
SCBS721 - JULY 2000

- Buffered Inputs
- Noninverted Outputs
- Input/Output Isolation From V_{CC}
- Controlled Output Edge Rates
- 64-mA Output Sink Current
- Output Voltage Swing Limited to 3.7 V
- SCR Latch-Up-Resistant BiCMOS Process and Circuit Design
- Package Options Include Plastic Small-Outline (M) and Shrink Small-Outline (SM) Packages and Standard Plastic (E) DIP

description

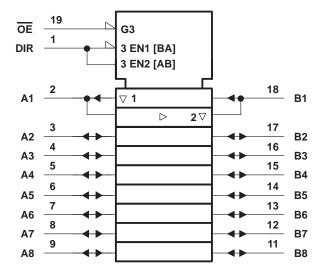
The CD74FCT245 is an octal bus transceiver with 3-state outputs using a small-geometry BiCMOS technology. The output stages are a combination of bipolar and CMOS transistors that limit the output high level to two diode drops below V_{CC} . This resultant lowering of output swing (0 V to 3.7 V) reduces the power-bus ringing [a source of electromagnetic interference (EMI)] and minimizes V_{CC} bounce and ground bounce and their effects during simultaneous output switching. The output configuration also enhances switching speed and is capable of sinking 64 mA.

The CD74FCT245 allows data transmission from the A bus to the B bus or from the B bus to the A bus, depending upon the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.

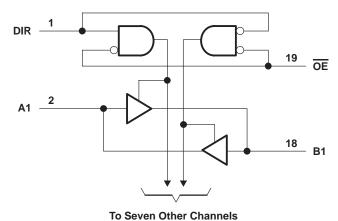
To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

The CD74FCT245 is characterized for operation from 0°C to 70°C.

FUNCTION TABLE


INP	UTS	OPERATION		
OE	DIR	OPERATION		
L	L	B data to A bus		
L	Н	A data to B bus		
Н	X	Isolation		

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



logic symbol†

 $[\]ensuremath{^{\dagger}}$ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SCBS721 - JULY 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

DC supply voltage range, V _{CC}	0.5 V to 6 V
DC input clamp current, I_{IK} ($V_I < -0.5 \text{ V}$)	–20 mA
DC output clamp current, I _{OK} (V _O < -0.5 V)	
DC output sink current per output pin, I _{OL})	70 mA
DC output source current per output pin, I _{OH})	
Continuous current through V _{CC} , I _{CC})	
Continuous current through GND)	528 mA
Package thermal impedance, θ _{JA} (see Note 1): E package)	69°C/W
M package)	58°C/W
SM package)	70°C/W
Storage temperature range, T _{stq})	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions (see Note 2)

		MIN	MAX	UNIT
Vcc	Supply voltage	4.75	5.25	V
VIH	High-level input voltage	2		V
V _{IL}	Low-level input voltage		0.8	V
٧ _I	Input voltage	0	VCC	V
Vo	Output voltage	0	VCC	V
ІОН	High-level output current		-15	mA
loL	Low-level output current		64	mA
Δt/Δν	Input transition rise or fall rate	0	10	ns/V
TA	Operating free-air temperature	0	70	°C

NOTE 2: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		T _A = 25°C		MIN	MAX	UNIT
PARAMETER	TEST CONDITIONS	vcc	MIN	MAX	IVIIIV	WAX	UNII
VIK	$I_{I} = -18 \text{ mA}$	4.75 V		-1.2		-1.2	V
Voн	$I_{OH} = -15 \text{ mA}$	4.75 V	2.4		2.4		V
VoL	I _{OL} = 64 mA	4.75 V		0.55		0.55	V
lj	$V_I = V_{CC}$ or GND	5.25 V		±0.1		±1	μΑ
loz	$V_O = V_{CC}$ or GND	5.25 V		±0.5		±10	μΑ
los [‡]	$V_I = V_{CC}$ or GND, $V_O = 0$	5.25 V	-60		-60		mA
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.25 V		8		80	μΑ
ΔlCC§	One input at 3.4 V, Other inputs at V _{CC} or GND	5.25 V		1.6		1.6	mA
Ci	$V_I = V_{CC}$ or GND			10		10	pF
Co	$V_O = V_{CC}$ or GND			15		15	pF

[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed 100 ms.

[§] This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or VCC.

CD74FCT245 BiCMOS OCTAL BUS TRANSCEIVER WITH 3-STATE OUTPUTS

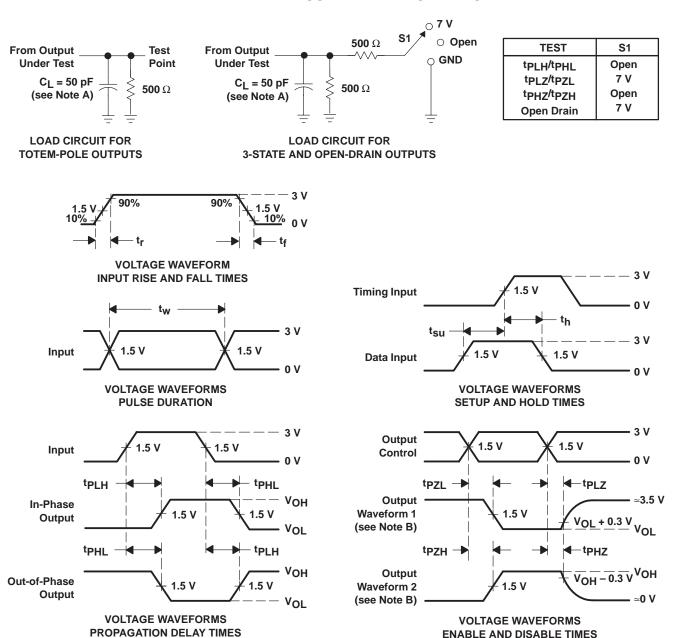
SCBS721 - JULY 2000

switching characteristics over recommended operating conditions (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	T _A = 25°C	MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	TYP] IVIIIN		UNIT
^t pd	A or B	B or A	5	1.5	7	ns
t _{en}	ŌĒ	A or B	6	1.5	9.5	ns
^t dis	ŌĒ	A or B	6	1.5	7.5	ns

noise characteristics, V_{CC} = 5 V, C_L = 50 pF, T_A = 25°C

PARAMETER		MIN	TYP	MAX	UNIT
V _{OL(P)}	Quiet output, maximum dynamic V _{OL}		1		V
VOH(V)	Quiet output, minimum dynamic VOH		0.5		V
VIH(D)	High-level dynamic input voltage	2			V
V _{IL(D)}	Low-level dynamic input voltage			0.8	V


operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST C	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	49	pF

LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, t_f and $t_f = 2.5$ ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. tpl 7 and tpH7 are the same as tdis.

INVERTING AND NONINVERTING OUTPUTS

- F. tpzL and tpzH are the same as ten.
- G. tpHL and tpLH are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated