DESIGN GOAL

Advanced ULTTL Output Circuitry

Eliminates Switching Noise in

Packaged in Plastic Fine-Pitch Ball-Grid-Array Package

Differential CLK Signal

Unterminated Line

- Member of the Texas Instruments *Widebus*™ Family
- Supports SSTL_2 Signal Data Inputs
- Supports LVTTL Switching Levels on the RESET Pin
- Flow-Through Architecture Optimizes PCB Layout

description

This 26-bit registered buffer is designed for 2.3-V to 2.7-V V_{CC} operation and SSTL_2 input and unterminated LVCMOS-output applications.

•

Data flow from A to Y is controlled by differential clock (CLK, \overline{CLK}) inputs and the LVTTL reset (\overline{RESET}) input. Data are triggered on the positive edge of the positive clock (CLK). The negative clock (\overline{CLK}) is used to maintain noise margins. When \overline{RESET} is low, all registers are reset, and all outputs are low.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

The SN74SSTL32867 is characterized for operation from 0°C to 70°C.

GKE PACKAGE (TOP VIEW)

terminal assignments

	1	2	3	4	5	6
Α	A1	Vcc	GND	V _{DDQ}	Y1	Y2
в	A3	A2	V _{REF}	GND	Y3	Y4
С	A5	A4	NC	GND	Y5	Y6
D	A7	A6	GND	V _{DDQ}	Y7	Y8
Е	A9	A8	V _{CC}	GND	Y9	V _{DDQ}
F	A11	A10	GND	V _{DDQ}	Y10	GND
G	A13	A12	V _{CC}	V _{DDQ}	Y12	Y11
н	A15	A14	GND	GND	GND	Y13
J	CLK	NC	GND	GND	GND	Y14
κ	CLK	RESET	V _{CC}	V _{DDQ}	Y15	Y16
L	A16	A17	GND	V _{DDQ}	Y17	GND
М	A18	A19	V _{CC}	GND	Y18	V _{DDQ}
Ν	A20	A21	GND	V _{DDQ}	Y20	Y19
Ρ	A22	A23	NC	GND	Y22	Y21
R	A24	A25	NC	GND	Y24	Y23
т	A26	VCC	GND	VDDQ	Y26	Y25

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

Copyright © 1999, Texas Instruments Incorporated

SN74SSTL32867 26-BIT REGISTERED BUFFER WITH SSTL_2 INPUTS AND LVCMOS OUTPUTS

SCES240A - APRIL 1999 - REVISED MAY 1999

FUNCTION TABLE							
	OUTPUT						
RESET	CLK	CLK	Α	Y			
Н	\uparrow	\downarrow	Н	Н			
Н	\uparrow	\downarrow	L	L			
Н	L or H	L or H	Х	Y ₀			
L	Х	Х	Х	L			

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} or V _{DDQ}	
Input voltage range, V _I (see Note 1)	$\dots \dots \dots -0.5$ V to V _{CC} + 0.5 V
Output voltage range, V _O (see Notes 1 and 2)	–0.5 V to V _{DDQ} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, $I_O (V_O = 0 \text{ to } V_{DDQ})$	±50 mA
Continuous current through each V _{CC} , V _{DDQ} , or GND	±100 mA
Package thermal impedance, θ_{JA} (see Note 3)	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. Current flows only when the output is in the high state and $V_O > V_{DDQ}$.

3. The package thermal impedance is calculated in accordance with JESD 51.

SN74SSTL32867 **26-BIT REGISTERED BUFFER** WITH SSTL 2 INPUTS AND LVCMOS OUTPUTS

SCES240A - APRIL 1999 - REVISED MAY 1999

recommended operating conditions (see Note 4)

			MIN	NOM	MAX	UNIT	
VCC	Supply voltage		V _{DDQ}		2.7	V	
VDDQ	Output supply voltage		2.3		2.7	V	
VREF	Reference voltage (VREF = VDDQ/2)	1.15	1.25	1.35	V		
VTT	Termination voltage	V _{REF} -40mV	VREF	VREF+40mV	V		
VI	Input voltage		0		VCC	V	
VIH	AC high-level input voltage	Data input	V _{REF} +350mV				
VIL	AC low-level input voltage	Data input			VREF-350mV		
VIH	DC high-level input voltage	Data input	V _{REF} +180mV				
VIL	DC low-level input voltage	Data input			V _{REF} -180mV	V	
VIH	High-level input voltage	RESET	1.7			V	
VIL	Low-level input voltage	RESET			0.7	V	
VICR	Common-mode input voltage range	CLK, CLK	0.97		1.53	V	
VI(PP)	Peak-to-peak input voltage	CLK, CLK	360			mV	
ЮН	High-level output current	-			-8		
IOL	Low-level output current				8	mA	
TA	Operating free-air temperature		0		70	°C	

NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		Vcc	MIN	TYP [†]	MAX	UNIT
VIK	V _{IK} I _I = -18 mA		2.3 V			-1.2	V	
		I _{OH} = -100 μA		2.3 V to 2.7 V	V _{CC} -0.	.2		
∨он		I _{OH} = -4 mA		221/	2			V
		I _{OH} = –8 mA		2.5 V	1.7			
		l _{OL} = 100 μA		2.3 V to 2.7 V			0.2	
VOL		I _{OL} = 4 mA		231/			0.3	V
	-	I _{OL} = 8 mA		2.5 V			0.6	
	Data inputs	V _I = 1.7 V or 0.8V	V _{REF} = 1.15 V or 1.35 V	271/			±5	
	RESET input	V _I = 2.7 V or 0		2.7 V			±5	
li li	CLK, CLK	V _I = 1.7 V or 0.8V	1/2 = -1.15 / 0r.1.25 / 0.000 / 0.000 / 0.0000 / 0.0000 / 0.0000 / 0.0000 / 0.0000	2.7 V			±5	μΑ
		V _I = 2.7 V or 0	VREF = 1.15 V 01 1.55 V				±5]
	VREF	V _{REF} = 1.15 V or 1.35 V		2.7 V			±5	
	-	V _I = 1.7 V or 0.8 V		271				~ ^
'CC	V _I = 2.7 V or 0		10 = 0	2.7 V				mA
C.	RESET input	V _I = 1.7 V or 0.8 V		251				рĒ
	Data inputs			2.5 V1				ρi
Co	Outputs	V _O = 1.7 V or 0.8 V		2.5 V†				pF
	1			1				

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}C$.

SN74SSTL32867 26-BIT REGISTERED BUFFER WITH SSTL 2 INPUTS AND LVCMOS OUTPUTS

SCES240A - APRIL 1999 - REVISED MAY 1999

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

				V_{CC} = 2.5 V \pm 0.2 V		
			MIN	TYP	MAX	UNIT
fclock	Clock frequency		200			MHz
tw	Pulse duration, CLK, CLK high or low		1.6	0.8		ns
t _{su}	Satur time	Data before CLK \uparrow , $\overline{\text{CLK}}\downarrow$	1.1	0.5		
	RESET high before CLK↑, CLK↓		1.1	0.5		115
t _h	Hold time, data after CLK \uparrow , $\overline{CLK}\downarrow$		0.5	0		ns

switching characteristics over recommended operating free-air temperature range, $V_{REF} = V_{DDQ}/2$ and $C_L = 10 \text{ pF}$ (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	V_{CC} = 2.5 V \pm 0.2 V			
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	
fmax					200	MHz
^t pd	CLK and CLK	Y		1.9	2.8	ns
^t PHL	RESET	Y		2.2	3.2	ns

switching characteristics over recommended operating free-air temperature range, $V_{REF} = V_{DDQ}/2$ and $C_L = 30 \text{ pF}$ (unless otherwise noted) (see Figure 1)

DADAMETED	FROM	то	V_{CC} = 2.5 V \pm 0.2 V			LINUT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	
f _{max}					200	MHz
^t pd	CLK and CLK	Y		2.6	3.8	ns
^t PHL	RESET	Y		2.9	4.4	ns

SN74SSTL32867 26-BIT REGISTERED BUFFER WITH SSTL_2 INPUTS AND LVCMOS OUTPUTS SCES240A – APRIL 1999 – REVISED MAY 1999

 † VREF = VDDQ/2

- $V_{IH} = V_{REF}$ + 350mV (ac voltage levels) for SSTL inputs. V_{IH} = V_{CC} for LVTTL inputs.
- \$ VIL = VREF-350mV (ac voltage levels) for SSTL inputs. VIL = GND for LVTTL inputs.
- NOTES: A. CL includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 1.25 ns/V, t_f \leq 1.25 ns/V.
 - C. The outputs are measured one at a time with one transition per measurement.
 - D. t_{PLH} and t_{PHL} are the same as t_{pd} .

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated