SCES098D - MAY 1997 - REVISED FEBRUARY 1999

			– REVISE
● Member of the Texas Instruments Widebus™ Family	DGG PAC (TOP V		
EPIC [™] (Enhanced-Performance Implanted 4Y1 CMOS) Submicron Process 3Y1] 1Y2] 2Y2
ESD Protection Exceeds 2000 V Per GND GND	4	62	GND
llaing Maahina Madal (C - 200 pE D - 0)	[] 4 [] 5] 3Y2] 4Y2
Latch-Up Performance Exceeds 250 mA Per	_] 412] V _{CC}
	[7] 1Y3
Bus Hold on Data Inputs Eliminates the GND			2Y3
	[9] GND
	10		3Y3
	1 1] 4Y3
	12		GND
	13		V _{CC}
] GND] 1Y4
	15 16] 1 ¥ 4] 2 Y 4
	17] 214] 3Y4
device is ideal for use in applications in which a	18] 4Y4
single address bus is driving four separate	19		
memory locations. The SN74ALVCH16832 can	20] 1Y5
be used as a buffer or a register, depending on the	21	44	2Y5
logic level of the select (SEL) input.	22] V _{CC}
When SEL is a logic high, the device is in the buffer GND	23	42] 3Y5
	24		4Y5
	25] GND
	26] GND
	[27 [28] V _{CC}] 1Y6

D-type flip-flop. On the positive transition of the clock (CLK) input, data at the A inputs is stored in the internal registers. OE operates the same as in the buffer mode.

When \overline{OE} is a logic low, the outputs are in a normal logic state (high or low logic level). When \overline{OE} is a logic high, the outputs are in the high-impedance state.

NC – No internal connection

2Y6

🛛 GND

3Y6

36

35

34

33 **4**Y6

3Y7 29

32

GND 1 30

2Y7 🛛 31

1Y7

Neither \overline{SEL} nor \overline{OE} affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

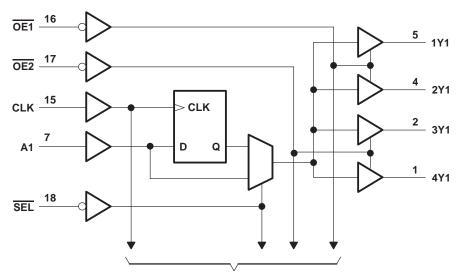
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN74ALVCH16832 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC and Widebus are trademarks of Texas Instruments Incorporated.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.


Copyright © 1999, Texas Instruments Incorporated

SCES098D - MAY 1997 - REVISED FEBRUARY 1999

FUNCTION TABLE

	INP	OUTPUT							
OE	SEL	CLK	Α	Y					
Н	Х	Х	Х	Z					
L	Н	Х	L	L					
L	Н	Х	Н	н					
L	L	\uparrow	L	L					
L	L	\uparrow	Н	н					

logic diagram (positive logic)

To Six Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	
Input voltage range, V _I (see Note 1)	–0.5 V to 4.6 V
Output voltage range, V _O (see Notes 1 and 2)	–0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through each V _{CC} or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3)	106°C/W
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. This value is limited to 4.6 V maximum.

3. The package thermal impedance is calculated in accordance with JESD 51.

SN74ALVCH16832 **1-TO-4 ADDRESS REGISTER/DRIVER** WITH 3-STATE OUTPUTS SCES098D – MAY 1997 – REVISED FEBRUARY 1999

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
VCC	Supply voltage		1.65	3.6	V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$		
V_{IH}	H High-level input voltage L Low-level input voltage Input voltage Output voltage O Output voltage OH High-level output current OL Low-level output current	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
VIL	High-level input voltage Low-level input voltage Input voltage Output voltage Output voltage High-level output current Low-level output current Low-level output current Δv Input transition rise or fall rate	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V
		age 1.65 3.6 nput voltage $V_{CC} = 1.65 \lor to 1.95 \lor$ $0.65 \times V_{CC}$ $V_{CC} = 2.3 \lor to 2.7 \lor$ 1.7 $V_{CC} = 2.7 \lor to 3.6 \lor$ 2 put voltage $V_{CC} = 1.65 \lor to 1.95 \lor$ $0.35 \times V_{CC}$ put voltage $V_{CC} = 1.65 \lor to 1.95 \lor$ $0.35 \times V_{CC}$ put voltage $V_{CC} = 2.3 \lor to 2.7 \lor$ 0.7 $V_{CC} = 2.7 \lor to 3.6 \lor$ 0.8 e 0 V_{CC} age 0 V_{CC} utput current $V_{CC} = 1.65 \lor$ -4 $V_{CC} = 2.3 \lor$ -12 $V_{CC} = 2.7 \lor$ utput current $V_{CC} = 1.65 \lor$ -4 $V_{CC} = 3 \lor$ -24 $V_{CC} = 2.3 \lor$ $V_{CC} = 2.3 \lor$ -12 $V_{CC} = 2.3 \lor$ utput current $V_{CC} = 2.3 \lor$ -12 $V_{CC} = 2.3 \lor$ -12 $V_{CC} = 2.3 \lor$ utput current $V_{CC} = 3 \lor$ -24 $V_{CC} = 2.3 \lor$	0.8		
VI	Input voltage		0	VCC	V
VO	Output voltage		0	VCC	V
		V _{CC} = 1.65 V		-4	
lau		$V_{CC} = 2.3 V$		-12	~ ^
$\begin{array}{c c} \mbox{V}_{\mbox{IH}} & \mbox{High-level input voltage} & \begin{tabular}{ c c c c c } \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \ to \ 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \ to \ 3.6 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 1.65 \ V \ to \ 1.95 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \ to \ 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \ to \ 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \ to \ 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \ to \ 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \ to \ 3.6 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \ to \ 3.6 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \ to \ 3.6 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \ to \ 3.6 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.7 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 3 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 3 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 3 \ V \\ \hline \mbox{V}_{\mbox{IC}} & = 2.3 \ V \\ \hline \mbox{V}_{\m$		-12	mA		
		$V_{CC} = 3 V$		3.6 $0.35 \times V_{CC}$ 0.7 0.8 V_{CC} V_{CC} -4 -12 -12 -24 4 12 12 12 24 10	
		V _{CC} = 1.65 V		4	
1		$V_{CC} = 2.3 V$		12	
IOL	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
$\Delta t/\Delta v$	Input transition rise or fall rate			10	ns/V
TA	Operating free-air temperature		-40	85	°C

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SN74ALVCH16832 **1-TO-4 ADDRESS REGISTER/DRIVER** WITH 3-STATE OUTPUTS SCES098D - MAY 1997 - REVISED FEBRUARY 1999

PAR	AMETER	TEST CO	ONDITIONS	Vcc	MIN	түр†	MAX	UNIT	
		I _{OH} = –100 μA		1.65 V to 3.6 V	V _{CC} -0.	2			
		I _{OH} = -4 mA		1.65 V	1.2				
V _{OH}	I _{OH} = -6 mA		2.3 V	2					
			2.3 V	1.7			V		
		I _{OH} = -12 mA		2.7 V	2.2				
				3 V	2.4				
V _{OL}		I _{OH} = -24 mA		3 V	2				
		I _{OL} = 100 μA		1.65 V to 3.6 V			0.2		
		I _{OL} = 4 mA		1.65 V			0.45		
V _{OL}	I _{OL} = 6 mA	2.3 V			0.4	v			
	la. 10 mA	2.3 V			0.7				
	I _{OL} = 12 mA		2.7 V			0.4			
		I _{OL} = 24 mA	3 V			0.55			
lj –		V _I = V _{CC} or GND		3.6 V			±5	μΑ	
		VI = 0.58 V	1.65 V	25					
		V _I = 1.07 V	1.65 V	-25					
		V _I = 0.7 V	2.3 V	45					
II(hold)		V _I = 1.7 V	2.3 V	-45			μA		
. ,		V _I = 0.8 V		3 V	75			1	
		V _I = 2 V		3 V	-75			1	
		V _I = 0 to 3.6 V‡	3.6 V			±500			
I _{OZ}		$V_{O} = V_{CC}$ or GND		3.6 V			±10	μΑ	
ICC		V _I = V _{CC} or GND,	IO = 0	3.6 V			40	μΑ	
Δlcc		One input at V _{CC} – 0.6 V,	Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μΑ	
	Control inputs					4.5	4.5		
Ci	Data inputs	$V_{I} = V_{CC}$ or GND	3.3 V		5		pF		
Co	Outputs	$V_{O} = V_{CC}$ or GND		3.3 V		7.5		pF	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

[†] All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

[‡]This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

		V _{CC} = 1.8 V		V _{CC} = ± 0.2	2.5 V 2 V	V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		§		150		150		150	MHz
tw	Pulse duration, CLK high or low	§		3.3		3.3		3.3		ns
t _{su}	Setup time, A data before CLK [↑]	§		2		2		1.6		ns
th	Hold time, A data after CLK↑	§		0.7		0.5		1.1		ns

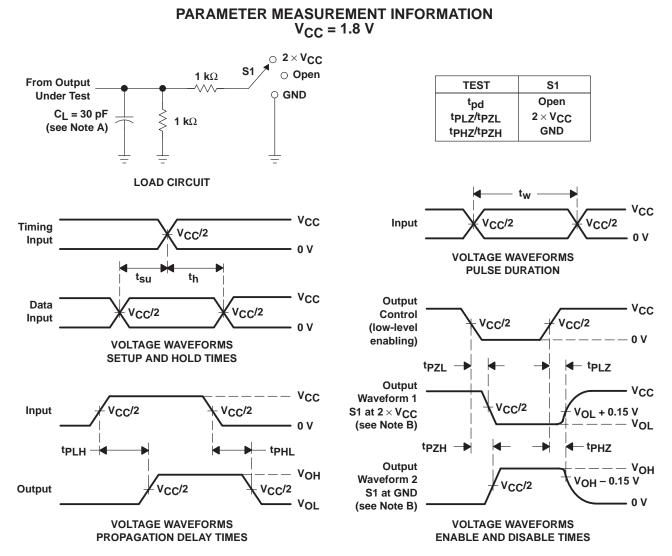
§ This information was not available at the time of publication.

SN74ALVCH16832 **1-TO-4 ADDRESS REGISTER/DRIVER** WITH 3-STATE OUTPUTS SCES098D – MAY 1997 – REVISED FEBRUARY 1999

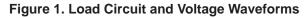
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3)

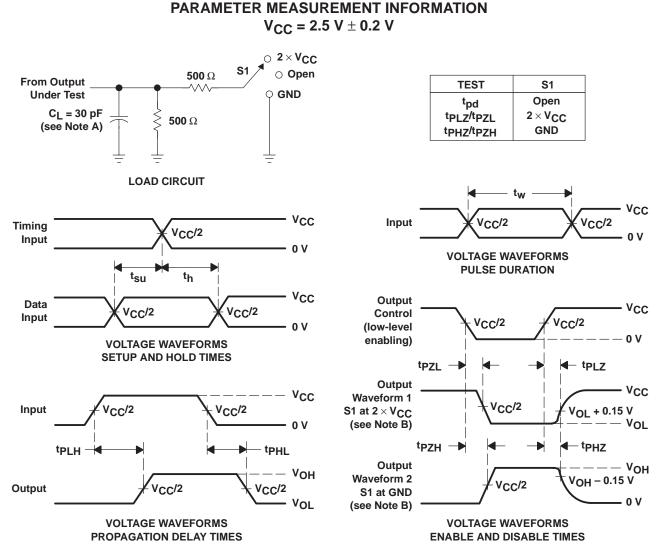
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} =	1.8 V	۲ <mark>0.2</mark> × V _{CC} =	$\begin{array}{c c} v_{CC} = 2.5 \text{ V} \\ \pm 0.2 \text{ V} \end{array} V_{CC} = 2.7 \text{ V} \qquad \begin{array}{c} v_{CC} = 3.3 \\ \pm 0.3 \text{ V} \end{array}$		3.3 V 3 V	UNIT		
		(001-01)	MIN	TYP	MIN	MAX	MIN	MAX	MIN	MAX	
fmax			†		150		150		150		MHz
	A			†	1.2	4		4.1	1.6	3.6	
^t pd	CLK	Y		†	1.1	4.5		4.4	1.5	3.9	ns
	SEL			†	1.3	5.2		5.2	1.7	4.4	
ten	OE	Y		†	1.1	5.1		5	1.2	4.3	ns
^t dis	OE	Y		†	1.4	5.5		4.7	1.6	4.5	ns

[†] This information was not available at the time of publication.

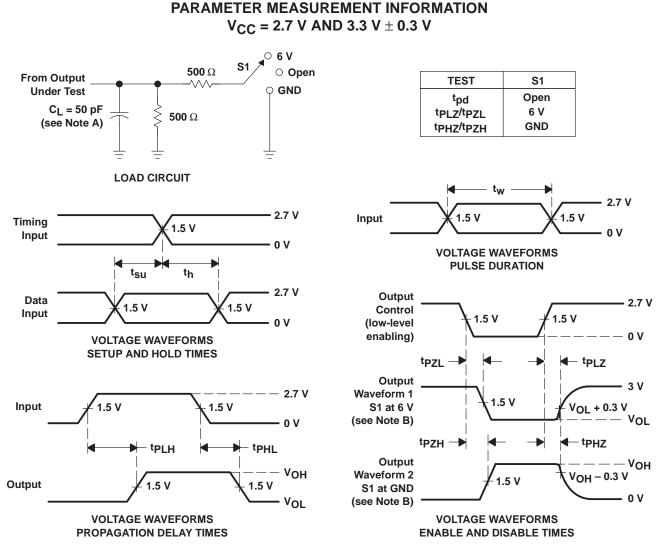

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		DADAMETED				TEST CONDITIONS		V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
		1231 00		TYP	TYP	TYP	UNIT			
	Power dissipation capacitance	All outputs enabled	C: 0	f = 10 MHz	†	119	132	рF		
C _{pd}	per register/driver	All outputs disabled	C _L = 0,		†	22	25	рг		


[†] This information was not available at the time of publication.

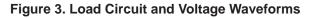

SCES098D - MAY 1997 - REVISED FEBRUARY 1999

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq 2$ ns, $t_{f} \leq 2$ D. The outputs are measured one at a time with one transition per measurement.
 - E. tpl γ and tpH γ are the same as t_{dis}.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis}
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tPLH and tPHL are the same as tpd.



- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_O = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.
 - D. The outputs are measured one at a time with one trai
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. tPLH and tPHL are the same as tpd.

Figure 2. Load Circuit and Voltage Waveforms



SCES098D - MAY 1997 - REVISED FEBRUARY 1999

NOTES: A. CI includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_f \leq 2.5 ns. t_f \leq 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd}.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated