

MICROCIRCUIT DATA SHEET

MJLM139-X REV 0C0

Original Creation Date: 05/18/95 Last Update Date: 12/20/96 Last Major Revision Date: 05/18/95

LOW POWER LOW OFFSET VOLTAGE QUAD COMPARATORS

General Description

The LM139 series consists of four independent precision voltage comparators. These were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possile and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though operated from a single power supply voltage.

Application area include limit comparators, simple analog to digital converters, pulse, squarewave and the time delay generators, wide range VCO, MOS clock timers, multivibrators and high voltage digital logic gates. The LM139 series was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, they will directly interface with MOS logic-where the low power drain of the LM339 is a distinct advantage over standard comparators.

Industry Part Number	NS Part Numbers
LM139	JL139BCA JL139BDA
Prime Die	JL139SDA

LM139

Controlling Document

38510/11201, AMEND. 3 REV A

Processing	Subgrp	Description	Temp (°C)
MIL-STD-883, Method 5004	1	Static tests at	+25
	3	Static tests at	-55
Quality Conformance Inspection	4 5	Dynamic tests at Dynamic tests at	+25 +125
MIL-STD-883, Method 5005	6 7	Dynamic tests at Functional tests at	-55 +25
	8A	Functional tests at	+125
	ов 9	Switching tests at	+25
	10 11	Switching tests at Switching tests at	+125 -55

Features

MJLM139-X - Wide supply voltage range 5Vdc to	36Vdc
or <u>+</u> 2.5V to <u>+</u> 18Vdc	
- Very low supply current drain (0.8mA Typ)	
independent of supply voltage	
- Low input biasing current	25nA
- Low input offset current	<u>+</u> 5nA
and offset voltage	<u>+</u> 3mV
- Differential input voltage range	
equal to the power supply voltage	
- Low output saturation voltage	250mV at 4mA
- Output voltage compatible with TTL,	
DTL, ECL, MOS and CMOS logic systems	

C C

(Absolute Maximum Ratings) (Note 1)

Supply Voltage V+		36Vdc or <u>+</u> 18Vdc
Differential I (Note 5)	nput Voltage	261
Output Voltage		36V 36V
Input Voltage		-0.3V to +36V
<pre>Input Current (Note 6) (Vin < -0.</pre>	3Vdc)	50mA
Power Dissipat (Note 2, 3) CERDIP CERPACK	ion	400mW at TA = 125 350mW at TA = 125
Maximum Juncti	on Temperature	175 C
Output Short-C (Note 4)	ircuit to GND	Continuous
Storage Temper	ature Range	-65 C to +150 C
Operating Temp	erature Range	-55 C to +125 C
Lead Temperatu (Soldering	re ;, 10 seconds)	260 C
Thermal Resist ThetaJA CERDIP CERPACK	ance (Still Air) (500LF/Min Air flow) (Still Air (500LF/Min Air flow)	103 C/W 65 C/W 183 C/W 120 C/W
ThetaJC CERDIP CERPACK		23 C/W 23 C/W
ESD Tolerance (Note 7)		600V

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. The maximum power dissipation must be derated at elevated temperatures and is
- Note 2: dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is Pdmax = (Tjmax -TA/ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower. The low bias dissipation and the ON-OFF characteristic of the outputs keeps the chip dissipation very small (Pd \leq 100mW), provided the output transistors are allowed to
- Note 3: saturate.
- Short circuits from the output to V+ can cause excessive heating and eventual destruction. When considering short to ground, the maximum output current is approximately 20mA independent of the magnitude of V+. Note 4:
- Note 5: Positive excursions of input voltage may exceed the power supply level. As long as the other voltage remains within the common-mode range, the comparator will provide the proper output state. The low input voltage state must not be less than -3.0Vdc(or 0.3Vdc below the magnitude of the negative power supply, if used) (at 25 C).

(Continued)

Note 6: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3Vdc.

Note 7: Human body model, 1.5K Ohms in series with 100pF.

DC PARAMETERS

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: -Vcc = 0V

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	мін	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage	+Vcc = 30V, -Vcc = 0V, Vo = 15V			-5	5	mV	1
					-7	7	mV	2, 3
		+Vcc = 2V, -Vcc = -28V, Vo = -13V			-5	5	mV	1
					-7	7	mV	2, 3
		+Vcc = 5V, -Vcc = 0V, Vo = 1.4V			-5	5	mV	1
					-7	7	mV	2, 3
		+Vcc = 2V, -Vcc = -3V, Vo = -1.6V			-5	5	mV	1
					-7	7	mV	2, 3
Iio	Input Offset	+Vcc = 30V, $-Vcc = 0V$, Rs = 20K Ohms,	1		-25	25	nA	1, 2
	Current	V0 - 15V	1		-75	75	nA	3
		+Vcc = 2V, -Vcc = -28V, Rs = 20K Ohms, Vo = -13V	1		-25	25	nA	1, 2
			1		-75	75	nA	3
	+Vcc = 5V, -Vcc = 0V, Rs = 20K Ohms, Vo = 1.4V	1		-25	25	nA	1, 2	
		1		-75	75	nA	3	
		+Vcc = 2V, -Vcc = $-3V$, Rs = 20K Ohms, Vo = $-1.6V$	1		-25	25	nA	1, 2
		1		-75	75	nA	3	
+Iib Input	Input Bias Current	+Vcc = 30V, $-Vcc = 0V$, Rs = 20K Ohms, Vo = 15V	1		-100	+0.1	nA	1, 2
			1		-200	+0.1	nA	3
		+Vcc = $2V$, -Vcc = $-28V$, Rs = $20K$ Ohms,	1		-100	+0.1	nA	1, 2
			1		-200	+0.1	nA	3
		+Vcc = 5V, -Vcc = 0V, Rs = 20K Ohms, Vo = 1.4V	1		-100	+0.1	nA	1, 2
			1		-200	+0.1	nA	3
		+Vcc = 2V, $-$ Vcc = $-$ 3V, Rs = 20K Ohms,	1		-100	+0.1	nA	1, 2
			1		-200	+0.1	nA	3
	1							

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: -Vcc = 0V

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
-Iib	Input Bias Current	+Vcc = 30V, -Vcc = 0V, Rs = 20K Ohms, Vo = 15V	1		-100	+0.1	nA	1, 2
			1		-200	+0.1	nA	3
		+Vcc = $2V$, -Vcc = $-28V$, Rs = $20K$ Ohms, Vo = $-13V$	1		-100	+0.1	nA	1, 2
			1		-200	+0.1	nA	3
		+Vcc = 5V, -Vcc = 0V, Rs = 20K Ohms, Vo = 1 4V	1		-100	+0.1	nA	1, 2
		VO - 1.1V	1		-200	+0.1	nA	3
		+Vcc = 2V, $-Vcc = -3V$, Rs = 20K Ohms, Vc = -1.6V	1		-100	+0.1	nA	1, 2
			1		-200	+0.1	nA	3
CMR	Input Voltage Common Mode Rejection	+Vcc = 30V			76		dB	1, 2, 3
		+Vcc = 5V			70		dB	1, 2, 3
ICEX	Output Leakage	+Vcc = 30V, -Vcc = 0V, Vo = +30V				1	uA	1, 2, 3
+Iil	Input Leakage Current	+Vcc = 36V, -Vcc = 0V, V+i = 34V, V-i = 0V			-500	500	nA	1, 2, 3
-Iil	Input Leakage Current	+Vcc = 36V, -Vcc = 0V, V+i = 0V, V-i = 34V			-500	500	nA	1, 2, 3
Vol	ol Logical "0" Output Voltage	+Vcc = 4.5V, Io = 4mA				0.4	V	1
						0.7	V	2, 3
	+Vcc = 4.5V, Io = 8mA				1.5	V	1	
						2	V	2, 3
Icc Power Supply	+Vcc = 5V, Vid = 15mV				2	mA	1, 2	
	current					3	mA	3
		+Vcc = 30V, Vid = 15mV				3	mA	1, 2
						4	mA	3
DELTA Vio/	Temperature	25 C ≤ TA ≤ 125 C	2		-25	25	uV/C	2
DELIA I	Input Offset Voltage	-55 C <u>≤</u> TA <u>≤</u> 25 C	2		-25	25	uV/C	3
DELTA Iio/	Temperature	25 C ≤ TA ≤ 125 C	2		-300	300	pA/C	2
DELIA I	Input Offset Current	-55 C ≤ TA ≤ 25 C	2		-400	400	pA/C	3
AVS	Open Loop Voltage	+Vcc=15V, Rl=15K Ohms, $1V \leq Vo \leq 11V$	3		50		V/mV	4
	Gain	+Vcc=15V, Rl=15K Ohms, $1V \leq Vo \leq 11V$	3		25		V/mV	5,б

DC PARAMETERS (Continued)

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: -Vcc = 0V

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Tempco Screen					4	mV	
CMRR	Tempco Screen					70	dB	
Iio	Tempco Screen					13	nA	
Iib	Tempco Screen					12	nA	

AC PARAMETERS

tRLH	Response Time:	+Vcc=5V, Vin=100mV, Rl=5.1K Ohms, Vod=5mV			5	uS	7, 8B
					7	uS	8A
		+Vcc=5V, Vin=100mV, Rl=5.1K Ohms, Vod=50mV			0.8	uS	7, 8B
					1.2	uS	8A
tRHL	Response Time: High-to-Low	+Vcc=5V, Vin=100mV, Rl=5.1K Ohms, Vod=5mV			2.5	uS	7, 8B
	5				3	uS	8A
		+Vcc=5V, Vin=100mV, Rl=5.1K Ohms, Vod=50mV			0.8	uS	7, 8B
					1	uS	8A
CS Ch Se	Channel Separation	+Vcc = 20V, -Vcc = -10V, A to B		80		dB	7
		+Vcc = 20V, -Vcc = -10V, A to C		80		dB	7
		+Vcc = 20V, $-Vcc = -10V$, A to D		80		dB	7
		+Vcc = 20V, -Vcc = -10V, B to A		80		dB	7
		+Vcc = 20V, -Vcc = -10V, B to C		80		dB	7
		+Vcc = 20V, -Vcc = -10V, B to D		80		dB	7
		+Vcc = 20V, -Vcc = -10V, C to A		80		dB	7
		+Vcc = 20V, -Vcc = -10V, C to B		80		dB	7
		+Vcc = 20V, -Vcc = -10V, C to D		80		dB	7
		+Vcc = 20V, -Vcc = -10V, D to A		80		dB	7
		+Vcc = 20V, -Vcc = -10V, D to B		80		dB	7
		+Vcc = 20V, $-Vcc = -10V$, D to C		80		dB	7
VLAT	Voltage Latch (Logical "1" Input)	+Vcc = 5V, Vin = 10V, Io = 4mA			0.4	V	9

DC PARAMETERS: DRIFT VALUES

(The following conditions apply to all the following parameters, unless otherwise specified.) DC: -Vcc = OV. "Delta calculations performed on JAN S and QMLV devices at group B, subgroup 5 ONLY."

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage	+Vcc = 30V, -Vcc = 0V, Vo = 15V			-1	1	mV	1
+Iib	Input Bias Current	+Vcc = 30V, -Vcc = 0V, Rs = 20K Ohms, Vo = 15V			-15	15	nA	1
-Iib	Input Bias Current	+Vcc = 30V, -Vcc = 0V, Rs = 20K Ohms, Vo = 15V			-15	15	nA	1

Note 1: S/S Rs = 20K Ohms, tested at Rs = 10K Ohms as equivalent test. Note 2: Calculated parameter; for Delta Vio/Delta T use Vio test at +Vcc=30V, -Vcc=0V, Vo=15V, and for Delta Iib/Delta T use Iib test at +Vcc=30V, -Vcc=0V, Vo=15V. Note 3: Datalog of K = V/mV.

Graphics and Diagrams

GRAPHICS#	DESCRIPTION
J14ARH	CERDIP (J), 14 LEAD (P/P DWG)
W14BRM	(blank)

See attached graphics following this page.

