Advance Information

Full Bridge Driver

The MC33253 is a full bridge driver with integrated charge pump, two independent high and low side driver channels and a voltage supply unit.

The high and low side drivers include a cross conduction suppression circuit, which, if enabled, prevents the external power FETs from being on at the same time. Therefore each output driver detects the gate to source voltage and masks the input signal of the opposite channel.

The outputs are formed with 1 A pulse peak current Drivers. The low side channel is referenced to ground.

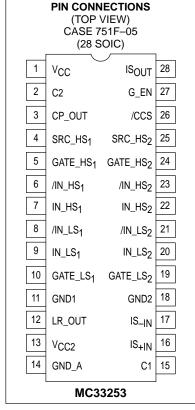
A linear regulator provides 12 V for the low side gate driver stage independent of the supply voltage V_{CC2} . This guarantees gate protection at V_{CC2} above 14 V. The high side driver stage is supplied with a voltage of 12 V above V_{CC} provided by the charge pump. Both the high side and low side driver supply voltages are buffered with an external capacitor.

A under— and over—voltage protection prevents erratic system operation at abnormal supply voltages. The under— and over—voltage protection forces the driver stage into an off state during a failure condition.

The logic inputs are compatible with standard CMOS or LSTTL outputs. The input hysteresis makes the output switching time independent of the input transition time. Each channel can be driven with inverted or non–inverted logic.

A circuit shut—down is achieved by driving the global enable signal with a logic low or tri—state. During shut—down, all BIAS circuits and the charge pump are disabled in order to reduce the quiescent current to a minimum. To wake up the circuit, 5 V has to be provided at G_EN in order to supply the logic circuits during wake—up.

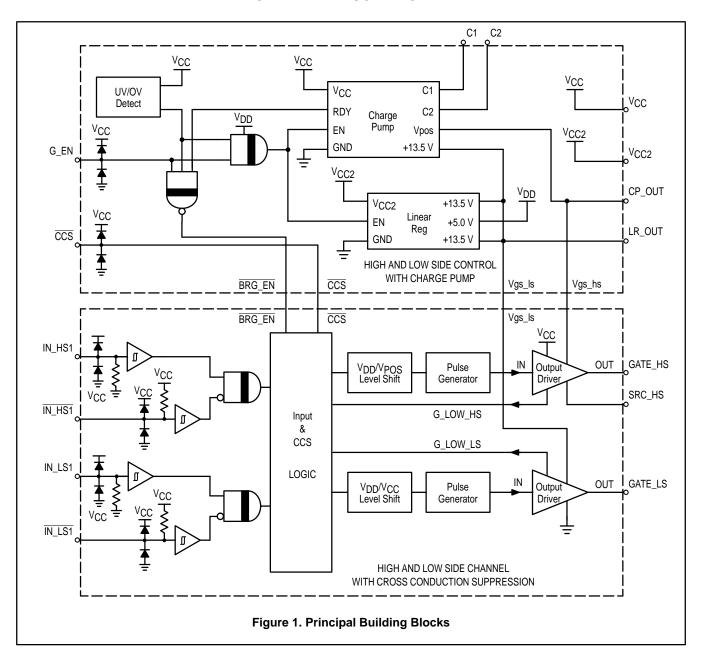
A ground referenced operational amplifier provides an analog feedback of the bridge current with the use of either Sense FETs or an external shunt resistor.

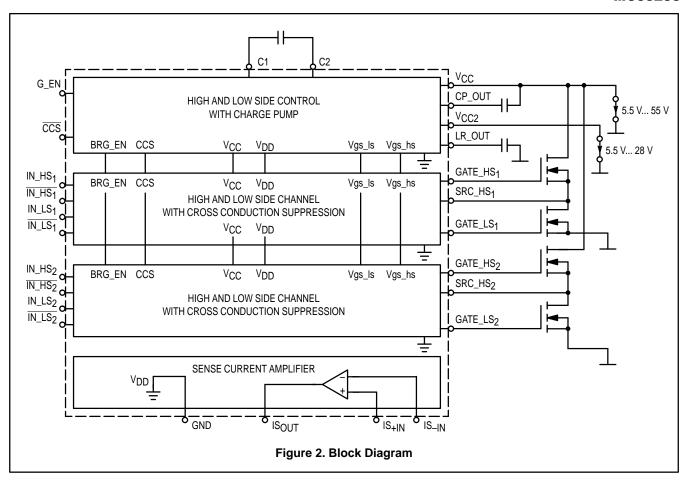

Features:

- Operating Voltage Range from 5.5 V up to 55 V
- Automotive Temperature Range –40°C to 125°C
- 1A Pulse Current Output Driver
- Fast PWM Capability up to 100 kHz
- Built-In Charge Pump
- Cross Conduction Supression Circuit

MC33253

55 VOLT FULL BRIDGE DRIVER





This document contains information on a new product. Specifications and information herein are subject to change without notice.

SIMPLIFIED BLOCK DIAGRAM

MC33253

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND.

Rating	Symbol	Min	Max	Unit
Supply Voltage 1	VCC	-0.3	60	VDC
Supply Voltage 2	V _{CC2}	-0.3	28	
Linear Regulator Output Voltage	VBST_out VLR_out	-0.3	28	
High Side Floating Supply Absolute Voltage	VPOS_HS VCP_OUT	-0.3	65	
High Side Floating Supply Offset Voltage	VSRCHS	-1.0	65	
High Side Floating Output Voltage	VGATEHS	VSRCHS-0,3	VSRCHS+14 (and <65 V)	
Low Side Output Voltage	VGATELS	-0.3	14	
Logic Input Voltage	VIN	-0.3	10	
Max V _{POSHS} Slew Rate	dVposhs/dt	_	50	V/ns
Max VGATELS/HS Slew Rate	dVGATE/dt	_	50	
Power Dissipation and Thermal Characteristics				
Maximum Power Dissipation	PD			W
Thermal Resistance Junction-to-Air	$R_{ heta JA}$			°C/W
Operating Junction Temperature	TJ	-40	+150	°C
Storage Temperature	T _{stg}	-65	+150	°C

OPERATING CONDITIONS

(Typical values for T_A = 25°C, Min/Max values for T_A = -40°C to +125°C)

Rating		Symbol	Min	Max	Unit
Supply Voltage (Power Stage)		Vcc	5,5	55	V
Supply Voltage 2 (VBATT) (Note 2)		V _{CC2}	5,5	28	V
High Side Floating Supply Absolute Voltage (Note 1)	VPOS_HS VCP_OUT	V _{CC} +4	V _{CC} +14 but <65	V
High Side Floating Supply Offset Voltage		VSRCHS	-0.7	V _{CC} +0.7	V _{DC}
High Side Floating Output Voltage	ON (Note 1)	VGATEHS	VSRCHS+4V	VSRCHS+14	V
Low Side Output Voltage	ON	VGATELS	V _{CC2} – 1	14	V
High Side Floating Output Voltage	OFF	VGATEHS	_	VSRCHS+0,5	V
Low Side Output Voltage	OFF	VGATELS	_	0,5	V
Logic Input Voltage		VIN	0	5.0	V
Ambient Temperature Range		TA	-40	+125	°C

Note 1: The minimum voltage is calculated for $V_{CC2} = 6.0 \text{ V}$ Note 2: $V_{CC2} = 28 \text{ V}$ can be withstand only at $T_A = 85^{\circ}\text{C}$ (Jump Start Condition!)

STATIC ELECTRICAL CHARACTERISTICS V_{CC} = 12 V, V_{CC2} = 12 V, V_{CCP} = 300 nF, G_EN = 4.5 V unless otherwise specified. The logic input parameters (V_{IN} , I_{IN}) are referenced to GND. The gate drive outputs are referenced to GND. (Typical values for T_A = 25°C, Min/Max values for T_A = -40°C to +125°C, unless otherwise specified)

Characteristic	Pin #	Symbol	Min	Тур	Max	Unit
LOGIC SECTION						
Logic "1" Input Voltage (IN_LS & IN_HS)		VIH	2.0	-	10	V
Logic "0" Input Voltage (IN_LS & IN_HS)		VIL	-	-	0.8	V
Wake Up Input Voltage (G_EN)	27	V _{G_EN}	4.5	5.0 V	V _{CC2}	V
Wake Up Current (G_EN) VG_EN = 14 V	27	IG_EN	?	-	?	μΑ
LINEAR REGULATOR SECTION	•	•		•		
VGS Linear Regulator V _{Irout} @ V _{CC2} = 28 V	12	V _{Irout}	12	_	14	V
V _{Irout} @ V _{CC2} ≤ 12 V	12		V _{CC2} – 1	_	12	
CHARGE PUMP SECTION	•	•		•		
Charge Pump Output Voltage (Note 1) IPOS = 0 mA	3	VCP_OUT	V _{CC} + 10	V _{CC} + 12	V _{CC} + 14	V
Charge Pump Output Voltage (Note 1) IPOS = 7 mA	3	VCP_OUT	-	V _{CC} + 9	_	V
Charge Pump Output Average Current Half Bridge (Note 4)	3	I _{CP_OUT}	-	5.0	_	mA
Charge Pump Output Average Current Full Bridge (Note 4)	3	ICP_OUT	-	10	_	mA
UNDER/OVERVOLTAGE SECTION			ı			
Under Voltage Shutdown V _{CC2}	13	UV2	5.1	5.5	5.9	V
Under Voltage Shutdown V _{CC}	1	UV	5.1	5.5	5.9	V
Over Voltage Shutdown V _{CC}	1	OV	56	-	60	V
Over Voltage Shutdown V _{CC2}	13	OV2	28	-	32	V
OUTPUT SECTION			<u> </u>			
Nom. Sink Current (turned off) V _{GS} = 1.0 V	5, 10	I _O _	_	100	_	mA
Nom. Source Current (turned on) Vpos_hs, VG = 1.0 V	19, 24	I _{O+}	-	100	_	mA
Peak Current (turn off) V _{GS} = 12 V (Note 4)		losk	-	1000	_	mA
Peak Current (turn on) V _{GS} = 0 V (Note 4)		loss	-	1000	-	mA
SENSE CURRENT AMPLIFIER SECTION (Internal V _{CC} supply @ 5	V)					
Output Dynamic Range	28	Vo	_	-	4.0	V
Open Loop Gain (at 25°C) (Note 4)		А	-	50	_	dB
Input Bias	16, 17	lв	-	200	500	V
Input Offset Voltage	16, 17	Vio	-	2.0	5.0	mV
Input Common Mode Range		VICR	-	-	3.0	V
Sink Capability	28	Isink	-	100	300	μΑ
Source Capability	28	I _{source}	-	2.0	5.0	mA
Gain Bandwidth Product		GBW	-	2.0	_	mHz
SUPPLY SECTION		•				
Quiescent Supply Current V _{CC2} (G_EN = 0) (Note 2)	13	IQSD	_	_	20	μΑ
Quiescent Supply Current V _{CC} (G_EN = 0) (Note 2)	1	IQSD	-	-	20	μΑ
Supply Current V _{CC}	1	lOP	-	-	TBD	mA
Supply Current V _{CC2}	13	lOP	-	-	TBD	mA
DYNAMIC ELECTRICAL CHARACTERISTICS (Typical values for	T _A = 25°	C, Min/Max	values for	Г _А = –40°С	to +125°C)	
Charge Pump Start Up Time (Note 4)	3		_	TBD	<u> </u>	ns
Prop. Delay HS and LS between 50% input to 50% output, C _I = 5.0 nF		T _{PD}	-	200	_	ns
Skew Propagation Delay HS and LS		<u> </u>	-	TBD	_	ns
HS/LS Rise Time @ C _I = 5.0 nF, 10% to 90%			-	80	180	ns
HS/LS Fall Time @ C _I = 5.0 nF, 90% to 10%			-	80	180	ns
Peak Current (turn off) V _{GS} = 12 V (Note 4) Peak Current (turn on) V _{GS} = 0 V (Note 4) SENSE CURRENT AMPLIFIER SECTION (Internal V _{CC} supply @ 5) Output Dynamic Range Open Loop Gain (at 25°C) (Note 4) Input Bias Input Offset Voltage Input Common Mode Range Sink Capability Source Capability Gain Bandwidth Product SUPPLY SECTION Quiescent Supply Current V _{CC} (G_EN = 0) (Note 2) Quiescent Supply Current V _{CC} (G_EN = 0) (Note 2) Supply Current V _{CC} Supply Curren	V) 28 16, 17 16, 17 28 28 13 1 1 13 TA = 25°	IOSK IOSS VO A IIB Vio VICR Isink Isource GBW IQSD IQSD IOP IOP C, Min/Max TON	values for	1000 1000	- 4.0 - 500 5.0 3.0 300 5.0 20 20 TBD TBD TBD to +125°C)	mA mA V dB V mV V μA mA mHz μA mA mA ns ns

NOTE 1 If G_EN is driven low or tri–state, then the charge pump is disabled.

NOTE 2 G_EN is driven low or tri–state.

NOTE 3 Rise time is given by time needed to charge the gate from 1.0 V to 10 V (vica versa for fall time)

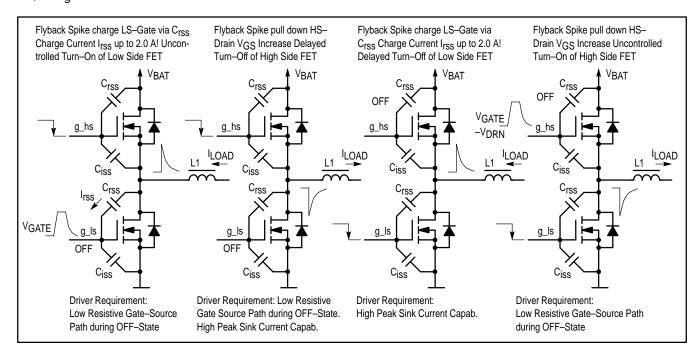
NOTE 4 Characterization only

MC33253

Driver Characteristics

Turn-On:

For turn–on the current required to charge the gate source capacitor C_{iss} in the specified time can be calculated as follows:


Peak Current for Rise/Fall Time (tr) and a typical Power-MosFET Gate Charge Q_{α}

 $Ip = Q_0/tr = 75 \text{ nC/80 ns} \approx 1.0 \text{ A}$

Turn-Off:

Basically, the peak current for turn-off can be obtained in the same way as for turn-on.

In addition to the dynamically current, required to turn—off or turn—on the FET, various application related switching scenarios have to be considered:

The output driver sources a peak current of up to 1A for 200 ns to turn on the gate. After 200 ns 100 mA are provided continuously to maintain the gate charged.

The output driver sinks a peak current of up to 1A for 200 ns to turn off the gate. After 200 ns 100 mA are sinked continuously to maintain the gate discharged.

In order to withstand high dV/dt spikes (up to 10 V/ns) a low resistive path between gate and source is implemented during the off state.

Driver Supply

The High Side Driver is supplied from the internal charge pump buffered at CP_OUT.

The low–drop regulator provides approx. 3.5 mA per gate. In case of the full bridge that means approx. 14 mA, 7.0 mA for the high side and 7.0 mA for the low side.

(Note: The average current required to switch a gate with a frequency of 100 kHz is:

Average Current (Charge Pump) for PWM Frq. (fpWM) $ICP = Q_q^* fpWM = 75 \text{ nC}^* 100 \text{ kHz} = 7,5 \text{ mA}$

A full bridge application switch only one high side and one low side at the same time.)

The Charge Pump and Linear Reg. output are buffered externally with a capacitor in order to supply high peak currents.

The Low Side Driver is supplied from low drop regulator directly, buffered at LR_OUT in order to supply the high peak currents.

Gate Protection

The low side gate is protected by the internal linear regulator, which guarantees that $V_{\mbox{GATE_LS}}$ does not exceed the maximum $V_{\mbox{GS}}$.

Especially when working with the charge pump the voltage at POS_HS can be up to 65 V! (VCC + 14 V). The high side gate is clamped internally, in order to avoid a VGS exceeding 14 V.

The Gate protection does not include a Flyback Voltage Clamp that protects the driver and the external FET from a Flyback voltage that can appear when driving inductive load. This Flyback voltage can reach high negative voltage values and needs to be clamped externally.

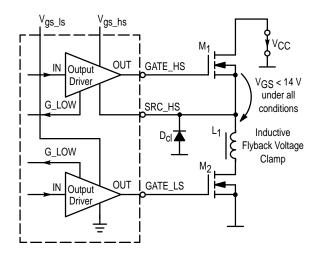
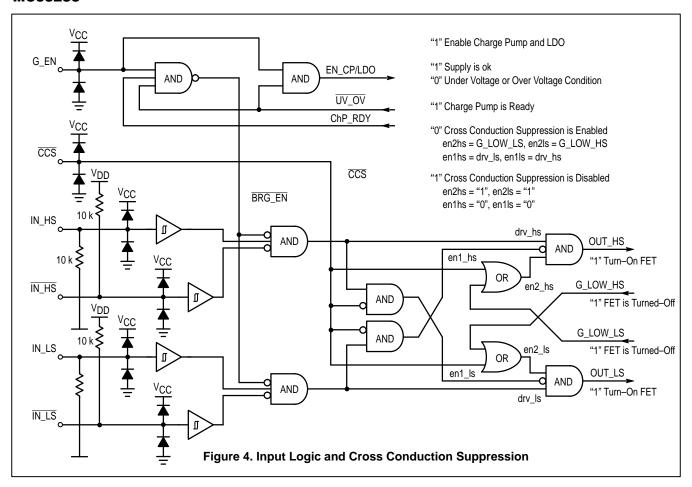


Figure 3. Gate Protection and Flyback Voltage Clamp

TMOS Failure Protection

All output driver stages are protected against TMOS failure conditions.


If one of the external power FETs is destroyed (Gate = V_{CC} , or Gate = Gnd) the function of the remaining output driver stages is not affected.

All output drivers are short circuit protected against short circuits to ground or $\ensuremath{\text{VCC}}.$

Cross Conduction Suppression

The purpose of the cross conduction suppression is to avoid that high and low side FET are turned on at the same time, which prevents the half bridge power FETs of a shoot–through condition.

The CCS can be disabled / enabled by an external signal (/CCS).

Logic Inputs

Logic Input Voltage Range:

(Max. Operating)

-0.3 V ... 10 V

Wake Up Function:

(G_EN)

4.5 V ... VCC2

During Wake-Up the logic is supplied from the G_EN pin.

Low Drop Linear Regulator

The low drop linear regulator provides the 5.0 V for the logic section of the driver, the V_{gs_ls} buffered at LR_OUT and the +13.5 V for the charge pump, which generates the V_{gs_hs} .

The low drop linear regulator provides 3.5 mA average current per driver stage. If V_{CC2} exceeds 14 V the output is limited to 14 V.

Charge Pump

The charge pump generates the high side driver supply voltage (V_{gs_hs}), buffered at CP_OUT.

 $V_{gs_hs} = \bar{V}_{CC} + V_{CC2} - 1.2 \text{ V}.$

The average output current is ICP = 3.5 mA per output driver.

The charge pump charges an external storage capacitor, which provides the peak switching current to the output drivers.

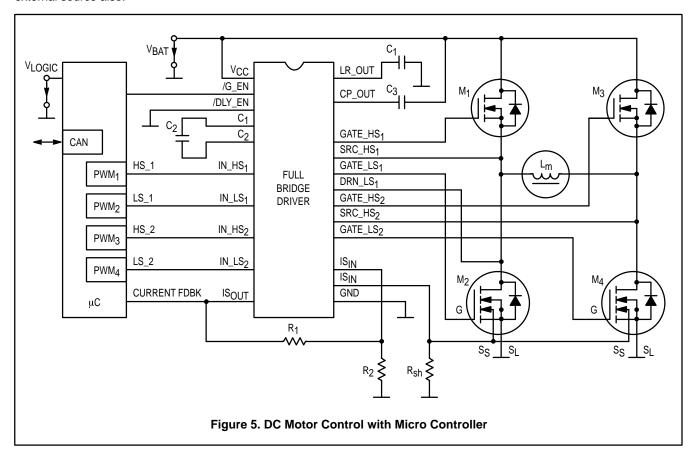
Sense Current OP-Amp

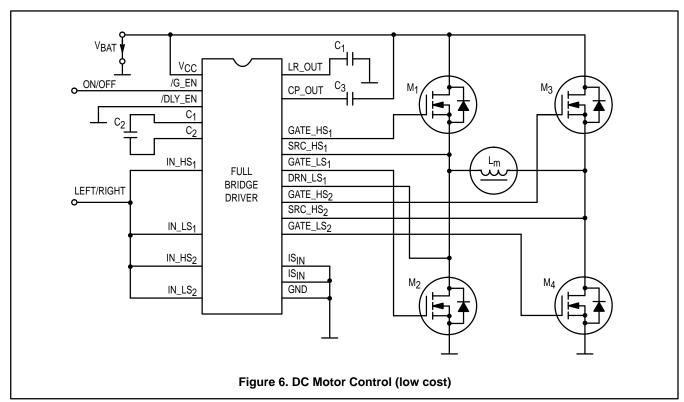
Typically shunt resistivity is dimensioned as low as possible (1.0 mOhm/10 A). The typical voltage generated by sensing the current is in the range of 10 mV. The A/D input of typical micro controller is in the range of 1.0 V. That requires a voltage gain of 100.

Over / Under Voltage Shutdown

The under voltage protection becomes active at VCC below 6.0 V and the overvoltage protection is activated at VCC above 55 V or at VCC2 above 28 V.

If the OUV protection is activated the outputs are driven low, in order to switch off the FETs.

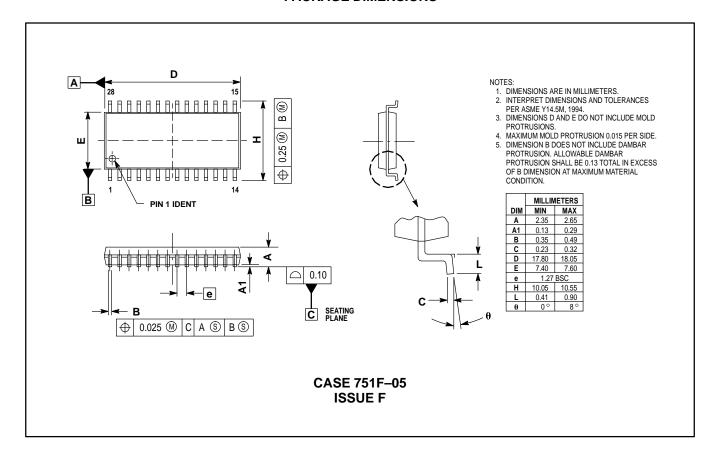

Protection


A protection against double battery and load dump spikes up to 55 V is given by $V_{CC} = 55$ V.

A protection against reverse polarity is given by the external power FET with the free wheeling diodes, forming a conducting pass from ground to V_{CC} . An additional protection is not provided within the circuit.

APPLICATION DIAGRAM

Both applications utilize the internal charge pump to provide the high side floating voltage. This voltage can be provided by an external source also.



MC33253

PIN DEFINITIONS

Pin	Symbol	Pin Description
1	Vcc	Supply 1
2	C2	Charge Pump Capacitor
3	CP_OUT	Charge Pump Out
4	SRC_HS1	Source 1 Output High Side
5	GATE_HS1	Gate 1 Output High Side
6	/IN_HS1	Neg. Input High Side 1
7	IN_HS1	Pos. Input High Side 1
8	/IN_LS1	Neg. Input Low Side 1
9	IN_LS1	Pos. Input Low Side 1
10	GATE_LS1	Gate 1 Output Low Side
11	GND1	Ground
12	LR_OUT	Linear Regulator Output
13	V _{CC2}	Supply 2
14	GND_A	Analog Ground
15	C1	Charge Pump Capacitor
16	IS+	Sense OpAmp Pos. Input
17	IS-	Sense OpAmp Neg. Input
18	GND2	Ground 2
19	GATE_LS2	Gate 2 Output Low Side
20	IN_LS2	Pos. Input Low Side 2
21	/IN_LS2	Neg. Input Low Side 2
22	IN_HS2	Pos. Input High Side 2
23	/IN_HS2	Neg. Input High Side 2
24	GATE_HS2	Gate 2 Output High Side
25	SRC_HS2	Source 2 Output High Side
26	/ccs	Enable Cross Conduction Supression
27	G_EN	Global Enable
28	IS_OUT	Sense Current OpAmp Output

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and manufacture of the part. Motor

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141, P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609
Motorola Fax Back System - US & Canada ONLY 1-800-774-1848 - http://sps.motorola.com/mfax/

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

HOME PAGE: http://motorola.com/sps/

MC33253/D