

MICROCIRCUIT DATA SHEET

Original Creation Date: 08/08/95 Last Update Date: 04/14/98 Last Major Revision Date: 12/01/95

QUAD LM741 OP AMP

MNLM148-X REV 1B1

General Description

The LM148 is a true quad LM741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar LM741 operational amplifier. In addition the total supply current for all four amplifiers is comparable to the supply current of a single LM741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard LM741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling.

The LM148 can be used anywhere multiple LM741 or LM1558 type amplifiers are being used and in applications where amplifier matching or high packing density is required.

Industry Part Number

NS Part Numbers

LM148

LM148E/883 LM148J/883

Prime Die

LM148

Processing

MIL-STD-883, Method 5004

Quality Conformance Inspection

MIL-STD-883, Method 5005

Subgrp Description Temp (°C) 1 Static tests at +25 2 Static tests at +125

Static tests at Static tests at -55 +25 Dynamic tests at Dynamic tests at +1256 Dynamic tests at -55 7 Functional tests at +25 Functional tests at Functional tests at +125 8A 8B -55 Switching tests at +25 9 10 Switching tests at +125Switching tests at -55

Features

- 741 op amp operating characteristics	
- Low supply current drain	0.6mA/Amplifier
- Class AB output stage-no crossover distortion	
- Pin compatible with the LM124	
- Low input offset voltage	1mV
- Low input offset current	4nA
- Low input bias current	30nA
- Gain bandwidth product (Unity Gain)	1.0Mhz

120dB

High degree of isolation between amplifiersOverload protection for inputs and outputs

(Absolute Maximum Ratings)

(Note 1)

Supply Voltage	+ 22V			
Differential Input Voltage	+ 44V			
Output Short Circuit Duration (Note 2)				
	Continuous			
Power Dissipation (Note 3)				
(Pd at 25 C)	1100 mW			
Maximum Junction Temperature (TjMAX)	150 C			
Operating Temperature Range	-55 C ≤ TA ≤ +125 C			
Storage Temperature Range	-65 C to +150 C			
Lead Temperature (Soldering, 10 seconds)	300 C			
Thermal Resistance ThetaJA				
CERDIP (Still Air) CERDIP (500LF/Min Air flow) LCC (Still Air) LCC (500LF/Min Air flow)	103 C/W 52 C/W 90 C/W 66 C/W			
ThetaJC CERDIP LCC	19 C/W 21 C/W			
ESD Tolerance (Note 4)				
	500V			

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
- Note 2: Any amplifier outputs can be shorted to ground indefinitely however, more that one should not be simultaneously shorted as the maximum junction temperature will be exceeded.
- Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by Tjmax (maximum junction temperature), ThetaJA (package junction to ambient thermal resistance), and TA (ambient temperature). The maximum available power dissipation at any temperature is Pdmax = (TjMAX TA) ThetaJA or the number given in the Absolute Maximum Ratings, whichever is lower.
- Note 4: Human body model, 1.5K Ohms in series with 100pF.

Electrical Characteristics

DC PARAMETERS

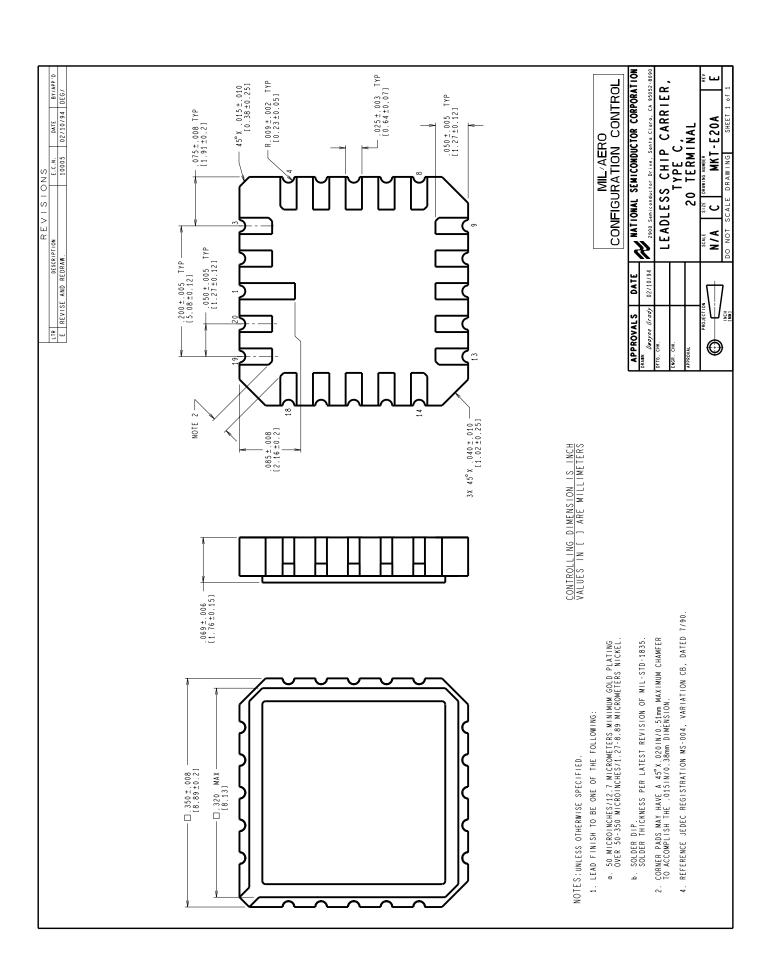
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: Vcc = ± 15 V, Rs = 0 Ohms.

SYMBOL	PARAMETER	CONDITIONS		PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Vio	Input Offset Voltage	Vcm = 0V, Rs = 50 Ohms			-5	+5	mV	1
	voicage				-6	+6	mV	2, 3
Iio	Input Offset Current	Vcm = 0V			-25	+25	nA	1
	Current				-75	+75	nA	2, 3
+Iib	Input Bias Current	Vcm = 0V			1	100	nA	1
	Current				1	325	nA	2, 3
-Iib	Input Bias Current	Vcc = 0V			1	100	nA	1
	Current				1	325	nA	2, 3
PSRR+	Power Supply Rejection Ratio	+Vcc = +15V and +5V, -Vcc = -15V, Rs = 50 Ohms			77		dB	1, 2,
PSRR-	Power Supply Rejection Ratio	+Vcc = +15V, -Vcc = -15V and -5V, Rs = 50 Ohms 77					dB	1, 2,
CMRR	Common Mode Rejection Ratio	$Vcm = \pm 12V$, Rs = 50 Ohms 70					dB	1, 2,
Ios+	Short Circuit Current	-45 -14		-14	mA	1		
Ios-	Short Circuit Current				14	45	mA	1
Icc	Power Supply Current				. 4	3.6	mA	1
	Current				. 4	4.5	mA	2, 3
Rin	Input Resistance		1		.8		MOhms	1
Avs+	Large Signal Voltage	R1 = 2K Ohms, Vo = 0 to +10V			50		V/mV	4
					25		V/mV	5, 6
Avs-	Large Signal Voltage	Rl = 2K Ohms, Vo = 0 to -10V			50		V/mV	4
					25		V/mV	5, 6
Vout+	Output Voltage Swing	R1 = 10K Ohms			+12		V	4, 5, 6
		R1 = 2K Ohms			+10		V	4, 5, 6
Vout-	Output Voltage Swing	R1 = 10K Ohms				-12	V	4, 5, 6
		R1 = 2K Ohms				-10	V	4, 5, 6

Electrical Characteristics

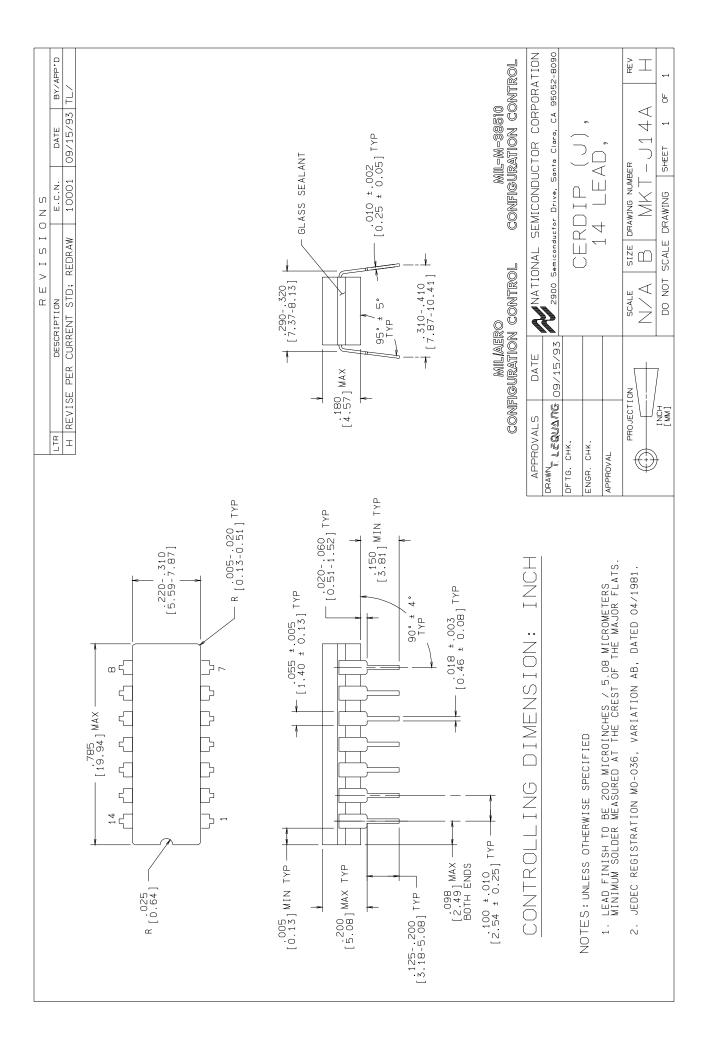
AC PARAMETERS

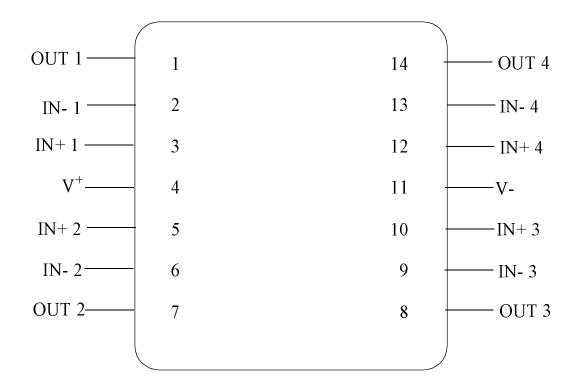
(The following conditions apply to all the following parameters, unless otherwise specified.) AC: Vcc = ± 15 V, Av = 1, Rs = 0.


SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
Sr+	Slew Rate				0.2		V/uS	7, 8A, 8B
Sr-	Slew Rate				0.2		MHz	7, 8A, 8B
Gbw	Gain Bandwidth Product				. 4	1.4	MHz	7, 8A, 8B

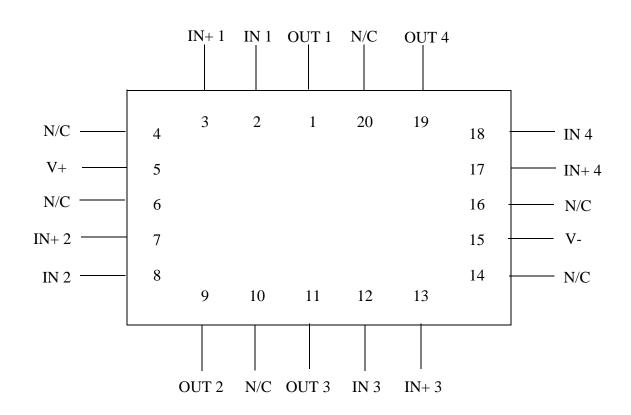
Note 1: Parameter tested go-no-go.

Graphics and Diagrams


GRAPHICS#	DESCRIPTION			
05819HRA2	LDLESS CHIP CARRIER, TYPE C, 20 TERMINAL(B/I CKT)			
09173HRA2	CERDIP (J), 14 LEAD (B/I CKT)			
E20ARE	LCC (E), TYPE C, 20 TERMINAL(P/P DWG)			
J14ARH	CERDIP (J), 14 LEAD (P/P DWG)			
P000229A	CERDIP (J), 14 LEAD (PINOUT)			
P000394A	LCC (E), TYPE C, 20 TERMINAL (PINOUT)			


See attached graphics following this page.

SE


B | B

LM148J 14 - LEAD DIP CONNECTION DIAGRAM TOP VIEW P000229A

LM148E 20 - LEAD LCC CONNECTION DIAGRAM TOP VIEW P000394A

Revision History

Rev	ECN #	Rel Date	Originator	Changes
1B1	M0002837	04/14/98	_	Update MDS: MNLM148-X Rev. 1A0 to MNLM148-X Rev. 1B1. Updated graphics. Deleted NSID LM148J-MLS Obsolete product per Spec Control.