

MILITARY DATA SHEET

MNLM2941K REV 0A0

Original Creation Date: 04/24/95 Last Update Date: 04/24/95 Last Major Revision Date: 04/24/95

LOW DROPOUT ADJUSTABLE REGULATOR

General Description

The LM2941 positive voltage regulator features the ability to source 1A of output current with a typical dropout voltage of 0.5V and a maximum of 1V over the entire temperature range. Furthermore, a quiescent current reduction circuit has been included which reduces the ground pin current when the differential between the input voltage and the output voltage exceeds approximately 3V. The quiescent current with 1A of output current and an input-output differential of 5V is therefore only 30mA. Higher quiescent currents only exist when the regulator is in the dropout mode (Vin - Vout \leq 3V).

Designed also for vehicular applications, the LM2941 and all regulated circuitry are protected from reverse battery installations or two-battery jumps. During line transients, such as load dump when the input voltage can momentarily exceed the specified maximum operating voltage, the regulator will automatically shut down to protect both the internal circuits and the load. Familiar regulator features such as short circuit and thermal overload protection are also provided.

Industry Part Number

NS Part Numbers

LM2941K/883

LM2941

Prime Die

LM2941

Processing	Subgrp	Description	Temp ($^{\circ}$ C)
MIL-STD-883, Method 5004	1	Static tests at	+25
	2	Static tests at	+125
	3	Static tests at	-55
Quality Conformance Inspection	4	Dynamic tests at	+25
	5	Dynamic tests at	+125
MIL-STD-883, Method 5005	6	Dynamic tests at	-55
	7	Functional tests at	+25
	8A	Functional tests at	+125
	8B	Functional tests at	-55
	9	Switching tests at	+25
	10	Switching tests at	+125
	11	Switching tests at	-55

Features

- Output voltage adjustable from 5V to 20V
- Dropout voltage typically 0.5V @ Io = 1A $\,$
- Output current in excess of 1A
- Trimmed reference voltage
- Reverse battery protection
- Internal short circuit current limit
- Mirror image insertion protection
- TTL, CMOS compatible ON/OFF switch

(Absolute Maximum Ratings)

Input Voltage (Survival Voltage < 100mS)	60V
Internal Power Dissipation (Note 2)	
	Internally Limited
Maximum Junction Temperature	150 C
Storage Temperature Range	-65 C <u><</u> Tj <u><</u> +150 C
Lead Temperature (Soldering, 10 seconds)	300 C
ESD Susceptibility	
(Note 3)	500V

- Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions for which the device is intended to be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specificatinos and test conditions, see the Electrical Characteristics.
- Note 2: The maximum power dissipation is a function of Tj(max), ThetaJA, and TA. The maximum allowable power dissipation at any ambient temperature is PD=(Tj(max)-TA)/ThetaJA. If this dissipation is exceeded, the die temperature will rise above 150 C and the LM2941 will go into thermal shutdown. ThetaJA is 35 C/W and ThetaJC is 4 C/W.
- Note 3: Human body model, 100pF discharged through 1.5K Ohms

Recommended Operating Conditions

Maximum Input Voltage

26V

Temperature Range $$-55\ C\ \le\ TA\ \le\ 125\ C$

Electrical Characteristics

DC PARAMETERS:

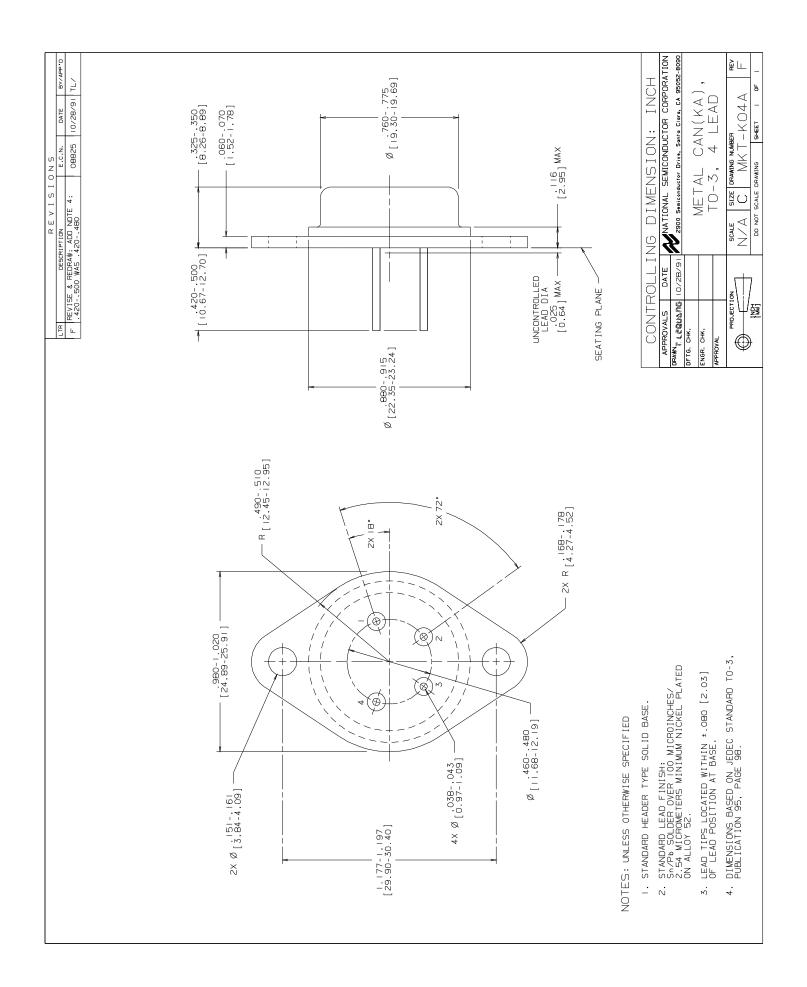
(The following conditions apply to all the following parameters, unless otherwise specified.) DC: 5V \leq Vo \leq = 20V, Vin = Vo +5V, Cout = 22uF

SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	мін	MAX	UNIT	SUB- GROUPS
Vref	Reference Voltage	$5mA \leq IO \leq 1A$			1.237	1.313	V	1
		$5mA \leq IO \leq 1A$			1.211	1.339	V	2, 3
Vrline	Line Regulation	Vo + 2V \leq Vin \leq 26V, Io = 5mA	3			10	mV/V	1, 2, 3
Vrload	Load Regulation	$50mA \leq IO \leq 1A$	3			10	mV/V	1, 2, 3
Iq	Quiescent Current	Vo + 2V \leq Vin \leq 26V, Io = 5mA				15	mA	1
		Vo + $2V \leq Vin \leq 26V$, Io = 5mA				20	mA	2, 3
		Vin = Vo + 5V, Io = 1A				45	mA	1
						60	mA	2, 3
Vdo	Dropout Voltage	Io = 1A				0.8	V	1
						1.00	v	2, 3
		IO = 100mA				200	mV	1, 2, 3
Isc Short Circuit Current		Vin max = 26V			1.6	3.3	A	1
	Current				1.3	3.5	A	2, 3
	Maximum Operational Input Voltage		2			26	VDC	1, 2, 3
	Reverse Polarity DC Input Voltage	Ro = 100 Ohms, Vo \geq -0.6V	1		-15		V	1, 2, 3
V(TO)	ON/OFF Threshold Voltage ON	Io \leq 1A	1			0.8	V	1, 2, 3
V(TO)	ON/OFF Threshold Voltage OFF	Io \leq 1A	1		2.00		V	1, 2, 3
	ON/OFF Threshold Current	V ON/OFF = 2.0V, Io \leq 1A				100	uA	1
		V ON/OFF = 2.0V, IO \leq 1A				300	uA	2, 3

Electrical Characteristics

AC PARAMETERS:

(The following conditions apply to all the following parameters, unless otherwise specified.) AC: 5V \leq Vo \leq = 20V, Vin = Vo +5V, Cout = 22uF


SYMBOL	PARAMETER	CONDITIONS	NOTES	PIN- NAME	MIN	MAX	UNIT	SUB- GROUPS
	Maximum Line Transient	Vo max 1V above nominal Vo, Ro = 100 Ohms, T <u><</u> 100mS	4		60		V	7, 8A, 8B
	Reverse Polarity Transient Input Voltage	T <u><</u> 100mS, Ro = 100 Ohms	4		-50		V	7, 8A, 8B
RR	Ripple Rejection	fo = 1KHz, 1 Vrms, IL = 100mA	4			0.02	%∕V	4
			4			0.04	%/V	5,б

Note 1: Functional test go no go only Note 2: Condition for Vin Note 3: Limit = mV per Volt of Vout Note 4: %/V = % of Vin per Volt of Vout

Graphics and Diagrams

GRAPHICS#	DESCRIPTION	
K04ARF	METAL CAN(KA), TO-3, 4 LEAD (P/P DWG)	

See attached graphics following this page.

