SCAS645 - AUGUST 2000

 Phase-Lock Loop Clock Driver for Double Data-Rate Synchronous DRAM 	DGG PAC (TOP V	CKAGE IEW)
Applications		
 Spread Spectrum Clock Compatible 		
 Operating Frequency: 60 to 170 MHz 		
• Low Jitter (cvc–cvc): ±75 ps		
Distributes One Differential Clock Input to		
Ten Differential Outputs	$\frac{1}{\sqrt{1}}$	
Three-State Outputs When the Input		42 I GND
Differential Clocks Are <20 MHz		41 GND
Operates From Dual 2 5-V and 3 3-V	<u>72</u> 1 9	40 1 77
Supplies	Y2 🚺 10	39 🛛 Y7
	V _{DDQ} 🚺 11	38 🛛 V _{DDQ}
	V _{DDQ} [] 12	37] PWRDWN
 Consumes < TBD-μA Quiescent Current 	<u>CLK</u> [] 13	36] FBIN
 External Feedback PIN (FBIN, FBIN) Are 		35 FBIN
Used to Synchronize the Outputs to the	V _{DDQ} [15	34] V _{DDQ}
Input Clocks	AV _{DD} [] 16	33 FBOUT
deperimtion	AGND 🛛 17	32 FBOUT
description	G <u>ND</u> [] 18	³¹ GND
The CDCV857 is a high-performance, low-skew,	Y3 🛛 19	³⁰ Y8
low-jitter zero delay buffer that distributes a	Y3 20	29 Y8
differential clock input pair (CLK, CLK) to ten		28 V _{DDQ}
differential pairs of clock outputs (Y[0:9], Y[0:9])		27 Y9
and one differential pair feedback clock output		26 Y9
(FBOUT, FBOUT). The clock outputs are	GND [] ²⁴	²⁵ J GND

power input (AV_{DD}). All outputs can be enabled or disabled via a single output enable input. When \overline{PWRDWN} is high, the outputs switch in phase and frequency with CLK; when \overline{PWRDWN} is low, the outputs are disabled to high impedance state (3-state). When AV_{DD} is strapped low, the PLL is turned off and bypassed for test purposes.

The output pairs are put into a 3-state condition, the PLL is shut down, and the device will enter a low power mode when the input frequency falls below a suggested detection frequency that is below 20 MHz (typ 10 MHz). An input frequency detection circuit detects the low frequency condition and puts the output clock pairs into a high-impedance state. The CDCV857 is also able to track spread spectrum clocking for reduced EMI.

Since the CDCV857 is based on PLL circuitry, it requires a stabilization time to achieve phase-lock of the PLL. This stabilization time is required following power up. The CDCV857 is characterized for operation from 0°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

controlled by the clock inputs (CLK, CLK), the feedback clocks (FBIN, FBIN), and the analog

SCAS645 - AUGUST 2000

FUNCTION TABLE (Select Functions)

(Select Functions)									
INPUTS					OUTPUTS				
AVDD	PWRDWN	CLK	CLK	Y[0:9]	Y[0:9]	FBOUT	FBOUT		
GND	Н	L	Н	L	Н	L	Н	Bypassed/Off	
GND	Н	Н	L	Н	L	Н	L	Bypassed/Off	
Х	L	L	Н	Z	Z	Z	Z	Off	
Х	L	Н	L	Z	Z	Z	Z	Off	
2.5 V (nom)	Н	L	Н	L	Н	L	Н	On	
2.5 V (nom)	Н	Н	L	Н	L	Н	L	On	
2.5 V (nom)	Х	<20 MHz	<20 MHz	Z	Z	Z	Z	Off	

functional block diagram

SCAS645 - AUGUST 2000

Terminal Functions

TERMINAL		1/0	DESCRIPTION		
NAME	NO.	1/0	DESCRIPTION		
AGND	17		Ground for 2.5-V analog supply		
AVDD	16		2.5-V Analog supply		
CLK, CLK	13, 14	I	Differential clock input		
FBIN, FBIN	35, 36	I	Feedback differential clock input		
FBOUT, FBOUT	32, 33	0	Feedback differential clock output		
GND	1, 7, 8, 18, 24, 25, 31, 41, 42, 48		Ground		
PWRDWN	37	I	Output enable for Y and \overline{Y}		
VDDQ	4, 11, 12, 15, 21, 28, 34, 38, 45		2.5-V Supply		
Y[0:9]	3, 5, 10, 20, 22, 27, 29, 39, 44, 46	0	Buffered output copies of input clock, CLK		
Y[0:9]	2, 6, 9, 19, 23, 26, 30, 40, 43, 47	0	Buffered output copies of input clock, CLK		

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{DDQ} AV _{DD}	0.5 V to 3.6 V
Input voltage range, VI (see Notes 1 and 2)	0.5 V to V _{DDQ} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)	–0.5 V to V _{DDQ} + 0.5 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DDQ}$)	±50 mA
Output clamp current, I_{OK} ($V_O < 0$ or $V_O > V_{DDQ}$)	±50 mA
Continuous output current, $I_O (V_O = 0 \text{ to } V_{DDQ})$	±50 mA
Continuous current to GND or V _{DDQ}	±100 mA
Package thermal impedance, θ_{JA} (see Note 3): DGG package	
Storage temperature range T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed. 2. This value is limited to 3.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

SCAS645 - AUGUST 2000

recommended operating conditions (see Note 4)

	MIN	TYP	MAX	UNIT			
Supply voltage, V _{DDQ} , AV _{DD}			2.3		2.7	V	
		CLK, FBIN, FBIN			V _{DDQ} /2-0.18	V	
	PWR	DWN	-0.3		0.7	v	
	CLK,	CLK, FBIN, FBIN	V _{DDQ} /2 + 0.18				
High level input voltage, VIH PWRD		DWN	1.7		V _{DDQ} + 0.3	v	
DC input signal voltage (see Note 5)	input signal voltage (see Note 5) -0.3				V _{DDQ}	V	
		CLK, FBIN	0.36		V _{DDQ} + 0.6	v	
Differential input signal voltage, v[D (see Note 0)	AC	CLK, FBIN	0.7	V _{DDQ} + 0.6			
Output differential cross-voltage, V_{OX} (see Note 7)			V _{DDQ} /2 - 0.2	⁷ DDQ ^{/2} - 0.2 V _{DDQ} ^{/2} V _{DDQ} ^{/2} + 0.2		V	
Input differential pair cross-voltage, V_{IX} (see Note 7)			V _{DDQ} /2 – 0.2		$V_{DDQ}/2 + 0.2$	V	
High-level output current, IOH			-12	mA			
Low-level output current, IOL			12	mA			
Input slew rate, SR		1		4	V/ns		
Operating free-air temperature, T _A			0		85	°C	

NOTES: 4. Unused inputs must be held high or low to prevent them from floating.

5. DC input signal voltage specifies the allowable dc execution of differential input.

6. Differentialinputsignalvoltagespecifiesthedifferentialvoltage|VTR-VCP|requiredforswitching,whereVTRisthetrueinputlevelandVCPisthe complementary input level (see Figure 3).

7. Differential cross-point voltage is expected to track variations of VCC and is the voltage at which the differential signals must be crossing.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST C	ONDITIONS	MIN	TYP†	MAX	UNIT
VIK	Input voltage	All inputs	V _{DDQ} = 2.3 V,	I _I = -18 mA			-1.2	V
VOH Hig	High lovel output voltage		V _{DDQ} = min to ma	V _{DDQ} -0.1			V	
		High-level output voltage		I _{OH} = -12 mA	1.7			v
Voi	Low-level output voltage		V _{DDQ} = min to ma	V_{DDQ} = min to max, I_{OL} = 1 mA			0.1	V
VOL	Low level output voltage		V _{DDQ} = 2.3 V,	I _{OL} = 12 mA			0.6	v
IOH	High-level output current		V _{DDQ} = 2.3 V,	V _O = 1 V	-18	-32		mA
I _{OL}	Low-level output current		V _{DDQ} = 2.3 V,	V _O = 1.2 V	26	35		mA
VO	Output voltage swing		For load condition	see Figure 3	1.1		V _{DDQ} -0.4	V
lj	Input current (CLK, FBIN	V _{DDQ} = 2.7 V,	$V_{I} = 0 V \text{ to } 2.7 V$			±10	μΑ
I _{OZ}	High-impedance-state output current		V _{DDQ} = 2.7 V,	V _O = V _{DDQ} or GND			±10	μΑ
IDDPD	Power down current on PD VDDQ + AVDD		CLK at 0 MHz; Σ of	f I _{DD} and AI _{DD}			TBD	μΑ
IDD	Dynamic current on V _{DDQ}		V _{CC} = 2.7 V, All outputs switchir environment, See I	$f_O = 167 \text{ MHz}$ ng 14 pF in 60 Ω Figure 3			TBD	mA
I(AVDD)	DD) Supply current on AVDD		$AV_{CC} = 2.7 V,$	f _O = 167 MHz		9	12	mA
CI	Input capacitance		$V_{CC} = 2.5 V$	$V_I = V_{CC} \text{ or } GND$		2		pF
CO	Output capacitance		V _{CC} = 2.5 V	$V_{O} = V_{CC}$ or GND		3		pF

[†] All typical values are at respective nominal V_{DDQ}.

[‡] The value of V_{OC} is expected to be |VTR + VCP|/2. In case of each clock directly terminated by a 120-Ω resistor, where VTR is the true input signal voltage and VCP is the complementary input signal voltage (see Figure 3).

SCAS645 - AUGUST 2000

timing requirements over recommended ranges of supply voltage and operating free-air temperature

	MIN	MAX	UNIT
Clock frequency	60	170	MHz
Input clock duty cycle	40%	60%	
Stabilization time [†] (PLL mode)		0.1	ms
Stabilization time [†] (Bypass mode)		30	ms

[†] Time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal. For phase lock to be obtained, a fixed-frequency, fixed-phase reference signal must be present at CLK. Until phase lock is obtained, the specifications for propagation delay, skew, and jitter parameters given in the switching characteristics table are not applicable. This parameter does not apply for input modulation under SSC application.

switching characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP‡	MAX	UNIT	
t _{PLH} §	Low to high level propagation delay time, see Figure 2	Test mode/CLK to any output		3.5		ns	
t _{PHL} §	High-to low level propagation delay time, see Figure 2	Test mode/CLK to any output		3.5		ns	
ten	Output enable time	PWRDWN to Y output		3		ns	
t _{dis}	Output disable time	PWRDWN to Y output		3		ns	
	litter (period) and Figure 6	66 MHz		MIN TYP‡ MAX 3.5 3.5 3.5 3.5 -75 -75 -75 -100 100 1 -100 100 100 100 100 100		ps	
^t jit(per)	Sitter (period), see Figure 6	100/133/167 MHz	-75		75	ps	
+	litter (avela to avela), and Figure 2	66 MHz					
^t (jit_cc)	Sitter (cycle-to-cycle), see Figure 3	100/133/167 MHz	-75		75	ps	
^t (jit_hper)	Half-period jitter, see Figure 7	100/133/167 MHz	-100		100	ps	
^t (sir_i)	Input clock slew rate, see Figure 8		1		4	V/ns	
t(sl_o)	Output clock slew rate, see Figures 1 and 8		1		2	V/ns	
t(phase)	Phase error, see Figure 4		-100		100	ps	
t(skew_o)¶	Output skew, see Figure 5				100	ps	
^t (skew_p) [¶]	Pulse skew				100	ps	
	Duty cycle [#]	66 MHz to 100 MHz	49.5%		50.5%		
		101 MHz to 167 MHz	49%		51%		
tr, tf	Output rise and fall times (20% – 80%)	Load: 120 Ω/4 pF				ps	

[‡] All typical values are at respective nominal V_{DDQ}.

§ Refers to transition of noninverting output.

 \P All differential output pins are terminated with 120 Ω / 14 pF

[#] While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle = t_{WH}/t_C, where the cycle time (t_C) decreases as the frequency goes up.

SCAS645 - AUGUST 2000

PARAMETER MEASUREMENT INFORMATION

Figure 1. IBIS Model Output Load

 $t(jit_cc) = t_c(n) - t_c(n+1)$

Figure 3. Cycle-to-Cycle Jitter

SCAS645 - AUGUST 2000

Figure 6. Period Jitter

SCAS645 - AUGUST 2000

Figure 8. Input and Output Slew Rates

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated