
SN74GTLPH306 8-BIT LVTTL-TO-GTL+ BUS TRANSCEIVER

SCES284A - OCTOBER 1999 - REVISED DECEMBER 1999

- Bidirectional Interface Between GTL+ Signal Levels and LVTTL Logic Levels
- Equivalent to '245 Function
- LVTTL Interfaces Are 5-V Tolerant
- Medium-Drive GTL+ Outputs (50 mA)
- LVTTL Outputs (-24 mA/24 mA)
- GTL+ Rise and Fall Times Designed for Optimal Data-Transfer Rate and Signal Integrity
- I_{off} and Power-Up 3-State Support Hot Insertion
- Bus Hold on A-Port Data Inputs
- Package Options Include Plastic Small-Outline (DW), Thin Very Small-Outline (DGV), and Thin Shrink Small-Outline (PW) Packages

description

The SN74GTLPH306 is a medium-drive 8-bit bus transceiver that provides LVTTL-to-GTL+ and GTL+-to-LVTTL signal-level translation. It is equivalent to the '245 function. The device provides a high-speed interface between cards operating at LVTTL-logic levels and a backplane operating at GTL+-signal levels. High-speed (about two times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, and output edge control (OEC™). Improved GTLP OEC circuits minimize bus settling time and have been designed and tested using several backplane models. The medium drive is suitable for driving double-terminated backplanes.

GTL+ is the Texas Instruments derivative of the Gunning transceiver logic (GTL) JEDEC standard JESD 8-3. The AC specification of the SN74GTLPH306 is given only at the preferred higher noise margin GTL+, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTL+ ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels.

Normally, the B port operates at GTL or GTL+ levels, while the A-port and control inputs are compatible with LVTTL logic levels and are 5-V tolerant. V_{REF} is the reference input voltage for the B port.

This device is fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

Active bus-hold circuitry holds unused or undriven LVTTL inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, the output-enable (\overline{OE}) input should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

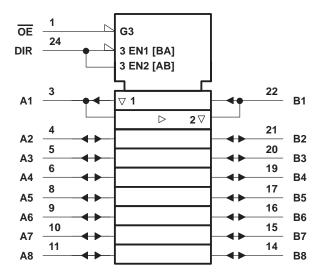
The SN74GTLPH306 is characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

OEC is a trademark of Texas Instruments Incorporated.

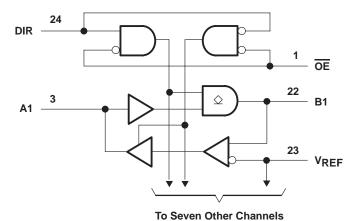
functional description

The SN74GTLPH306 is an 8-bit bus transceiver, providing standard '245 functionality, and is designed for asynchronous communication between data buses. The device transmits data from the A port to the B port or from the B port to the A port, depending on the logic level at the direction-control (DIR) input. \overline{OE} can be used to disable the device so the buses are effectively isolated. Data polarity is noninverting.


For A-to-B data flow, when \overline{OE} is low and DIR is high, the B outputs take on the logic value of the A inputs. When \overline{OE} is high, the outputs are in the high-impedance state.

Data flow for B to A is similar to that for A to B, but \overline{OE} is low and DIR is low.

FUNCTION TABLE


INPUTS		OUTPUT	MODE		
OE	DIR	001701	WIODE		
L	L	B data to A port	Transparent		
L	Н	A data to B port	Transparent		
Н	X	Z	Isolation		

logic symbol†

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} –0.5 V to 7 V	1
Input voltage range, V _I (see Note 1): A-port and control inputs	
B port and V _{REF}	1
Voltage range applied to any output in the high-impedance or power-off state, VO	
(see Note 1): A port	/
B port	
Voltage range applied to any output in the high or low state, VO	
(see Note 1): A port—0.5 V to V _{CC} + 0.5 V	1
B port	
Current into any output in the low state, IO: A port	
B port 100 mA	
Current into any A-port output in the high state, IO (see Note 2)	
Continuous current through each V _{CC} or GND±100 mA	
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Package thermal impedance, θ _{JA} (see Note 3): DGV package	
DW package 46°C/W	/
PW package 88°C/W	/
Storage temperature range, T _{stq} –65°C to 150°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
 - 3. The package thermal impedance is calculated in accordance with JESD 51.

SCES284A - OCTOBER 1999 - REVISED DECEMBER 1999

recommended operating conditions (see Notes 4 through 6)

			MIN	NOM	MAX	UNIT	
VCC	Supply voltage		3.15	3.3	3.45	V	
\/	Termination voltage	GTL	1.14	1.2	1.26	V	
VTT	Termination voltage	GTL+	1.35	1.5	1.65	V	
\/===	Supply voltage	GTL	0.74 0.8	0.8	0.87	V	
VREF	Зарріў Уонаде	GTL+	0.87	1	1.1	V	
VI	Input voltage	B port		VTT	V		
VI	iiiput voitage	Except B port			VCC	V	
\/	High lovel input voltage	B port	V _{REF} +0.05			V	
VIH	High-level input voltage	Except B port	2				
\/	Low-level input voltage	B port			V _{REF} -0.05	V	
VIL	Low-level input voltage	Except B port			0.8	V	
ΙΙΚ	Input clamp current				-18	mA	
ЮН	High-level output current	A port			-24	mA	
la	Low lovel output ourront	A port			24	mA	
lOL	Low-level output current	B port			50	IIIA	
TA	Operating free-air temperature	-	-40		85	°C	

NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

- 5. Normal connection sequence is GND first and $V_{CC} = 3.3 \text{ V}$, I/O, control inputs, V_{TT} and V_{REF} (any order) last.
- 6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances as long as they do not exceed the DC absolute I_{OL} ratings. Similarly, V_{REF} can be adjusted to optimize noise margins, but normally is 2/3 V_{TT}.

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range for GTL+ (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT
VIK		V _{CC} = 3.15 V,	I _I = -18 mA			-1.2	V
		V _{CC} = 3.15 V to 3.45 V,	I _{OH} = -100 μA	V _{CC} -0.2			
Vон	A port A port A port B port Control inputs A port BHL A port BHL A port BHLO A port BHLO A port BHLO A port BHLO A port CC A or B port CI Control inputs A port A port A port A port BHLO A port A port	Voc = 3 15 V	I _{OH} = -12 mA	2.4			V
		VCC = 3.13 V	$I_{OH} = -24 \text{ mA}$	V _{CC} -0.2 2.4 2 75 -75			
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	I _{OL} = 100 μA			0.2	
	A port	$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V,}$ $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V,}$ $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V,}$ $V_{CC} = 3.15 \text{ V}$ $V_{CC} = 3.15 \text{ V}$ $V_{CC} = 3.45 \text{ V,}$	$I_{OL} = 12 \text{ mA}$			0.4	
V_{OL}			$I_{OL} = 24 \text{ mA}$			0.5	V
	B nort	Voc = 3.15 V	$I_{OL} = 40 \text{ mA}$			0.4	
	Броп	VCC = 3.13 V	$I_{OL} = 50 \text{ mA}$			0.55	
	B port	$V_{CC} = 3.45 \text{ V},$	$V_{ } = 0 \text{ to } 1.5 \text{ V}$			±5	
II [‡]	Control inputs	V00 - 3 45 V	V _I = 0 or 5.5 V			±5	μΑ
	A port	VCC = 3.43 V,	V = 0 01 3.5 V			±20	
I _{BHL} §	A port	$V_{CC} = 3.15 V,$	V _I = 0.8 V	75			μΑ
IBHH	A port	$V_{CC} = 3.15 \text{ V},$	V _I = 2 V	-75			μΑ
IBHLO#	A port	$V_{CC} = 3.45 \text{ V},$	$V_I = 0$ to V_{CC}			500	μΑ
I _{BHHO}	A port	$V_{CC} = 3.45 \text{ V},$	$V_I = 0$ to V_{CC}			-500	μΑ
		$V_{CC} = 3.45 \text{ V, } I_{C} = 0.$	Outputs high		7	18	
ICC	A or B port	V _I (A-port or control input) = V _{CC} or GND	Outputs low		8	20	mA
		V _I (B port) = V _{TT} or GND	Outputs disabled		8	20	
ΔlCC☆		V _{CC} = 3.45 V, One A-port or control input at Other A-port or control inputs at V _{CC} or GNE				1.5	mA
Ci	Control inputs	V _I = 3.15 V or 0					pF
C.	A port	V _O = 3.15 V or 0					"F
C _{io}	B port	V _O = 1.5 V or 0					pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			MAX	UNIT
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to 5.5 V			100	μΑ
lozpu	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_0 = 0.5 \text{ V to 3 V},$	OE = 0		±100	μΑ
lozpd	$V_{CC} = 1.5 \text{ V to } 0,$	$V_0 = 0.5 \text{ V to 3 V},$	OE = 0		±100	μΑ

hot-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS			UNIT
loff	$V_{CC} = 0$,	V_I or $V_O = 0$ to 1.5 V		100	μА
lozpu	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_0 = 0.5 \text{ V to } 1.5 \text{ V},$	OE = 0	±100	μΑ
lozpd	$V_{CC} = 1.5 \text{ V to } 0,$	$V_O = 0.5 \text{ V to } 1.5 \text{ V},$	OE = 0	±100	μА

[‡] For I/O ports, the parameter I_I includes the off-state output leakage current.

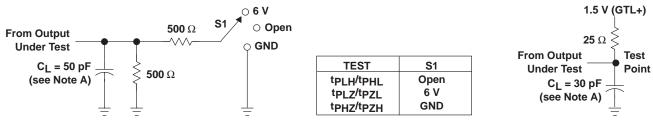
[§] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL}max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL}max.

The bus-hold circuit can source at least the minimum high sustaining current at V_{IH}min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH}min.

[#] An external driver must source at least I_{BHLO} to switch this node from low to high.

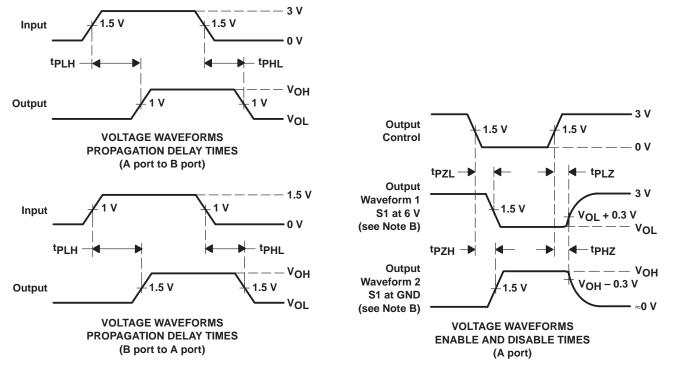
An external driver must sink at least IBHHO to switch this node from high to low.

[★]This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.


SCES284A - OCTOBER 1999 - REVISED DECEMBER 1999

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTL+ (see Figure 1)

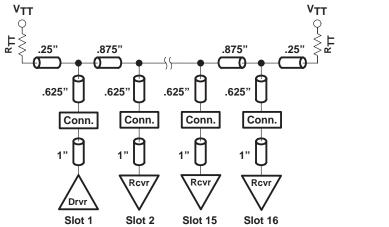
PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN T	гүрт	MAX	UNIT
t _{PHL}	А	В				ns
t _{PLH}	ζ	В				115
t _{en}	ŌĒ	В				ns
^t dis)E	Б				113
t _r	Rise time, B outputs (20% to 80%)					ns
tf	Fall time, B outputs (80% to 20%)					ns
t _r	Rise time, A outputs (10% to 90%)					ns
tf	Fall time, A outputs (90% to 10%)					ns
t _{PHL}	В	А				ns
t _{PLH}	ט	A				119
t _{en}	ŌĒ	А				ns
^t dis	ÖL	^				113


 $[\]dagger$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

PARAMETER MEASUREMENT INFORMATION

LOAD CIRCUIT FOR A OUTPUTS

LOAD CIRCUIT FOR B OUTPUTS


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, slew rate \leq 1 V/ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

This data sheet is specified for and tested to the lump load shown in Figure 1. However, the designer probably uses this GTLP device in a distributed load like that shown in Figure 2, in which actual B-port backplane switching characteristics are different. Therefore, the device is modeled as shown in Figure 3, which very closely matches the results obtained using Figure 2. Switching characteristics based on Figure 3 more closely match actual backplane design requirements.

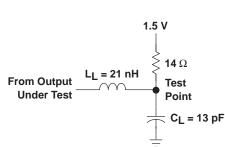


Figure 2. Test Backplane Model

Figure 3. Distributed-Load Circuit for B Outputs

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$ for GTL+ (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	MIN TYP†	MAX	UNIT
t _{PHL}	tPHL A	В			ne
^t PLH	A	В			ns
t _{en}	OE	В			ns
t _{dis}	OE .	В			113
t _r	Rise time, B outputs (20% to 80%)				ns
t _f	Fall time, (80% to				ns

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated