

MICROCIRCUIT DATA SHEET

MDLM139A-X REV 0B1

Original Creation Date: 07/14/95 Last Update Date: 03/27/98 Last Major Revision Date: 07/14/95

LOWER POWER LOW OFFSET VOLTAGE QUAD COMPARATOR

General Description

The LM139A consists of four independent precision voltage comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application areas include limit comparators, simple analog to digital converters; pulse, squarewave and time delay generators; wide range VCO; MOS clock timers; multivibrators and high voltage digital logic gates. The LM139A was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic- where the low power drain of the LM139A is a distinct advantage over standard comparators.

Industry Part Number

LM139A

Prime Die

LM139

Controlling Document

See Features Page

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1 2	Static tests at Static tests at	+25 +125
	3	Static tests at	-55
Quality Conformance Inspection	4	Dynamic tests at	+25
~	5	Dynamic tests at	+125
MIL-STD-883, Method 5005	б	Dynamic tests at	-55
	7	Functional tests at	+25
	8A	Functional tests at	+125
	8B	Functional tests at	-55
	9	Switching tests at	+25
	10	Switching tests at	+125
	11	Switching tests at	-55

NS Part Numbers

LM139AE-SMD * LM139AJ-SMD ** LM139AW-SMD *** LM139AWG-SMD ****

Features

- Wide supply voltage range	
LM139A series,	2 Vdc to 28 Vdc
- Very low supply current drain (0.8 mA) -	- independent of supply voltage.

- Low input biasing current
 Low input offset current
 ±5 nA
- and offset voltage <u>±1</u> mV

- Input common-mode voltage range includes ground.

- Differential input voltage range equal to the power supply voltage.
- Low output saturation voltage. 250 mV at 4 mA
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems.
- SMD : 5962-87739012A*, 01CA**, 01DA***, 01XA****

(Absolute Maximum Ratings)	
Supply Voltage, V+	36 Vdc or <u>+</u> 18 Vdc
Differential Input Voltage (Note 5)	
Input Voltage	36 Vdc
Input Current (Vin<-0.3 Vdc)	-0.3 Vdc to +36 Vdc
(Note 6)	50mA
Power Dissipation (Note 2, 3)	
LCC CERDIP CERPACK SOIC	1250mW 1200mW 680mW 680mW
Sink Current (approx.)	20mA
Output Short Circuit to GND (Note 4)	
Storage Temperature Range	Continuous
	-65 C to +150 C
Maximum Junction Temperature	150 C
Lead Temperature (Soldering, 10 seconds)	300 C
Operating Temperature Range	-55 C to +125 C
Thermal Resistance ThetaJA	
LCC (Still Air) (500LF/Min Air flow) CERDIP (Still Air)	100 C/W 73 C/W 103 C/W
(SOOLF/Min Air flow) CERPACK (Still Air)	65 C/W 183 C/W
(500LF/Min Air flow) SOIC (Still Air) (500LF/Min Air flow)	120 C/W 183 C/W 120 C/W
ThetaJC	120 C/W
LCC CERDIP	28 C/W 23 C/W
CERPACK SOIC	23 C/W 23 C/W
ESD Tolerance (Note 7)	
· · · · · ·	600V

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guaranteed specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax - TA)/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
- Note 3: The low bias dissipation and the ON-OFF characteristics of the outputs keeps the chip dissipation very small (Pd \leq 100mW), provided the output transistors are allowed to saturate.
- Note 4: Short circuits from the output to V+ can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 20mA independent of the magnitude of V+.
- Note 5: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 Vdc(or 0.3 Vdc below the magnitude of the negative power supply, if used) (at 25 C).Note 6: This input current will only exist when the voltage at any of the input leads is
- Note 6: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward baised and thereby acting as input diode clamps. In addition to the diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 Vdc (at 25 C). Note 7: Human body model, 1.5K Ohms in series with 100pF.

Recommended Operating Conditions

Supply Voltage

5Vdc to 30Vdc

Ambient Operating Temperature Range

-55 C to +125 C

Electrical Characteristics

DC PARAMETERS

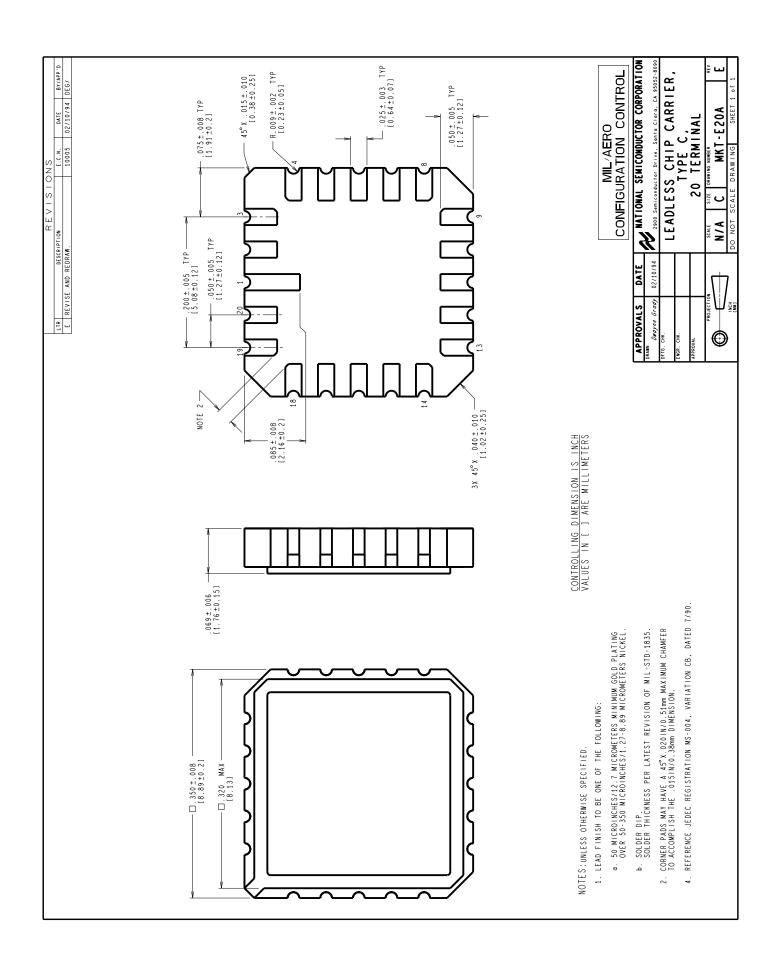
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: V+ = 5V, Vcm = 0V

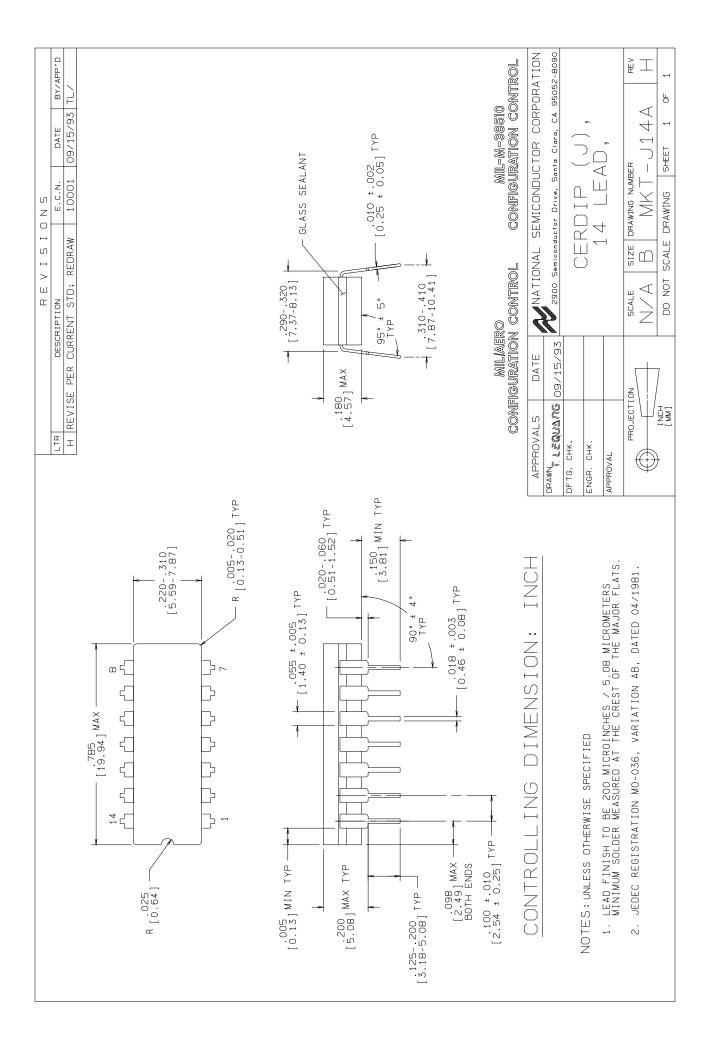
SYMBOL PARAMETER		CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Icc Supply Current		V+ = 30V, Rl = Infinity				3	mA	1, 2, 3
		Rl = Infinity				3	mA	1, 2, 3
Icex	Output Leakage Current	V+ = 30V, Vin(-) = 0V, Vin(+) ≥ 1V, Vo = 30V				0.5	uA	1
		$V + = 30V, Vin(-) = 0V, Vin(+) \ge 1V,$ Vo = 30V				1	uA	2, 3
Vsat	Saturation	Isink $\leq 4mA$, Vin(-) = 1V, Vin(+) = 0V				400	mV	1
	Voltage	Isink \leq 4mA, Vin(-) = 1V, Vin(+) = 0V				700	mV	2, 3
Isink	Output Sink Current	$Vo \ge 1.5V, Vin(-) = 1V, Vin(+) = 0V$			6		mA	1
Vio	Input Offset Voltage	Rs = 0 Ohm			-2	2	mV	1
	Voltage				-4	4	mV	2, 3
		V+ = 30V, Rs = 0 Ohm			-2	2	mV	1
					-4	4	mV	2, 3
		V+ = 30V, Vcm = 28V, Vo = 1.4V, Rs = 0 Ohm			-2	2	mV	1
					-4	4	mV	2, 3
+Iib	Input Bias	Vo = 1.5V			-100	-1	nA	1
	Current				-300	-1	nA	2, 3
-Iib	ib Input Bias Vo = 1.5V Current				-100	-1	nA	1
					-300	-1	nA	2, 3
Iio	Input Offset Vo = 1.5V Current				-25	25	nA	1
	Current				-100	100	nA	2, 3
PSRR	Power Supply Rejection Ratio	V+ = 5V to 30V			70		dB	1, 2, 3
CMRR	Common Mode Rejection Ratio	V+ = 30V, Vcm = 0V to 28V, Rl \geq 15K Ohms			70		dB	1, 2, 3
Av	Voltage Gain	V+ = 15V, Rl \geq 15K Ohms, Vo = 1V to 11V			50		V/mV	4
		V+ = 15V, Rl \geq 15K Ohms, Vo = 1V to 11V			25		V/mV	5,6
Vcm	Common Mode Voltage Range	V+ = 30V	1		0	V+-2	V	1, 2, 3
		V+ = 5V	1		0	V+-2	V	1, 2, 3

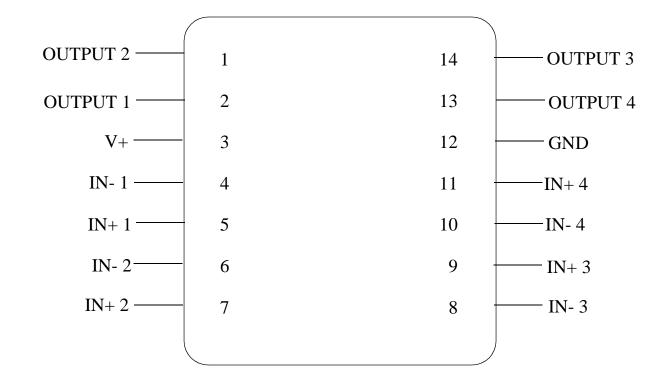
Electrical Characteristics

AC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: V+ =5V, 100mV Input Step

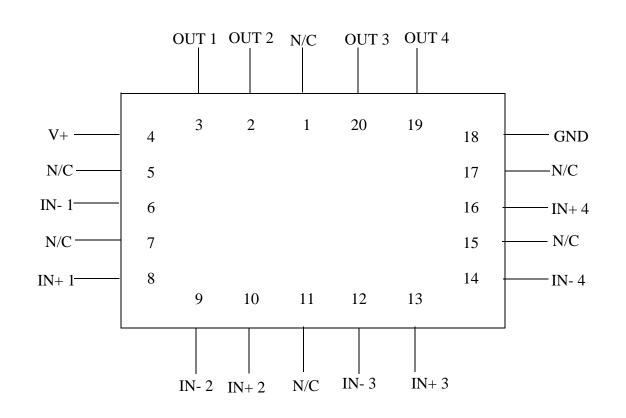

SYMBOL	PARAMETER	CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
tRLH	Response Time	Vod = 5mV, Rl = 5.1K Ohms				5	uS	9
tRHL	Response Time	Vod = 5mV, Rl = 5.1K Ohms				2.5	uS	9

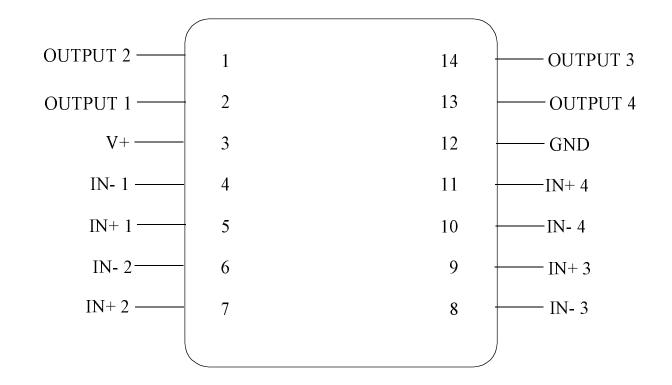

Note 1: Parameter guaranteed by Vio tests.


GRAPHICS#	DESCRIPTION	
5542HRA2	(blank)	
5715HRA2	CERPACK (W), 14 LEAD (B/I CKT)	
5816HRA3	LCC (E), TYPE C, 20 TERMINAL (B/I CKT)	
E20ARE	LCC (E), TYPE C, 20 TERMINAL(P/P DWG)	
J14ARH	CERDIP (J), 14 LEAD (P/P DWG)	
P000184A	CERPACK (W), 14 LEAD (PINOUT)	
P000201A	LCC (E), TYPE C, 20 TERMINAL (PINOUT)	
P000238A	CERAMIC SOIC (WG), 14 LEAD (PINOUT)	
P000271A	CERDIP (J), 14 LEAD (PINOUT)	
W14BRN	CERPACK (W), 14 LEAD (P/P DWG)	
WG14ARC	CERAMIC SOIC (WG), 14LD (P/P DWG)	

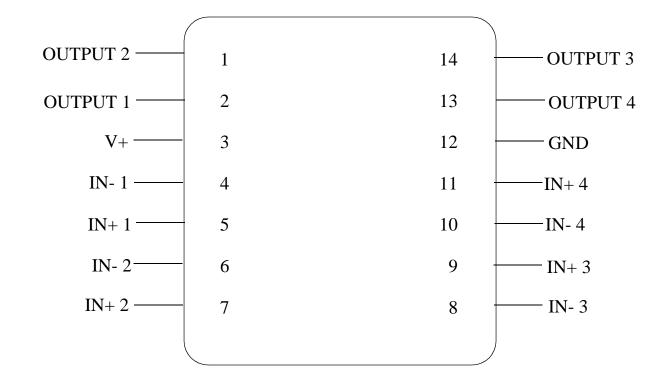
Graphics and Diagrams

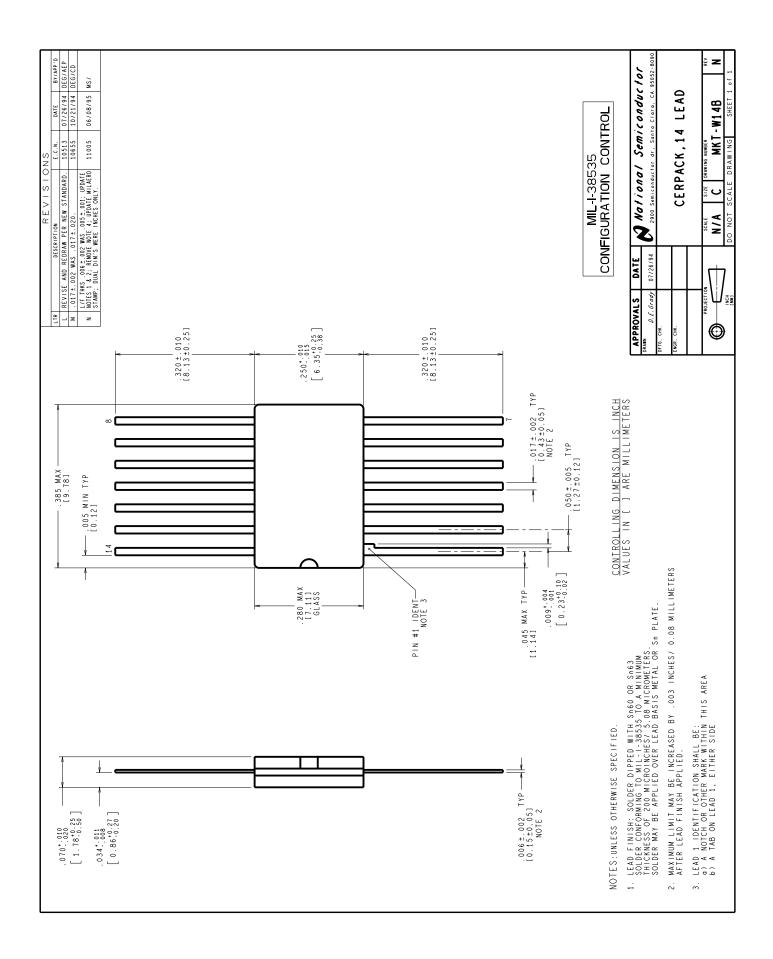
See attached graphics following this page.

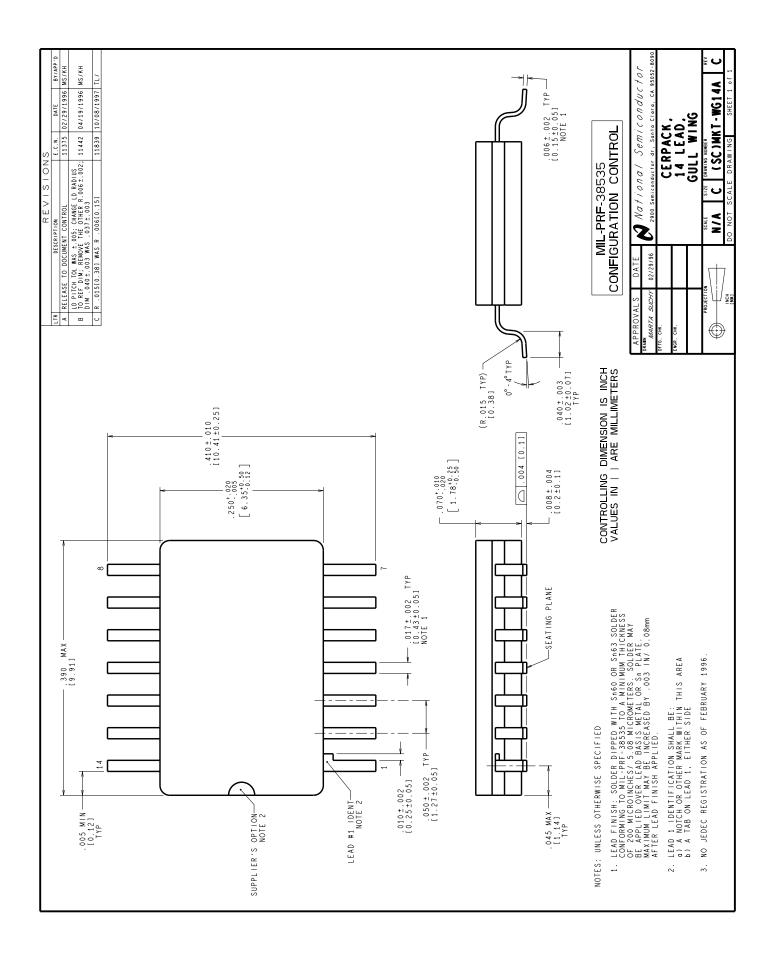



LM139AW, LM139W 14 - LEAD CERPACK CONNECTION DIAGRAM TOP VIEW P000184A




LM139AE, LM139E 20 - LEAD LCC CONNECTION DIAGRAM TOP VIEW P000201A


LM139AWG, LM139WG 14 - LEAD CERAMIC SOIC CONNECTION DIAGRAM TOP VIEW P000238A



LM139AJ, LM139J 14 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000271A

Revision History

Rev	ECN #	Rel Date	Originator	Changes
0A0	M0000441	03/27/98	Barbara Lopez	Changed: MDLM139A-X Rev. OAL to MDLM139A-X Rev. OAO. Changed NSID to reflect SMD part number.
0B1	M0002749	03/27/98	-	Update MDS: MDLM39A-X Rev. 0A0 to MDLM139A-X Rev. 0B1. Added WG package. Updated subgroups for Av parameter from: (1, 2 and 3) to (4, 5 and 6), to meet SMD. Added Graphics for Burn-In and Pinout.