SCES333 - APRIL 2000

- State-of-the-Art Advanced BiCMOS
 Technology (ABT) Widebus™ Design for
 2.5-V and 3.3-V Operation and Low
 Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- High Drive (-24/24 mA at 2.5-V and -32/64 mA at 3.3-V V_{CC})
- I_{off} and Power-Up 3-State Support Hot Insertion

- Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V
- Flow-Through Architecture Facilitates
 Printed Circuit Board Layout
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Packaged in Plastic Fine-Pitch Ball Grid Array Package

NOTE: For tape and reel order entry:

The GKER package is abbreviated to KR.

description

The 'ALVTH32245 devices are 32-bit (dual-octal) noninverting 3-state transceivers designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

These devices can be used as four 8-bit transceivers, two 16-bit transceivers, or one 32-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the devices so that the buses are effectively isolated.

These devices are fully specified for hot-insertion applications using $I_{\rm off}$ and power-up 3-state. The $I_{\rm off}$ circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

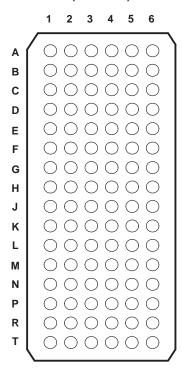
When V_{CC} is between 0 and 1.2 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ALVTH32245 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH32245 is characterized for operation from –40°C to 85°C.

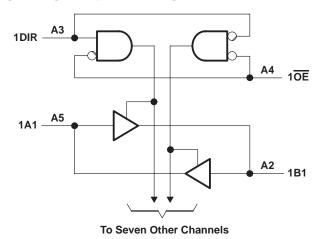
FUNCTION TABLE (each 8-bit section)

INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	X	Isolation

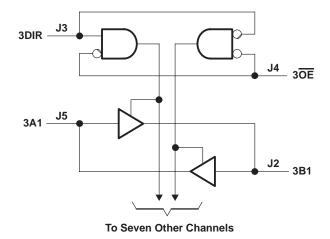

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

PRODUCT PREVIEW


GKE PACKAGE (TOP VIEW)

terminal assignments


	1	2	3	4	5	6
Α	1B2	1B1	1DIR	1OE	1A1	1A2
В	1B4	1B3	GND	GND	1A3	1A4
С	1B6	1B5	1V _{CC}	1V _{CC}	1A5	1A6
D	1B8	1B7	GND	GND	1A7	1A8
Е	2B2	2B1	GND	GND	2A1	2A2
F	2B4	2B3	1V _{CC}	1V _{CC}	2A3	2A4
G	2B6	2B5	GND	GND	2A5	2A6
Н	2B7	2B8	2DIR	2OE	2A8	2A7
J	3B2	3B1	3DIR	3OE	3A1	3A2
K	3B4	3B3	GND	GND	3A3	3A4
L	3B6	3B5	^{2V} CC	2V _{CC}	3A5	3A6
М	3B8	3B7	GND	GND	3A7	3A8
N	4B2	4B1	GND	GND	4A1	4A2
Р	4B4	4B3	2V _{CC}	2V _{CC}	4A3	4A4
R	4B6	4B5	GND	GND	4A5	4A6
Т	4B7	4B8	4DIR	4OE	4A8	4A7

logic diagram (positive logic)

Н3 2DIR H4 2OE E2 2B1 To Seven Other Channels

NOTE A: $1V_{\mbox{CC}}$ is associated with these channels.

4DIR T3 T4 40E 4A1 -N2 4B1 To Seven Other Channels

NOTE B: $2V_{\mbox{CC}}$ is associated with these channels.

SCES333 - APRIL 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	
Voltage range applied to any output in the high state, V _O (see Note 1)	
Output current in the low state, IO: SN54ALVTH32245	96 mA
SN74ALVTH32245	128 mA
Output current in the high state, I _O : SN54ALVTH32245	–48 mA
SN74ALVTH32245	–64 mA
Continuous current through V _{CC} or GND	±100 mA
Input clamp current, I_{IK} ($V_I < 0$)	–50 mA
Output clamp current, I_{OK} ($V_O < 0$)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2)	40°C/W
Storage temperature range, T _{stq}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 - 2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54	ALVTH3	2245	SN74	SN74ALVTH32245		
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vcc	Supply voltage		2.3		2.7	2.3		2.7	V
VIH	High-level input voltage		1.7			1.7			V
V _{IL}	Low-level input voltage				0.7			0.7	V
VI	Input voltage		0	VCC	5.5	0	VCC	5.5	V
IOH	High-level output current				-6			-8	mA
la	Low-level output current				6			8	mA
lOL	Low-level output current; current duty cycle ≤	50%; f≥1 kHz			18			24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	·	200			200			μs/V
T _A	Operating free-air temperature	·	-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

PRODUCT PREVIEW

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

				ALVTH3	2245	SN74	ALVTH3	2245	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2			2			V
V _{IL}	Low-level input voltage				0.8			0.8	V
VI	Input voltage		0	VCC	5.5	0	VCC	5.5	V
loн	High-level output current				-24			-32	mA
la	Low-level output current				24			32	mA
lor	Low-level output current; current duty cycle ≤	50%; f≥1 kHz			48			64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
T _A	Operating free-air temperature		-55		125	-40		85	°C

 $NOTE \ 3: \ All \ unused \ control \ inputs \ of \ the \ device \ must \ be \ held \ at \ V_{CC} \ or \ GND \ to \ ensure \ proper \ device \ operation. \ Refer to \ the \ TI \ application \ report,$ Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES333 - APRIL 2000

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

DA	DAMETER	TEST CONDITIONS		SN54	ALVTH3	2245	SN74	ALVTH3	2245	LINUT
PA	RAMETER	lesi co	ONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK		V _{CC} = 2.3 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0	.2		VCC-0	.2		
VOH		V _{CC} = 2.3 V	$I_{OH} = -6 \text{ mA}$	1.8						V
		VCC = 2.5 V	$I_{OH} = -8 \text{ mA}$				1.8			
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OL} = 100 μA			0.2			0.2	
			I _{OL} = 6 mA			0.4				
VOL		V _{CC} = 2.3 V	I _{OL} = 8 mA						0.4	V
		VCC = 2.5 V	I _{OL} = 18 mA			0.5				
			I _{OL} = 24 mA						0.5	
	Control inputs	$V_{CC} = 2.7 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1	μА
	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			10			10	
lį			V _I = 5.5 V			10			10	
	A or B ports	V _{CC} = 2.7 V	AI = ACC			1			1	
			V _I = 0			- 5			- 5	
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V						±100	μΑ
I _{BHL} ‡		$V_{CC} = 2.3 \text{ V},$	V _I = 0.7 V		115			115		μΑ
I _{BHH} §		$V_{CC} = 2.3 \text{ V},$	V _I = 1.7 V		-10			-10		μΑ
IBHLO	Т	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	300			300			μΑ
Івнно	#	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	-300			-300			μΑ
{IEX}		$V{CC} = 2.3 \text{ V},$	V _O = 5.5 V			125			125	μΑ
IOZ(PU	//PD) [☆]	$V_{CC} \le 1.2 \text{ V}, V_{O} = 0.5 \text{ V}$ $V_{I} = \text{GND or } V_{CC}, \overline{OE} =$	to V _{CC} , don't care			±100			±100	μΑ
		V _{CC} = 2.7 V,	Outputs high		0.04	0.1		0.04	0.1	mA
ICC		$I_0 = 0$,	Outputs low		2.3	4.5		2.3	4.5	
			Outputs disabled		0.04	0.1		0.04	0.1	
Ci		$V_{CC} = 2.5 \text{ V},$	V _I = 2.5 V or 0							pF
Cio		V _{CC} = 2.5 V,	V _O = 2.5 V or 0							pF

[†] All typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 $[\]P$ An external driver must source at least IBHLO to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

 $[\]parallel$ Current into an output in the high state when $\vee_{O} > \vee_{CC}$

^{*}High-impedance state during power up or power down

PRODUCT PREVIEW

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS		SN54	ALVTH3	2245	SN74	ALVTH3	2245	UNIT
PA	RAWEIER	TEST	CONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNII
٧ıK		$V_{CC} = 3 V$	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	2		VCC-0	.2		
Vон		V _{CC} = 3 V	$I_{OH} = -24 \text{ mA}$	2						V
		VCC = 3 V	$I_{OH} = -32 \text{ mA}$				2			
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	$I_{OL} = 100 \mu A$			0.2			0.2	
			I _{OL} = 16 mA						0.4	
VOL			$I_{OL} = 24 \text{ mA}$			0.5				V
		VCC = 3 V	$I_{OL} = 32 \text{ mA}$						0.5	V
			$I_{OL} = 48 \text{ mA}$			0.55				
			$I_{OL} = 64 \text{ mA}$						0.55	
	Control inputs	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1	
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10	
Ц			V _I = 5.5 V		10			10	μΑ	
	A or B ports		$V_I = V_{CC}$			1			1	
			V _I = 0			-5			– 5	
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V						±100	μΑ
I _{BHL} ‡		$V_{CC} = 3 V$,	V _I = 0.8 V	75			75			μΑ
I _{BHH} §		$V_{CC} = 3 V$,	V _I = 2 V	-75			-75			μΑ
IBHLO	Ī	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	500			500			μΑ
Івнно ^я	#	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	-500			-500			μΑ
{IEX}		$V{CC} = 3 V$	V _O = 5.5 V			125			125	μΑ
IOZ(PU	//PD) [☆]	$V_{CC} \le 1.2 \text{ V}, V_{O} = 0.5 \text{ V}_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} = 0.5 \text{ OE}$	V to V _{CC} , = don't care			±100			±100	μΑ
		V _{CC} = 3.6 V,	Outputs high		0.07	0.1		0.07	0.1	
ICC		$I_{O} = 0$,	Outputs low		3.2	5		3.2	5	mA
		$V_I = V_{CC}$ or GND	Outputs disabled		0.07	0.1		0.07	0.1	
∆lcc□		$V_{CC} = 3 \text{ V to } 3.6 \text{ V, On}$ Other inputs at V_{CC} or	e input at V _{CC} – 0.6 V, GND			0.2			0.2	mA
Ci		$V_{CC} = 3.3 \text{ V},$	$V_{I} = 3.3 \text{ V or } 0$							pF
C _{io}		V _{CC} = 3.3 V,	$V_0 = 3.3 \text{ V or } 0$							pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 $[\]P$ An external driver must source at least IBHLO to switch this node from low to high.

[#] An external driver must sink at least I_{BHHO} to switch this node from high to low.

 $[\]parallel$ Current into an output in the high state when $V_O > V_{CC}$

^{*}High-impedance state during power up or power down

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES333 - APRIL 2000

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALVTH32245	SN74ALVTH32245	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX	MIN MAX	ONIT	
t _{PLH}	A or B	B or A			ns	
^t PHL	AOID	BOLA			113	
^t PZH	ŌĒ	A or B			ns	
t _{PZL}	OE					
^t PHZ	ŌĒ	A or B			ns	
t _{PLZ}	OE	7010			113	

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVTH32245		SN74ALV	UNIT		
PARAMETER	(INPUT)	(OUTPUT)	MIN MA	Х	MIN	MAX	UNIT	
^t PLH	A or B	B or A					ns	
^t PHL	AOID	DOIA					113	
^t PZH	ŌĒ	A or B					ns	
^t PZL	OE .	AOID					115	
^t PHZ	ŌĒ	A or B					ns	
t _{PLZ}	OL	AOID					113	

skew

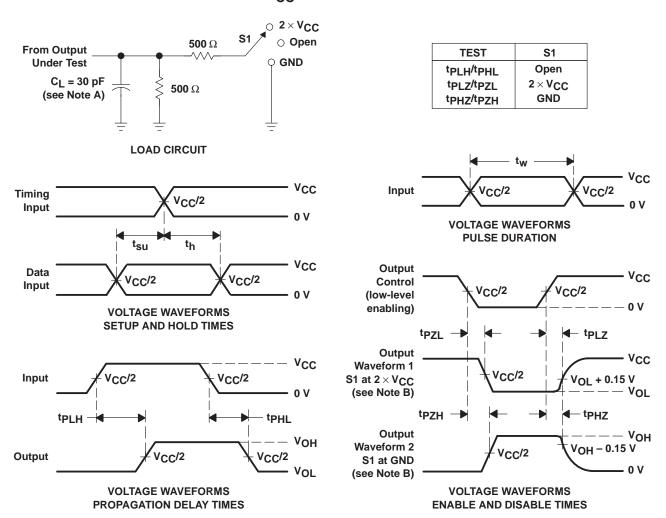
 t_{ps} (pin or transition skew), $t_{ps} = |t_{PHL} - t_{PHL}|$

	V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
t _{ps} max			ps

 t_{OST} = $|t_{p\Phi m} - t_{p\Phi n}|$, where Φ is any edge transition (high to low or low to high) measured between any two outputs (m or n) within any given device (see Note 4)

		V _{CC} = 2.5 V	VCC = 3.3 V	UNIT
tost -	A–B			no
	B–A			ps

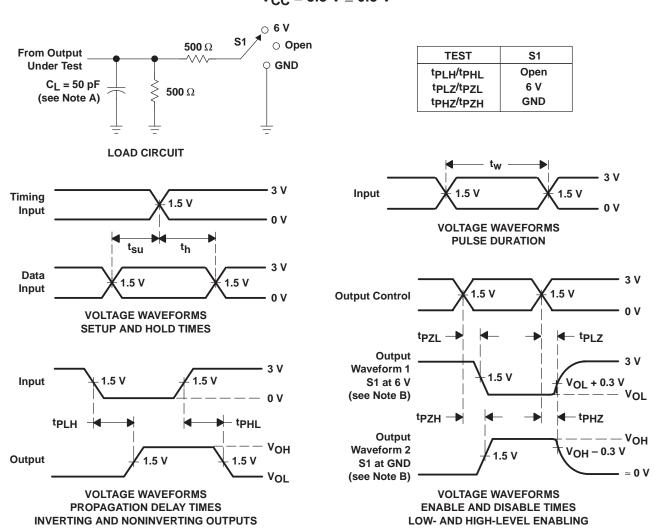
NOTE 4: One output switching, $T_A = 25^{\circ}C$


 t_{OSHL}/t_{OSLH} (common edge skew), $t_{OSHL} = |t_{PHL} max - t_{PHL} min|$ (output skew for low-to-high transitions), and $t_{OSLH} = |t_{PLH} max - t_{PLH} min|$ (output skew for high-to-low transitions) (see Note 4)

		V _{CC} = 2.5 V	V _{CC} = 3.3 V	UNIT
toslh	A–B			nc
toshl.	A-0			ps
^t OSLH	B–A			nc
toshl.	D-A			ps

NOTE 4: One output switching, $T_A = 25^{\circ}C$

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$



NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50~\Omega$, $t_f \leq$ 2 ns, $t_f \leq$ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq$ 2.5 ns, $t_f \leq$ 2.5 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated