanced Submicron Silicon Gate BiCMOS process. The Internal name for this process is CS80CBi, which uses 6-inch wafers.

The LMC2001 is a unique precision amplifier which features a low (<40µV) offset combined with a high 6MHz-gain bandwidth. The LMC2001 still fits in an SOT23-5 package and combines excellent precision performance with a superb transient response. The LMC2001 can therefore be used in dynamic applications where conventional chopper amplifiers could not deliver the desired AC performance. The quiescent current is still a mere 750µA. The LMC2001 obtains these features by using a proprietary dynamic offset correction technique and will meet full precision spec within 30ms of power-up. This technique offers continuous offset correction, eliminating offset drift caused by supply voltage and temperature changes.

## 1.3 Reliability/Qualification Overview

#### LMC2001

Because the same wafer fab process and package types are used on the LMV324 product, LMC2001 is qualified by reliability testing and qualified by extension.

Copies of all reliability test reports listed below can be found under Reliability Reports section 5.0 later in this qualification booklet.

Q19960526

LMC2001 in SOT-23 and SOIC

## **1.4 Technical Assistance**

#### **Product Engineers**

John W. Dell email: John.Dell@nsc.com Tel: 408.721.2852

Solaiman M. Harooni email: Solaiman.M.Harooni@nsc.com Tel: 408.721.3703

#### **Application Engineers**

John W Christensen email: John.W.Christensen@nsc.com phone: (408) 721-6815

Hooman Hashemi email: Hooman.Hashemi@nsc.com phone: (408) 721-8771 2.0 DEVICE INFORMATION

### 2.1 Datasheet



© 1998 National Semiconductor Corporation DS100058

.

#### Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

| ESD Tolerance (Note 2)                            |                  |
|---------------------------------------------------|------------------|
| Human Body Model                                  | 2500V            |
| Machine Model                                     | 150V             |
| Differential Input Voltage                        | ± Supply Voltage |
| Supply Voltage (V <sup>+</sup> - V <sup>-</sup> ) | 5.6V             |
| Current At Input Pin                              | 30mA             |
| Current At Output Pin                             | 30mA             |
| Current At Power Supply Pin<br>(Note 3)           | 50mA             |
| Lead Temperature (soldering, 10 sec)              | 260°C            |

 Storage Temperature Range
 -65°C to 150°C

 Junction Temperature (T<sub>J</sub>)
 150°C

 (Note 4)
 150°C

#### **Operating Ratings** (Note 1)

| Supply voltage                       | 4.75V to 5.25V                                                                |
|--------------------------------------|-------------------------------------------------------------------------------|
| Temperature Range                    |                                                                               |
| LMC2001AI                            | $\text{-40}^{\circ}\text{C} \leq \text{T}_{\text{J}} \leq 85^{\circ}\text{C}$ |
| LMC2001AC                            | $0^{\circ}C \leq T_{J} \leq 70^{\circ}C$                                      |
| Thermal resistance ( $\theta_{JA}$ ) |                                                                               |
| M Package, 8-pin Surface Mount       | 180°C /W                                                                      |
| M5 Package, SOT23-5                  | 274°C /W                                                                      |

#### **DC Electrical Characteristics**

Unless otherwise specified, all limits guaranteed for T  $_J$  = 25°C, V<sup>+</sup> = 5V, V<sup>-</sup> = 0V, V  $_{CM}$  = 2.5V, V $_O$  = 2.5V and R $_L$  > 1M $\Omega$ . Boldface limits apply at the temperature extremes.

| Symbol            | Parameter                             | Conditions                                                     | Typ<br>(Note 5) | Limit(Note 6)         | Units     |
|-------------------|---------------------------------------|----------------------------------------------------------------|-----------------|-----------------------|-----------|
| Vos               | Input Offset Voltage                  | (Note 11)                                                      | 0.5             | 40<br>60              | μV<br>max |
|                   | Offset Calibration Time               |                                                                | 5               | 30                    | ms        |
| TCV <sub>OS</sub> | Input Offset Voltage                  | (Note 12)                                                      | 0.015           |                       | µV/°C     |
|                   | Long-Term Offset Drift                | (Note 8)                                                       | 0.006           |                       | μV/month  |
|                   | Lifetime V <sub>OS</sub> drift        | (Note 8)                                                       | 2.5             | 5                     | µV Max    |
| I <sub>IN</sub>   | Input Current                         | (Note 9)                                                       | -3              |                       | pА        |
| I <sub>os</sub>   | Input Offset Current                  |                                                                | 6               |                       | pА        |
| R <sub>IND</sub>  | Input Differential Resistance         |                                                                | 9               |                       | MΩ        |
| CMRR              | Common Mode Rejection<br>Ratio        | $0V \le V_{CM} \le 3.5V$                                       | 120             | 100                   | dB<br>min |
|                   |                                       | $0.1V \le V_{CM} \le 3.5V$                                     | 110             | 90                    | dB<br>min |
| PSRR              | Power Supply<br>Rejection Ratio       | $4.75V \le V^+ \le 5.25V$                                      | 120             | 95<br><b>90</b>       | dB<br>min |
| A <sub>VOL</sub>  | Large Signal Voltage Gain<br>(Note 7) | $R_{L}=10k\Omega$                                              | 137             | 105<br><b>100</b>     | dB<br>min |
|                   |                                       | $R_{L} = 2k\Omega$                                             | 128             | 95<br><b>90</b>       |           |
| Vo                | Output Swing                          | $R_{L} = 10k\Omega \text{ to } 2.5V$ $V_{IN}(diff) = \pm 0.5V$ | 4.975           | 4.955<br><b>4.955</b> | V<br>min  |
|                   |                                       |                                                                | 0.030           | 0.060<br><b>0.060</b> | V<br>max  |
|                   |                                       | $R_L = 2k\Omega$ to 2.5V                                       | 4.936           |                       | V         |
|                   |                                       | $V_{IN}(diff) = \pm 0.5V$                                      | 0.075           |                       | V         |
| lo                | Output Current                        | Sourcing, $V_O = 0V$<br>$V_{IN}(diff) = \pm 0.5V$              | 5.9             | 4.1<br><b>1.5</b>     | mA<br>min |
|                   |                                       | Sinking, $V_O = 5V$<br>V <sub>IN</sub> (diff) = ±0.5V          | 14.5            | 4.5<br><b>1.5</b>     | mA<br>min |
| Is                | Supply Current                        |                                                                | 0.75            | 1.0                   | mA        |

|                               | Parameter                                                                                                                      | Cor                                                                                                   | Typ<br>(Note 5)                                                       | Units                      |              |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|--------------|
| २                             | Slew Rate                                                                                                                      | $A_V = +1, V_{in} = 3.5Vpp$                                                                           | 5                                                                     | V/µs                       |              |
| ЗW                            | Gain-Bandwidth Product                                                                                                         |                                                                                                       | 6                                                                     | MHz                        |              |
| n                             | Phase Margin                                                                                                                   |                                                                                                       |                                                                       | 75                         | Deg          |
| n                             | Gain Margin                                                                                                                    |                                                                                                       |                                                                       | 12                         | dB           |
|                               | Input-Referred Voltage Noise                                                                                                   | f = 0.1Hz                                                                                             |                                                                       | 85                         | nV/√H        |
| р-р                           | Input-Referred Voltage Noise                                                                                                   | $R_s = 100\Omega$ , DC to 10Hz                                                                        |                                                                       | 1.6                        | μVpp         |
| <u> </u>                      | Input-Referred Current Noise                                                                                                   | f = 0.1Hz                                                                                             |                                                                       | 180                        | fA/√H        |
| łD                            | Total Harmonic Distortion                                                                                                      | f = 1  kHz,  Av = -2<br>$R_1 = 10 \text{ k}\Omega, V_{\Omega} = 4.5 \text{ Vpp}$                      |                                                                       | 0.02                       | %            |
| ec.                           | Input Overload Recovery Time                                                                                                   |                                                                                                       |                                                                       | 50                         | ms           |
|                               | Output Settling time                                                                                                           | (Note 10) $A_{v} = +1$ 1V step                                                                        | 1%                                                                    | 250                        | ns           |
| •                             |                                                                                                                                |                                                                                                       | 0.1%                                                                  | 400                        |              |
|                               |                                                                                                                                |                                                                                                       | 0.01%                                                                 | 3200                       |              |
|                               |                                                                                                                                | (Noto 10)A = 1 1)(ctop)                                                                               | 10/                                                                   | 80                         |              |
|                               |                                                                                                                                | $(1000 \times 10)A_V = -1$ , 1V step                                                                  | 0.1%                                                                  | 860                        |              |
|                               |                                                                                                                                |                                                                                                       | 0.1%                                                                  | 000                        |              |
|                               | La fa da Ala a la fa Marianana Datia da India da Karita I                                                                      |                                                                                                       | 0.01%                                                                 | 1400                       |              |
| Note 7:<br>Note 8:<br>Note 9: | $V^* = 5V$ , $V_{CM} = 2.5V$ , and $R_L$ connected t<br>Guaranteed Vos Drift is based on 280 der<br>Guaranteed by design only. | o 2.5V. For Sourcing tests, 2.5V $\leq$ V <sub>O</sub> $\leq$ vices operated for 1000 hrs at 150°C (e | 4.8V. For Sinking tests, $0.2V \le V$<br>quivalent to 30 years 55°C). | <sub>O</sub> ≤ 2.5V.       |              |
| Note 10:<br>schemati          | Settling times shown correspond to the<br>ic.                                                                                  | worse case (positive or negative step) a                                                              | and does not include slew time. Se                                    | e the Application Note sec | tion for tes |
| Note 11:                      | The limits are set by the accuracy of hig<br>Precision bench measurement of more t                                             | h speed automatic test equipment. For                                                                 | the typical V <sub>OS</sub> distribution, see th                      | e curve on page 4.         |              |
| Note 12:                      |                                                                                                                                | han 500 units. More than 65% of units i                                                               |                                                                       |                            |              |
| Note 12:                      |                                                                                                                                |                                                                                                       | iad iess man forv / C vog dint.                                       |                            |              |
| Note 12:                      |                                                                                                                                |                                                                                                       | iad ress than 1010 / C VOS dint.                                      |                            |              |
| Note 12:                      |                                                                                                                                |                                                                                                       | iad ress than 1010 / C VOS dint.                                      |                            |              |
| Note 12:                      |                                                                                                                                |                                                                                                       | iad ress than 1000 / C VOS dint.                                      |                            |              |
| Note 12:                      |                                                                                                                                |                                                                                                       |                                                                       |                            |              |
| Note 12:                      |                                                                                                                                |                                                                                                       |                                                                       |                            |              |

Г





#### **Application Notes**

#### The Benefits of LMC2001

#### No 1/f Noise

Using patented methods, the LMC2001 eliminates the 1/f noise present in other amplifiers. This noise which increases as frequency decreases is a major source of measurement error in all DC coupled measurements. Low frequency noise appears as a constantly changing signal in series with any measurement being made. As a result, even when the measurement is made rapidly, this constantly changing noise signal will corrupt the result. The value of this noise signal can be surprisingly large. For example: If a conventional amplifier has a high frequency noise level of 10 nV/Hz and a noise corner of 10 Hz, the RMS noise at 0.001 Hz is 1 $\mu$ V/ $\sqrt{\text{Hz}}$ 

This is equivalent to a 6µV peak-to-peak error. In a circuit with a gain of 1000, this produces a 6mV peak-to-peak output error. This number of 0.001 Hz might appear unreasonably low but when a data acquisition system is operating for 17 minutes it has been on long enough to include this error. In this same time, the LMC2001 will only have a 0.51mV output error. This is more than 13.3 times less error.

Keep in mind that this 1/f error gets even larger at lower frequencies.

At the extreme, many people try to reduce this error by integrating or taking several samples of the same signal. This is also doomed to failure because the 1/f nature of this noise means that taking longer samples just moves the measurement into lower frequencies where the noise level is even higher.

The LMC2001 eliminates this source of error. The noise level is constant with frequency so that reducing the bandwidth reduces the errors caused by noise.

Another source of error that is rarely mentioned is the error voltages caused by the inadvertent thermocouples created when the common "Kovar type" package lead materials are soldered to a copper printed circuit board. These steel based leadframe materials can produce over 35uV/°C when soldered onto a copper trace. This can result in thermocouple noise that is equal to the LMC2001 noise when there is a temperature difference of only 0.0014°C between the lead and the board!

For this reason, the leadframe of the LMC2001 is made of copper. This results in equal and opposite junctions which cancel this effect. The extremely small size of the SOT-23 package results in the leads being very close together. This further reduces the probability of temperature differences and hence decreases thermal noise.

#### **Overload Recovery**

The LMC2001 recovers from input overload much faster than most chopper stabilized opamps. Recovery, from driving the amplifier to 2X the full scale output, only requires about 50ms. Most chopper stabilized amplifiers will take from 250ms to several seconds to recover from this same overload. This is because large capacitors are used to store the unadjusted offset voltage.

The wide bandwidth of the LMC2001 enhances performance when it is used as an amplifier to drive loads that inject transients back into the output. A to Ds and multiplexers are examples of this type of load. To simulate this type of load, a pulse generator producing a 1V peak square wave was connected to the output through a 10pF capacitor. (*Figure 1*) The typical time for the output to recover to 1% of the applied

www.national.com

pulse is 80ns. To recover to 0.1% requires 860ns. This rapid recovery is due to the wide bandwidth of the output stage and large total GBW.



#### No External Capacitors Required

The LMC2001 does not need external capacitors. This eliminates the problems caused by capacitor leakage and dielectric absorption, which can cause delays of several seconds from turn-on until the amplifier is settled.

#### More Benefits

The LMC2001 offers the benefits mentioned above and more. It is rail-to-rail output and consumes only 750 $\mu$ A of supply current while providing excellent DC and AC electrical performance. In DC performance, the LMC2001 achieves 120dB of CMRR, 120dB of PSRR and 137dB of open loop gain. In AC performance, the LMC2001 provides 6MHz of gain-bandwidth product and 5V/µs of slew rate.

#### How the LMC2001 Works

The LMC2001 uses new, patented techniques to achieve the high DC accuracy traditionally associated with chopper stabilized amplifiers without the major drawbacks produced by chopping. The LMC2001 continuously monitors the input offset and corrects this error. The conventional chopping process produces many mixing products, both sums and differences, between the chopping frequency and the incoming signal frequency. This mixing causes large amounts of distortion, particularly when the signal frequency approaches the chopping frequency. Even without an incoming signal, the chopper harmonics mix with each other to produce even more trash. If this sounds unlikely or difficult to understand, look at the plot (Figure 2), of the output of a typical (MAX432) chopper stabilized opamp. This is the output when there is no incoming signal, just the amplifier in a gain of -10 with the input grounded. The chopper is operating at about 150Hz, the rest is mixing products. Add an input signal and the mess gets much worse. Compare this plot with Figure 3 of the LMC2001. This data was taken under the exact same conditions. The auto zero action is visible at about 11kHz but note the absence of mixing products at other frequencies. As a result, the LMC2001 has very low distortion of 0.02% and very low mixing products.

#### Input Currents

The LMC2001 input current is different than standard bipolar or CMOS input currents in that it appears as a current flowing in one input and out the other. Under most operating conditions, these currents are in the picoamp level and will have little or no effect in most circuits. These currents increase to the nA level when the common-mode voltage is near the minus supply. (see the typical curves) At high temperatures such as 85°C, the input currents become larger, 0.5nA typical, and are both positive except when the Vcm is near V<sup>-</sup>. If operation is expected at low common-mode voltages and high temperature, do not add resistance in series with the inputs to balance the impedances. Doing this can cause an increase in offset voltage.

6



This Strain-Gauge (*Figure 4*) amplifier provides high gain (1006 or 60 dB) with very low offset and drift. Using the resistors tolerance as shown, the worst case CMRR will be greater than 90 dB. The common-mode gain is directly related to the resistor mismatch and is independent of the differential gain that is set by R3. The worst case commonde gain is -54 dB. This gain becomes even lower, improving CMRR, if the resistor ratio matching is improved.

$$A_V \text{ Diff} = 1 + \frac{R1}{R2} + \frac{2R}{R3}$$

Extending Supply Voltages and Output Swing by Using a Composite Amplifier Configuration:

In cases where substantially higher output swing is required with higher supply voltages, arrangements like the ones shown in *Figure 5*, and *Figure 6* could be used (pin numbers shown are for SO-8 package). These configurations utilize the excellent DC performance of the LMC2001 while at the same time allow the superior voltage and frequency capabilities of the LM6171 to set the dynamic performance of the overall amplifier. For example, it is possible to achieve ±12V output swing with 300MHz of overall GBW (Av=100) while keeping the worst case output shift due to Vos less than 4mV. The LMC2001 output voltage is kept at about mid-point of it's overall supply voltage and it's input common mode voltage range allows the V<sup>-</sup> terminal to be grounded in one case (*Figure 5*, inverting operation) and tied to a small non-critical negative bias in another (*Figure 6*, non-inverting operation)

eration). Higher closed loop gains are also possible with a corresponding reduction in realizable bandwidth. Table 1 shows some other closed loop gain possibilities along with the measured performance in each case **Application Circuits** 







FIGURE 5. Inverting Composite Amplifier



FIGURE 6. Non-Inverting Composite Amplifier

TABLE 1. Composite Amplifier Measured Performance

| Av   | R1    | R2    | C2   | BW    | SR     | e <sub>npp</sub> |
|------|-------|-------|------|-------|--------|------------------|
|      | (ohm) | (ohm) | (pF) | (MHz) | (V/us) | (mVpp)           |
| 50   | 200   | 10K   | 8    | 3.3   | 178    | 37               |
| 100  | 100   | 10K   | 10   | 2.5   | 174    | 70               |
| 100  | 1K    | 100K  | 0.67 | 3.1   | 170    | 70               |
| 500  | 200   | 100K  | 1.75 | 1.4   | 96     | 250              |
| 1000 | 100   | 100K  | 2.2  | 0.98  | 64     | 400              |

In terms of the measured output peak-to-peak noise, the following relationship holds between output noise voltage,  $e_{npp}$ , for different closed loop gain,  $A_v$ , settings, where -3dB Bandwidth is BW:

$$\frac{e_{npp1}}{e_{npp2}} = \sqrt{\frac{BW1}{BW2}} \bullet \frac{A_V 1}{A_V 2}$$
(1)

It should be kept in mind that in order to minimize the output noise voltage for a given closed loop gain setting, one could minimize the overall bandwidth. As can be seen from Equation 1 above, the improvement in output noise has a square law relationship to the reduction in BW.

In the case of the inverting configuration, it is also possible to increase the input impedance of the overall amplifier, by raising the value of R1, without having to increase the feedback resistor, R2, to impractical values, by utilizing a "T" network as feedback. See the LMC6442 data sheet (Application Notes section) for more details on this.

#### LMC2001 as ADC Input Amplifier

Onamp flatband noise

The LMC2001 is a great choice for an amplifier stage immediately before the input of an A/D converter (AC or DC coupled) see *Figure 7* and *Figure 8* because of the following important characteristics:

a) Very low offset voltage and offset voltage drift over time and temperature allow a high closed loop gain setting without introducing any short term or long term errors. For example, when set to a closed loop gain of 100 as the analog input amplifier of a 12 bit A/D converter, the overall conversion error over full operation temperature and 30 years life of the part (operating at 50°C) would be less than 5LSB.

b) Fast large signal settling time to 0.01% of final value (1.4 us) allows 12 bit accuracy at 100KHz or more sampling rate. c) No flicker (1/f) noise means unsurpassed data accuracy over any measurement period of time, no matter how long. Consider the following opamp performance, based on a typical cal commercially available device, for comparison:

| Opamp natioand hoise                 | OHV//HZ |
|--------------------------------------|---------|
| 1/f <sup>0.94</sup> corner frequency | 100Hz   |
| f(max)                               | 100Hz   |
| Av                                   | 100     |
| Measurement time                     | 100 sec |

8n\// /...

The example above, will result in about 3mVpp (2.5LSB) of output noise contribution due to the opamp alone, compared to about 420 uVpp (less than 1LSB) when that opamp is replaced with the LMC2001 which has no 1/f contribution. If the measurement time is increased from 100 sec. to 1 hr., the improvement realized by using the LMC2001 would be a factor of about 44 times (18.5mVpp compared to 420uV when LMC2001 is used) mainly because the LMC2001 accuracy is not compromised by increasing the observation time.

d) Copper lead frame construction minimizes any thermocouple effects which would degrade low level/high gain data conversion application accuracy (see discussion under "The Benefits of the LMC2001" section above).

e) Rail-to-Rail output swing maximized the ADC dynamic range in 5V single supply converter applications. Below are some typical block diagrams showing the LMC2001 used as an ADC amplifier (*Figure 7* and *Figure 8*).

www.national.com

8



### 2.0 DEVICE INFORMATION







National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

3.0 PROCESS INFORMATION

## **3.1 Process Flow**

Fabrication Site: South Portland Fairchild Process Technology: CS80CBI(Submicron Silicon Gate CMOS/Bipolar) Wafer Diameter: 6 inches Number of Masks: 17 Metallization: 0.5% Copper, dual layer Aluminum metal 1st layer = 7,500 Å thick 2nd layer = 12,000 Å thick

Top Side Passivation: Polyamide (30,000 Å thick)

Over Nitride (11,500 Å thick) Over Oxide (5,000 Å thick)

## 3.2 Process Detail & Masks

| STAGE 1:  | Intial Ox                                                        |
|-----------|------------------------------------------------------------------|
| STAGE 2:  | Trench Define & Etch                                             |
| STAGE 3:  | Mask 0.6, N-Iso                                                  |
| STAGE 4:  | N-Iso Implant                                                    |
| STAGE 5:  | N-Iso Drive                                                      |
| STAGE 6:  | N-Iso Ox Strip & Screen Ox                                       |
| STAGE 7:  | Mask 0.8, N+ Buried layer                                        |
| STAGE 8:  | N+ Buried Layer Implant                                          |
| STAGE 9:  | Mask 0.9,P+ Buried Layer                                         |
| STAGE 10: | P+ Buried Layer Implant                                          |
| STAGE 11: | Buried Layer Anneal                                              |
| STAGE 12: | Epi Growth                                                       |
| STAGE 13: | Pad Oxide & Nitride                                              |
| STAGE 14: | Mask 1.0, N-Well                                                 |
| STAGE 15: | N-Well Implant                                                   |
| STAGE 16: | Selective Oxide                                                  |
| STAGE 17: | N-Well Nitride Strip                                             |
| STAGE 18: | P-Well implant                                                   |
| STAGE 19: | Selective Oxide Etch                                             |
| STAGE 20: | N-Well & P-Well Drive-In Oxide                                   |
| STAGE 21: | Drive-In Oxide Strip                                             |
| STAGE 22: | Mask 2.0, Composite                                              |
| STAGE 23: | Composite Pad Oxide & Composite Nitride                          |
| STAGE 24: | Composite Mask Etch                                              |
| STAGE 25: | Mask 3.0, P-Field                                                |
| STAGE 26: | P-Field Implant                                                  |
| STAGE 27: | Iso Field Oxide                                                  |
| STAGE 28: | Active (Composite Area) Nitride Strip                            |
| STAGE 29: | Pad Oxide Removal & Sacrificial Oxide Growth & Vt Adjust Implant |
| STAGE 30: | Sacrificial Oxide Strip & Gate Oxide & Poly Deposition           |
| STAGE 31: | Poly Dope, Poly Anneal                                           |
| STAGE 32: | Mask 4.0, Poly                                                   |
| STAGE 33: | Poly Etch                                                        |
| STAGE 34: | Poly Seal Oxide                                                  |
| STAGE 35: | Mask 4.3, P-LDD                                                  |
| STAGE 36: | P-LDD Implant                                                    |

| STAGE 37: | Mask 4.5, N-LDD                     |
|-----------|-------------------------------------|
| STAGE 38: | N-LDD Implant                       |
| STAGE 39: | Spacer Oxide Deposit & Etch         |
| STAGE 40: | Mask 5.0, N+                        |
| STAGE 41: | N+ ImpInat                          |
| STAGE 42: | Mask 5.5, Base                      |
| STAGE 43: | Base Etch & Base Implant            |
| STAGE 44: | N+ Drive                            |
| STAGE 45: | Mask 6.0, P+                        |
| STAGE 46: | P+ Implant                          |
| STAGE 47: | Dielectric Layer1 & P+ Anneal       |
| STAGE 48: | SOG                                 |
| STAGE 49: | Mask 7.0, Window                    |
| STAGE 50: | Window Etch & Contact Dielectric    |
| STAGE 51: | Mask 7.1, Contact                   |
| STAGE 52: | Contact Etch                        |
| STAGE 53: | Contact Plug & Etchback             |
| STAGE 54: | Metal 1 Deposition                  |
| STAGE 55: | Mask 8.0, Metal 1                   |
| STAGE 56: | Metal 1 Etch                        |
| STAGE 57: | Metal 1 Alloy                       |
| STAGE 58: | Dielectric Layer2                   |
| STAGE 59: | <b>Mask 9.0</b> , Via               |
| STAGE 60: | Via Etch                            |
| STAGE 61: | Via Deposition & Metal 2 Deposit    |
| STAGE 62: | Mask 10.0, Metal 2                  |
| STAGE 63: | Metal 2 Etch                        |
| STAGE 64: | Passivation Oxide/Nitride?Polyamide |
| STAGE 65: | Mask 13.0, Passivation              |
| STAGE 66: | Passivation Etch                    |

## 3.3 Masking Sequence

| Layer title | Mask            |
|-------------|-----------------|
| 0.8         | N+ Buried Layer |
| 0.9         | P+ Buried Layer |
| 1.0         | N-Well          |
| 2.0         | Composite       |
| 3.0         | P-Field         |
| 3.5         | Cap Implant     |
| 4.0         | Poly            |
| 4.3         | P-LDD           |
| 4.5         | N-LDD           |
| 5.0         | N+              |
| 5.5         | BASE            |
| 6.0         | P+              |
| 7.0A        | Window          |
| 7.1         | Contact         |
| 8.0         | Metal 1         |
| 9.0         | Via             |
| 10.0        | Metal 2         |
| 13.0        | Passiavation    |

4.0 PACKAGING INFORMATION

## 4.0 PACKAGING INFORMATION

## 4.1 Package Material

| Generic Package Type                  | 5 Lead SOT-23                    | 8 Lead SOIC                      |
|---------------------------------------|----------------------------------|----------------------------------|
| NS Package Number                     | MA05B                            | MO8A                             |
| Package/Compound/<br>Manufacturer     | Epoxy Cresol<br>Novolac Sumitomo | Epoxy Cresol<br>Novolac Sumitomo |
| Package/Compound<br>Mfg's Designation | Sumitomo EME-6710<br>NSC B18     | Sumitomo EME-1100R<br>NSC B14    |
| Lead Frame Material<br>Manufacturer   | Copper<br>NSC-DCI                | Copper<br>NSC-DCI                |
| External Lead<br>Frame Coating        | Solder Plate<br>Sn/Pb            | Solder Plate<br>Sn/Pb            |
| Pins                                  | Gull Wing, 6mils Thick           | Gull Wing, 9mils Thick           |
| Die Attached Method                   | Eutectic, Cr/Ag/Sn               | Poly 6                           |
| Bond Wire                             | Gold, 1.0mils                    | Gold, 0.9mils                    |
| Bond Type                             | Hot Thermosonic Ball             | Hot Thermosonic Ball             |
| Package Thermal                       | 265°C/W                          | 190°C/W                          |

## 4.2 PACKAGE DIMENSIONS

## 4.2.1 Tape & Reel

#### **Tape Dimensions**

![](_page_23_Figure_4.jpeg)

| 8 mm      | 0.130 | 0.124  | 0.130 | 0.126  | 0.138 ±0.002 | ±0.002 0.055 ±0.004 |        | 0.315 ±0.012 |
|-----------|-------|--------|-------|--------|--------------|---------------------|--------|--------------|
|           | (3.3) | (3.15) | (3.3) | (3.2)  | (3.5 ±0.05)  | (1.4 ±0.11)         | (4)    | (8 ±0.3)     |
| Tape Size | DIM A | DIM Ao | DIM B | DIM Bo | DIM F        | DIM Ko              | DIM P1 | DIM W        |

#### SOT-23-5 Tape and Reel Specification

#### **Tape Format**

| Tape Section | # Cavities | Cavity Status | Cover Tape Status |  |
|--------------|------------|---------------|-------------------|--|
| Leader       | 0 (min)    | Empty         | Sealed            |  |
| (Start End)  | 75 (min)   | Empty         | Sealed            |  |
| Carrier      | 3000       | Filled        | Sealed            |  |
|              | 250        | Filled        | Sealed            |  |
| Trailer      | 125 (min)  | Empty         | Sealed            |  |
| (Hub End)    | 0 (min)    | Empty         | Sealed            |  |

## 4.0 PACKAGING INFORMATION

#### **Reel Dimensions**

![](_page_24_Figure_2.jpeg)

| 8 mm      | 7.00   | 0.059 | 0.512 | 0.795 | 2.165 | 0.331 + 0.059/-0.000 | 0.567 | W1+ 0.078/-0.039 |
|-----------|--------|-------|-------|-------|-------|----------------------|-------|------------------|
|           | 330.00 | 1.50  | 13.00 | 20.20 | 55.00 | 8.40 + 1.50/-0.00    | 14.40 | W1 + 2.00/-1.00  |
| Tape Size | A      | В     | С     | D     | Ν     | W1                   | W2    | W3               |

## 4.2.2 Package Dimensions

#### Physical Dimensions inches (millimeters) unless otherwise noted

![](_page_25_Figure_3.jpeg)

![](_page_26_Figure_1.jpeg)

Physical Dimensions inches (millimeters) unless otherwise note

## 4.3 Bonding Diagrams

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_1.jpeg)

## 5.0 RELIABILITY DATA

![](_page_30_Picture_1.jpeg)

#### Reliability Test Report

File Number: FSC19980198 Originator: Nick Stanco Date: May 5, 1998

Purpose

#### Approvals

Reliability Engir

LMC2001 NEW DEVICE QUALIFICATION

Mgr Ref Engineering

M

Reference File Numbers

RSC199800644 RSC199702347 RSC199702260 RSC199700160 Q19960526 Solaiman Harooni Nick Stanco

#### Abstract

The LMC2001 is a new low power, low voltage precision op-amp device fabricated on the CS80CBI process in the 6 inch fab line in NSFM. This device was subjected to reliability testing in the 8L MDIP, 5L SOT-23 and 8L SOIC packages for qualification as a new device for the Amplifiers product line. The device has successfully completed all required reliability tests except for the final DOPL lot required for qualification of the final silicon revision which is now in progress. This preliminary report will be updated to included the final DOPL test results once available and to release this device if warranted.

Description

| Test Request                 | Device Name                    | Sbgp   | Wafer Die Run          | Fab<br>Loc | Fab Line          | Pkg Code         | # Leads | Assy<br>Loc | Mold Cmpd  |
|------------------------------|--------------------------------|--------|------------------------|------------|-------------------|------------------|---------|-------------|------------|
| RSC199700160<br>RSC199702260 | LMC2001AIN<br>LMC2001ST(005)   | A<br>A | W#10                   | FM<br>FM   | CS80CBI<br>6 INCH | N\MDIP<br>N\TG23 | 8<br>5  | SC<br>EM    | B8         |
| RSC199702347<br>RSC199800644 | LMC2001M(008)<br>LMC2001M(008) | A<br>B | B0081794<br>B00800MC4C | FM<br>FM   | 6 INCH<br>6 INCH  | N\MSON<br>N\MSON | 8<br>8  | EM<br>EM    | B14<br>B14 |

**Tests Performed** 

| Test: Autoclave Test (A  | CLV)                |       |              |          |           |         |
|--------------------------|---------------------|-------|--------------|----------|-----------|---------|
| Test Request             | Device              | Sbgrp | Rel Humidity | Pressure | High Temp | LowTemp |
| RSC199702260             | LMC2001ST(005)      | A     | 100%         | 15 PSIG  | 121C      |         |
| RSC199702347             | LMC2001M(008)       | A     | 100%         | 15 PSIG  | 121C      |         |
|                          |                     |       |              |          |           |         |
| Test: Operating Life Tes | st (Dynamic) (DOPL) |       |              |          |           |         |
| Test Request             | Device              | Sbgrp | Rel Humidity | Pressure | High Temp | LowTemp |
| RSC199702347             | LMC2001M(008)       | A     |              |          | 150C      |         |
| RSC199800644             | LMC2001M(008)       | В     |              |          | 150C      |         |
|                          |                     |       |              |          |           |         |
| Test: Operating Life Tes | st (Static) (SOPL)  |       |              |          |           |         |
| Test Request             | Device              | Sbgrp | Rel Humidity | Pressure | High Temp | LowTemp |
| RSC199700160             | LMC2001AIN          | A     |              |          | 150C      |         |
|                          |                     |       |              |          |           |         |

### 5.0 RELIABILITY DATA

#### Tests Performed (cont)

Г

| Test Request                                         | Device                                             | Sbgrp            | Rel Humidity        | Pressure | High Temp        | LowTemp |
|------------------------------------------------------|----------------------------------------------------|------------------|---------------------|----------|------------------|---------|
| RSC199702260                                         | LMC2001ST(005)                                     | А                |                     |          | 150C             | -65C    |
| RSC199702347                                         | LMC2001M(008)                                      | А                |                     |          | 150C             | -65C    |
| est: Temperature Hui                                 | midity Bias Test (THB1                             | Γ)               |                     |          |                  |         |
| est: Temperature Hui                                 | nidity Bias Test (THBT                             | T)<br>Sharn      | Bel Humidity        | Prossure | High Temp        | LowTemp |
| est: Temperature Hur<br>Test Request                 | nidity Bias Test (THBT<br>Device                   | Sbgrp            | Rel Humidity        | Pressure | High Temp        | LowTemp |
| est: Temperature Hur<br>Test Request<br>RSC199702260 | midity Bias Test (THBT<br>Device<br>LMC2001ST(005) | ⊺)<br>Sbgrp<br>A | Rel Humidity<br>85% | Pressure | High Temp<br>85C | LowTemp |

Preconditioning: All DOPL, THBT, TMCL and ACLV parts were preconditioned per RAI-5-039 using the "IB1" flow with a 168 hour 85C, 85% RH moisture soak and 3 passes of IR reflow at 235C.

#### Results/Discussion

| Package       | Test                | Timepoint               | Lot 1<br>REJ/SS   | Lot 2<br>REJ/SS |
|---------------|---------------------|-------------------------|-------------------|-----------------|
| 8L SOIC       | DOPL-IB1            | 168 HOURS<br>500 HOURS  | 0/77<br>0/77      | 0/76<br>0/76    |
|               |                     | 1000 HOURS              | 0/77              | 0/77            |
|               | THBT-IB1            | 168 HOURS               | 0/76              |                 |
|               |                     | 1000 HOURS              | 0/76              |                 |
|               | ACLV-IB1            | 96 HOURS                | 0/77              |                 |
|               |                     | 168 HOURS               | 0/77              |                 |
|               | TMCL-IB1            | 500 CYCLES              | 0/77              |                 |
|               |                     | 1000 CYCLES             | 0/77              |                 |
| 5L SOT-23     | THBT-IB1            | 168 HOURS               | 0/76              |                 |
|               |                     | 500 HOURS               | 0/76<br>0/76      |                 |
|               |                     |                         | 0,70              |                 |
|               | ACLV-IB1            | 96 HOURS                | 0/77              |                 |
|               |                     | 168 HOURS               | 0/77              |                 |
|               | TMCL-IB1            | 500 CYCLES              | 0/77<br>0/77      |                 |
|               |                     | 1000 CTCLES             | 0///              |                 |
| 8L MDIP       | SOPL                | 168 HOURS               | 0/77              |                 |
|               |                     | 500 HOURS<br>1000 HOURS | 0/77<br>0/77      |                 |
| LATCH-UP: PAS | SSED +/- 200 MA A   | T BOTH 25C AND 85C PER  | JEDEC 17 STANDARD | S               |
| ESD Testing   | Human Body<br>Model | REJ/SS                  | Machine<br>Model  | REJ/SS          |
|               | 500V                | 0/5                     | 100V              | 0/5             |
|               | 1000V               | 0/5                     | 125V              | 0/5             |
|               | 1500V               | 0/5<br>0/F              | 150V              | 0/5<br>2/F      |
|               | 2000V<br>2500V      | 0/5<br>0/5              | 2001/             | 2/0<br>5/5      |
|               | 2000                | 5/5<br>5/5              | 2501/             | 5/5<br>5/5      |
|               | 3500V               | 5/5                     | 2004              | 5,5             |
|               |                     | -                       |                   |                 |

#### Conclusion

This is a preliminary report covering all reliability testing to date on the LMC2001. The device has not yet been approved for release by Corporate Reliability.

Operational Life Hour Conversion to Years

| Enter Accl. Temperature (C)     | 150                               |
|---------------------------------|-----------------------------------|
| Enter Operating Temperature (C) | 55                                |
| Enter Activation Energy (ev)    | 0.7                               |
|                                 |                                   |
| The estimated Acc. Factor is    | 258.2380605                       |
| Test Time Points of OPI ( hrs)  | Est Life time of the device (vrs) |
|                                 |                                   |
| 24                              | 0.709445221                       |
| 48                              | 1.418890442                       |
| 72                              | 2.128335663                       |
| 96                              | 2.837780884                       |
| 120                             | 3.547226105                       |
| 168                             | 4.966116547                       |
| 500                             | 14.78010877                       |
| 1000                            | 29.56021754                       |
|                                 |                                   |

![](_page_32_Figure_5.jpeg)

![](_page_32_Figure_6.jpeg)

### 5.0 RELIABILITY DATA

## 5.2 ESD/LATCH-UP

#### Human Body Model (HBM)

- R = 1500 ohms and C = 100pF
- rise time = 10ns

![](_page_33_Figure_5.jpeg)

#### Machine Model (MM)

- R = 0 ohms and C = 200pF
- rise time = <8ns

40 60 100 TIME (nsec) 20

## 6.1 Test Summary

| Test# | Test Name           | Temp<br>(C) | Supply<br>Voltage | Obs. | Avg.    | Min.    | Max.    | Units |
|-------|---------------------|-------------|-------------------|------|---------|---------|---------|-------|
| 1     | PSI                 | 25          | ± 2.50V           | 440  | 0.720   | 0.556   | 0.873   | mA    |
| 3     | Autozero Delay      | 25          | ± 2.50V           | 440  | 6.400   | 6.000   | 20.000  | mS    |
| 4     | VOS                 | 25          | ± 2.50V           | 440  | 4.875   | -21.30  | 27.794  | μV    |
| 210   | CMRR 5.25V          | 25          | ± 2.50V           | 440  | 120.878 | 105.328 | 148.328 | db    |
| 216   | CMRR 4.75V          | 25          | ± 2.50V           | 440  | 119.604 | 108.273 | 139.333 | db    |
| 229   | VOS @ PSRR(5.25V)   | 25          | ± 2.50V           | 440  | 6.029   | -21.594 | 30.7    | μV    |
| 230   | VOS @ PSRR(4.75V)   | 25          | ± 2.50V           | 440  | 6.073   | -20.288 | 32.219  | μV    |
| 237   | Gain RL 2k source   | 25          | ± 2.50V           | 440  | 132.547 | 117.719 | 167.795 | db    |
| 240   | Gain RL 2k sink     | 25          | ± 2.50V           | 440  | 130.966 | 116.873 | 149.379 | db    |
| 243   | Gain RL 10k source  | 25          | ± 2.50V           | 440  | 133.282 | 119.825 | 158.253 | db    |
| 246   | Gain RL 10k sink    | 25          | ± 2.50V           | 440  | 132.642 | 118.052 | 158.253 | db    |
| 247   | Swing RL 2k source  | 25          | ± 2.50V           | 440  | 2.436   | 2.415   | 2.440   | V     |
| 248   | Swing RL 2k sink    | 25          | ± 2.50V           | 440  | -2.424  | -2.435  | -2.405  | V     |
| 250   | Swing RL 10k source | 25          | ± 2.50V           | 440  | 2.471   | 2.463   | 2.473   | V     |
| 249   | Swing RL 10k sink   | 25          | ± 2.50V           | 440  | -2.470  | -2.478  | -2.463  | V     |
| 251   | lout source         | 25          | ± 2.50V           | 440  | 6.096   | 5.16    | 7.005   | mA    |
| 252   | lout sink           | 25          | ± 2.50V           | 440  | 20.260  | 8.565   | 31.41   | mA    |

## 6.2 Test Graphs

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

![](_page_37_Figure_1.jpeg)

![](_page_38_Figure_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_39_Figure_1.jpeg)

![](_page_39_Figure_2.jpeg)

![](_page_40_Figure_1.jpeg)

![](_page_41_Figure_1.jpeg)

Gain-Phase vs Temp

Gain-Phase vs  $C_{Load}$ 

![](_page_41_Figure_4.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_42_Figure_3.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_44_Figure_2.jpeg)

CMR vs  $V_{\mbox{\tiny CM}}$ 

![](_page_44_Figure_4.jpeg)

V<sub>CM</sub>(V)

$$-I_{IN}$$
 vs  $V_{CM}$ 

![](_page_44_Figure_7.jpeg)

![](_page_45_Figure_1.jpeg)

 $V_{os}$  Distribution 4 Average =  $0.508 \,\mu\text{V}$ 3.5 Relative Frequency (%)3 2.5 2 1.5 1 0.5 0 0 2 4 6 8 -4 -2 -8 -6  $V_{OS}$  ( $\mu V$ )

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

National Semiconductor supplies a comprehensive set of service and support capabilities. Complete product information and design support is available from National's customer support centers.

To receive sales literature and technical assistance, contact the National support center in your area.

#### Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

#### Europe

Fax: +49 (0) 1 80 5 30 85 86 Email: europe.support@nsc.com **Deutsch** Tel: +49 (0) 1 80 5 30 85 85 **English** Tel: +49 (0) 1 80 5 32 78 32

#### Japan

Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

### Asia Pacific

Fax: 65-2504466 Email: sea.support@nsc.com Tel: 65-2544466 (IDD telephone charge to be paid by caller)

## See us on the Worldwide Web @ http://www.national.com